Какие свойства относятся к технологическим свойствам металлов

Какие свойства относятся к технологическим свойствам металлов thumbnail

МЕХАНИЧЕСКИЕ СВОЙСТВА МЕТАЛЛОВ И МЕТОДЫ ОПРЕДЕЛЕНИЯ НЕКОТОРЫХ ИЗ НИХ.

Механические свойства характеризуют способность металлов и сплавов сопротивляться действию внешних сил – статистических и динамических, растягивающих, сжимающих, изгибающих, скручивающих, которые вызывают различные виды деформации.

Основными механическими свойствами металлов являются ударная, вязкость, прочность , твердость, пластичность, хрупкость , выносливость и др.

Механические свойства металлов устанавливаются при статистическом и динамическом нагружении.

Прочностью называется способность металлов сопротивляться разрушающему воздействию внешних сил. В зависимости от направления действия сил различают прочность на растяжение, сжатие, изгиб и др. Предел текучести – свойство металла сопротивляться деформации. Чем выше прочность металла, тем меньше размеры изделия и расход металла на изделие.

Твердостьхарактеризует свойство металла сопротивляться вдавливанию в него другого, более твердого тела, Металлы и сплавы, обладающие высокой твердостью, применяются для производства режущего инструмента и различных деталей, подверженных сильному износу.

Вязкостьсвойство материла поглощать энергию внешних сил за счет пластической деформации.

Упругостьюназывается свойство металлов и сплавов восстанавливать свою форму и размеры после прекращения действия внешней силы. Упругость имеет важное значение для материалов, которые используются для изготовления пружин, рессор, мостовых ферм и др.

Пластичность характеризует свойство металлов изменять свою форму и размеры под действием внешних сил, не разрушаясь. Пластичность выражается относительным удлинением и сужением определяемыми при растяжении стандартных образцов.

Хрупкость – это свойство металлов и сплавов разрушаться под действием внешних сил без достаточной деформации.

Выносливостьюназывается свойство металла сопротивляться действию переменных по величине и направлению многократных нагрузок. Материалы, обладающие большой выносливостью применяются для изготовления коленчатых валов и шатунов двигателей , деталей паровых машин и др.

Кручение характеризует сопротивление металлов действию крутящего момента.

Технологические свойства определяют способность металлов и сплавов подвергаться различным видам обработки. Значение технологических свойств металлов при изучении влияния различных методов изготовления изделий на их свойства. Основными технологическими свойствами являются ковкость, свариваемость, прокаливаемость, жидко-текучесть и др.

Ковкость– способность металлов и сплавов подвергаться различным видам обработки давлением (прокатке, волочению, ковке, штамповке) без разрушения. Ковкость характеризуется пластичностью и сопротивлением деформации.

Свариваемость -способность металлов и сплавовобразовывать прочные сварные соединения, обладающие теми же свойствами, что свариваемые металлы. Хорошо свариваются малоуглеродистые и низколегированные стали, удовлетворительно – среднеуглеродистые и среднелегированные стали. Низкая свариваемость высоколегированных сталей и чугунов вызывает необходимость применения специальных сварочных материалов, предварительного подогрева, термообработки и т.д. , что повышает себестоимость процесса, снижает качество сварных соединений.

Прокаливаемость характеризуется способностью металла или сплава закаливаться на определенную глубину. При низкой прокаливаемости прочность материала по сечению неодинаковая, что приводит к снижению срока эксплуатации деталей машин и механизмов.

Жидко текучестьюназывается способностью металлов и сплавов в расплавленном состоянии хорошо заполнять полость литейной формы и точно воспроизводить очертания отливки. Высокая жидкотекучесть материала обеспечивает получение высококачественных и плотных отливок, снижение в них газовых и усадочных раковин и т.п.

Обрабатываемость резаниемопределяется способностью металлов и сплавов поддаваться обработке режущим инструментом. При хорошей обрабатываемости металла резанием режущий инструмент легко и быстро снимает припуск на обработку, полученная деталь имеет необходимую точность и чистоту поверхности, тогда как при плохой обрабатываемости резанием снижается стойкость инструмента, повышающая энергетические и трудовые затраты.

СТАЛИ

Все стали можно разделить на углеродистые и легированные. Углеродистые стали, являются основным конструкционным материалом, используемым в промышленности, эти стали проще в производстве и значительно дешевле легированных. Свойства углеродистых сталей определяется количеством углерода и содержанием примесей, которые взаимодействуют и с железом и с углеродом. Механические свойства углеродистых сталей зависят главным образом от содержания углерода. С увеличением содержания углерода увеличивается прочность и твердость, уменьшается пластичность. Кроме углерода в стали обязательно присутствуют другие элементы, наличие которых обусловлено разными причинами. Различают примеси – постоянные, скрытые, случайные и специальные (легированные).

Постоянные примеси – это кремний, марганец, фосфор и сера. Марганец, кремний вводят в процессе выплавки в сталь для раскисления. Сера – вредная примесь и попадает в сталь с исходным сырьём. Содержание серы в стали, допускается не более 0,06 %. Фосфор также попадает в сталь с чугуном, поэтому также является вредной примесью. Его содержание в сталях допускается до 0,05 %. Чем больше углерода в стали, тем сильнее влияние фосфора на её хрупкость. Содержание фосфора и серы в стали зависит от способа её выплавки. Кремний до 0.5 % , марганца до 0.8 % .

Скрытые примеси – это газы: азот, кислород, водород. Газы попадают в сталь при её выплавке, даже в очень маленьких количествах газы сильно ухудшают пластические свойства стали. Содержание их допускается до 0.001 %. В результате вакуумирования стали, их содержание уменьшается, и свойства стали усиливаются.

Случайные примеси – могут быть любые элементы металлов, которые попадают при выплавке стали. Содержание этих элементов ниже тех пределов, когда их вводят специально. Если они не влияют, на качество стали, то их не выводят из состава стали.

Специальные примеси – это элементы, специально вводимые в сталь для получения каких либо заданных свойств. Такие элементы называют легирующими. А стали их содержащие -легированными.

Сталь является легированной, если содержание легирующего элемента составляет 1 % и более.

Стали классифицируются по следующим признакам: по способу производства, степени раскисления, химическому составу, назначению, качеству и структуре.

По способу производства различают сталь:

1. мартеновскую

2. бессемеровскую

3. кислородно-конверторную

4. томассоновская

5. электросталь

По степени раскисления делятся на:

1. кипящую

2. полуспокойную

3. спокойную

По химическому составу сталь делится на:

1. углеродистую

2. легированную

По содержанию углерода сталь делится на:

1. низкоуглеродистая до 0.25%

2. среднеуглеродистая до 0.7%

3. высокоуглеродистые свыше 0.7%

По концентрации легирующих элементов стали подразделяются на

1. низколегированные до 5%

2. среднелегированные до 10%

3. высоколегированные свыше 10%

По назначению различают стали:

1. конструкционные

2. инструментальные

3. стали специального назначения с особыми свойствами

По показателям качества стали классифицируются:

1. обыкновенного качества

2. качественные

3. высококачественные

4. особо высококачественные

Качество стали характеризуется свойствами, определяющими процесс производства, химическим составом, содержанием газов и вредных примесей.

Источник

Лекции.Орг

При разработке и создании различных изделий особое внимание уделяется технологическим свойствам материалов из которых изготавливаются эти изделия. Технологические свойства определяют пригодность материала для изготовления из него детали тем или иным способом. К числу этих свойств относятся:

Обрабатываемость резанием — способность металла изменять свою форму под действием режущего инструмента (резца, фрезы, сверла и т. д.) при различных Операциях механической обработки (обтачивании, фрезеровании, сверлении).

Ковкость— (деформируемость) — возможность менять форму изделия в горячем состоянии или при нормальной температуре под воздействием давления.

Свариваемость—способность металлов образовывать прочные соединения при нагреве свариваемых частей до расплавленного или до пластичного состояния. Хорошей свариваемостью обладают стали с низким содержанием углерода. Плохо свариваются чугун, медные и алюминиевые сплавы.

Жидкотекучесть(литейность) — способность металла в расплавленном состоянии заполнять литейную форму, без оставления пустот. Металл должен обладать способностью давать отливки с резко очерченными контурами, т. е. иметь хорошую литейность. При недостаточной литейности форма заполняется не полностью и в тонких сечениях отливки образуются недоливы. Повышение температуры заливки улучшает жидкотекучесть сплавов.

Величину жидкотекучести определяют по технологической пробе, т. е. по длине спирального канала, заполненного металлом в контрольной форме. Чем больше жидкотекучесть сплава, тем большей длины участок спирали он заполнит до затвердевания.

Усадка —сокращение объема расплавленного металла при его застывании и охлаждении до комнатной температуры по сравнению с размерами модели, по которой она была отформована. Соответствующее изменение линейных размеров, выраженное в процентах, называется линейной усадкой.

Величина усадки отливок зависит от химического состава сплава, конфигурации детали и других факторов. При большой усадке металла во время его кристаллизации и охлаждения возникают значительные внутренние напряжения и образуются усадочные раковины. Для удобства усадку отливок выражают в процентах по отношению к размерам модели и называется линейной усадкой..

Ликвация — свойство сплавов образовывать при охлаждении и кристаллизации отливки с неоднородным химическим составом. Это объясняется тем, что сплав в форме охлаждается неравномерно. Чем больше разница в температуре внешних и внутренних частей отливки при ее охлаждении, тем больше компонентов, плавящихся при более низкой температуре, скапливается в середине сечения.

Различают два вида ликвации:

· Внутрикристаллическая ликвация характерна для фасонных отливок, изготовляемых из сплавов, образующих твердые растворы. В большинстве случаев скорость затвердевания отливки превышает скорость диффузии, которая необходима для выравнивания химического состава. Последнее является основной причиной развития внутрикристаллической ликвации в отливках.

· Зональная ликвация наблюдается в толстостенных отливках, слитках, которые медленно охлаждаются в формах. Зональная ликвация может происходить по двум основным причинам: в связи с расслоением жидкого сплава из-за различной плотности, которое происходит при недостаточном перемешивании сплава при плавке и заливке, или при выпадении из жидкого сплава легких и тяжелых кристаллизующихся фаз.

Прокаливаемость — способность улучшения различных свойств металла путем закалки на различную глубину.

Все эти технологические свойства металлов и сплавов в комплексе и определяют дальнейшую сферу их применения.

Сталь наряду с бетонами — главнейший конструкционный материал. Широкому использованию сталь обязана высоким физико-механическим и технологическим свойствам. Одним из самых широко используемых технологических свойств стали является ее хорошая свариваемость. При нагреве сталь постепенно размягчается, а при температуре 1300—1400° С становится тестообразной. Если два куска стали, нагретых до тестообразного состояния, сложить вместе и сжать под прессом или молотом, то они соединятся в одно целое или, как говорят, сварятся

Другим свойством стали является ее хорошая прокаливаемость. Сталь, нагретая до температуры 750—900° (температура нагрева зависит от состава стали) и быстро охлажденная в воде или масле, становится более твердой и хрупкой. Процесс, сопровождающийся изменением структуры (т. е. строения) стали, называется закалкой.
Чем больше в стали содержание углерода, тем лучше она закаливается. Сталь с содержанием углерода до 0,15% не закаливается и, наоборот, лучше закаливается сталь с содержанием углерода более 0,5%. Отдельные элементы, входящие в состав стали, влияют на свойства ее следующим образом.

Углерод (С). С увеличением в стали содержания углерода увеличиваются ее твердость, прочность и закаливаемость, но понижаются ковкость и теплопроводность. Чем больше в стали углерода, тем медленнее ее надо нагревать. Сталь с содержанием углерода до 1,4% хорошо куется и прокатывается.
Кремний (Si) повышает прочность и упругость стали, но понижает вязкость и свариваемость. В стали машиностроительных сортов кремния обычно содержится от 0,2 до 0,4%’. Заметного влияния на ковкость кремний не оказывает.
Марганец (Мn). В обычных сортах углеродистых сталей марганца содержится от 0,2 до 1 %, а в специальных сортах до 14%. Марганец повышает сопротивляемость удару, прочность, уменьшает истирание, понижает вредное влияние серы. С увеличением содержания марганца понижается теплопроводность и свариваемость. Марганец способствует перегреву стали и появлению трещин. Чем больше в стали марганца, тем медленнее ее нужно греть; чтобы избежать перегрева и пережога марганцовой стали, необходимо тщательно следить за температурой нагрева и выдержкой при высоких температурах. Правильно нагретые заготовки или слитки из марганцовой стали куются хорошо.
Никель (Ni) увеличивает пластичность, вязкость и прочность стали. Никель не влияет на ковкость стали, но при нагреве никелевых сталей образуется окалина, которая прочно удерживается на поверхности заготовки. Окалина может заковываться в деталь и тем самым понижать ее механические качества.
Хром (Сr) повышает твердость, прочность и упругость стали, но понижает вязкость и теплопроводность. При ковке литого слитка структура хромистой стали плохо поддается разрушению. Для получения в поковке мелкозернистой структуры нужна большая проковка при высокой температуре. Хромистая сталь при температуре 1150—850° С куется удовлетворительно, а при низких температурах (ниже 850° С) твердость поверхности ее резко возрастает, отчего могут появляться трещины.
Молибден (Мо) добавляется в сталь вместе с никелем sr хромом. В сталях различных марок молибдена содержится до 0,45% и редко до 1%. В сплаве с хромом и никелем молибден повышает прочность и вязкость стали, но понижает теплопроводность. Чем больше в стали молибдена, тем медленнее ее надо греть, так как наличие молибдена сильно повышает чувствительность стали к перегреву. Молибденовые стали требуют интенсивной проковки на более мощных, прессах или молотах, чем прессы и молоты, на которых куются углеродистые стали. Охлаждать поковки из молибденовой стали нужно медленно, строго по-технологическому процессу, так как молибденовая сталь принимает воздушную закалку и предрасположена к образованию трещин.
Ванадий (V). В сталях, применяемых в машиностроении,, ванадия обычно содержится до 0,3% и редко до 1%. Ванадий повышает прочность и упругость стали, способствует образованию мелкозернистой структуры слитков. Содержание ванадия в стали улучшает ее ковкость и препятствует перегреву.
Вольфрам (W) повышает твердость и прочность стали, незначительно понижает вязкость и уменьшает теплопроводность. Ковка вольфрамовой стали при низких температурах вызывает трещины. Вольфрамовые стали нужно греть медленнее, чем углеродистые, а ковать при более высоких температурах.
Сера (S) — вредная примесь в стали, но в то же время является таким элементом, который переходит в сталь при ее плавке. Серы в стали должно быть как можно меньше. В сталях, применяемых, для изготовления особо ответственных деталей, содержание серы не должно превышать 0,02—0,03%, а в обычных сталях 0,045—0,055%. Повышенный процент серы в стали приводит к красноломкости. Если такую сталь нагреть до красного каления, то она становится хрупкой, во время ковки дает трещины и разрушения. При обычной температуре сера, содержащаяся в стали, понижает ее прочность.
Фосфор (Р). В отличие от серы фосфор сообщает стали холодноломкость, т. е. вызывает хрупкость при комнатной температуре. Фосфора в сталях, из которых изготовляются ответственные детали, не должно быть больше 0,03—0,04%. Чем больше сталь содержит углерода, тем больше может быть фосфора. Холодноломкость стали часто обнаруживается при правке и гибке изделий во время морозов в неотапливаемом помещении.

Дата добавления: 2016-12-31; просмотров: 2710 | Нарушение авторских прав | Изречения для студентов

Читайте также:

Рекомендуемый контект:

Поиск на сайте:

© 2015-2020 lektsii.org – Контакты – Последнее добавление

Источник

Химические свойства металлов

  • Физические свойства металлов
  • Механические свойства металлов
  • Технологические свойства металлов
  • Интересные факты о металлах
  • Металлы, видео
  • Не секрет, что все вещества в природе делятся на три состояния: твердые, жидкие и газообразные. А твердые вещества в свою очередь делятся на металлы и неметаллы, разделение это нашло свое отображение и в таблице химических элементов великого химика Д. И. Менделеева. Наша сегодняшняя статья о металлах, занимающих важное место, как в химии, так и во многих других сферах нашей жизни.

    Химические свойства металлов

    Все мы, так или иначе, но сталкиваемся с химией в нашей повседневной жизни. Например, во время приготовления еды, растворение поваренной соли в воде является простейшей химической реакцией. Вступают в разнообразные химические реакции и металлы, а их способность реагировать с другими веществами это и есть их химические свойства.

    Среди основных химических свойств или качеств металлов можно выделить их окисляемость и коррозийную стойкость. Реагируя с кислородом, металлы образуют пленку, то есть проявляют окисляемость.

    Аналогичным образом происходит и коррозия металлов – их медленное разрушение по причине химического или электрохимического взаимодействия. Способность металлов противостоять коррозии называется их коррозийной стойкостью.

    металл

    Физические свойства металлов

    Среди основных общих физических свойств металлов можно выделить:

    • Плавление.
    • Плотность.
    • Теплопроводность.
    • Тепловое расширение.
    • Электропроводность.

    Важным физическим параметром металла является его плотность или удельный вес. Что это такое? Плотность металла – это количество вещества, которое содержится в единице объема материала. Чем меньше плотность, тем металл более легкий. Легкими металлами являются: алюминий, магний, титан, олово. К тяжелым относятся такие металлы как хром, марганец, железо, кобальт, олово, вольфрам и т. д. (в целом их имеется более 40 видов).

    Способность металла переходить из твердого состояния в жидкое, именуется плавлением. Разные металлы имеют разные температуры плавления.

    плавка металла

    Скорость, с которой в металле проводится тепло при нагревании, называется теплопроводностью металла. И по сравнению с другими материалами все металлы отличаются высокой теплопроводностью, говоря по-простому, они быстро нагреваются.

    Помимо теплопроводности все металлы проводят электрический ток, правда, некоторые делают это лучше, а некоторые хуже (это зависит от строения кристаллической решетки того или иного металла). Способность металла проводить электрический ток называется электропроводностью. Металлы, обладающие отличной электропроводностью, это золото, алюминий и железо, именно поэтому их часто используют в электротехнической промышленности и приборостроении.

    Механические свойства металлов

    Основными механическими свойствами металлов является их твердость, упругость, прочность, вязкость и пластичность.

    При соприкосновении двух металлов могут образоваться микро вмятины, но более твердый металл способен сильнее противостоять ударам. Такая сопротивляемость поверхности металла ударам извне и есть его твердость.

    Чем же твердость металла отличается от его прочности. Прочность, это способность металла противостоять разрушению под действием каких-либо других внешних сил.

    Под упругостью металла понимается его способность возвращать первоначальную форму и размер, после того как нагрузка, вызвавшая деформацию металла устранена.

    Способность металла менять форму под внешним воздействием называется пластичностью.

    Технологические свойства металлов

    Технологические свойства металлов и сплавов важны в первую очередь при их производстве, так как от них зависит способность подвергаться различным видам обработки с целью создания разнообразных изделий.

    Среди основных технологических свойств можно выделить:

    • Ковкость.
    • Текучесть.
    • Свариваемость.
    • Прокаливаемость.
    • Обработку резанием.

    Под ковкостью понимается способность металла менять форму в нагретом и холодном состояниях. Ковкость метала, была открыта еще в глубокой древности, так кузнецы, занимающиеся обработкой металлических изделий, превращением их в мечи или орала (в зависимости от потребности) на протяжении многих веков и исторических эпох были одной из самых уважаемых и востребованных профессий.

    кузнец

    Способность двух металлических сплавов при нагревании соединяться друг с другом называют свариваемостью.

    Текучесть металла тоже очень важна, она определяет способность расплавленного метала растекаться по заготовленной форме.

    Свойство металла закаливаться называется прокаливаемостью.

    Интересные факты о металлах

    • Самым твердым металлом на Земле является хром. Этот голубовато-белый метал был открыт в 1766 году под Екатеринбургом.
    • И наоборот, самыми мягкими металлами являются алюминий, серебро и медь. Благодаря своей мягкости они нашли широкое применение в разных областях, например, в электроаппаратостроении.
    • Золото – которое на протяжении веков было самим драгоценным металлом имеет и еще одно любопытное свойство – это самый пластичный металл на Земле, обладающий к тому же отличной тягучестью и ковкостью. Также золото не окисляется при нормальной температуре (для этого его нужно нагреть до 100С), обладает высокой теплопроводностью и влагоустойчивостью. Наверняка все эти физические характеристики делают настоящее золото таким ценным.
    • Ртуть – уникальный металл, прежде всего тем, что он единственный из металлов, имеющий жидкую форму. Причем в природных условиях ртути в твердом виде не существует, так как ее температура плавления -38С, то есть в твердом состоянии она может существовать в местах, где просто таки очень холодно. А при комнатной температуре 18С ртуть начинает испаряться.
    • Вольфрам интересен тем, что это самый тугоплавкий металл в мире, чтобы он начал плавиться нужна температура 3420С. Именно по этой причине в электрических лампочках нити накаливания, принимающие основной тепловой удар, изготовлены из вольфрама.

    Металлы, видео

    И в завершение образовательное видео по теме нашей статьи.

    Какие свойства относятся к технологическим свойствам металлов

    Автор: Павел Чайка, главный редактор журнала Познавайка

    При написании статьи старался сделать ее максимально интересной, полезной и качественной. Буду благодарен за любую обратную связь и конструктивную критику в виде комментариев к статье. Также Ваше пожелание/вопрос/предложение можете написать на мою почту pavelchaika1983@gmail.com или в Фейсбук, с уважением автор.

    Источник