Какие свойства пластмасс лежат в основе их промышленного применения

Какие свойства пластмасс лежат в основе их промышленного применения thumbnail

Пластмассы (пластики) представляют собой органические материалы на основе полимеров, способные при нагреве размягчаться и под давлением принимать определённую устойчивую форму.

Полимеры – это соединения, которые получаются путем многократного повторения (рис. 1), то есть химического связывания одинаковых звеньев – в самом простом случае, одинаковых, как в случае полиэтилена это звенья CH2, связанные между собой в единую цепочку. Конечно, существуют более сложные молекулы, вплоть до молекул ДНК, структура которых не повторяется, очень сложным образом организована.

Рис. 1. Формы макромолекул полимеров

1. Компоненты, входящие в состав пластмасс

В большинстве своем пластмассы состоят из смолы, а также наполнителя, пластификатора, стабилизатора, красителя и других добавок, улучшающих технологические и эксплуатационные свойства пластмассы. Свойства полимеров могут быть в значительной степени улучшены и изменены, в зависимости от требований, предъявляемых различными отраслями техники, с помощью различных составляющих пластмассы.

Наполнители служат для улучшения физико-механических, диэлектрических, фрикционных или антифрикционных свойств, повышения теплостойкости, уменьшения усадки, а также для снижения стоимости пластмасс. По массе содержание наполнителей в пластмассах составляет от 40 до 70 %. Наполнителями могут быть ткани, а также порошкообразные и волокнистые вещества.

Пластификаторы увеличивают пластичность и текучесть пластмасс, улучшают морозостойкость. В качестве пластификаторов применяют дибутилфталат, трикрезилфосфат и др. Их содержание колеблется в пределах 10 – 20 %.

Стабилизаторы вещества, предотвращающие разложение полимерных материалов во время их переработки и эксплуатации под воздействием света, влажности, повышенных температур и других факторов. Для стабилизации используют ароматические амины, фенолы, сернистые соединения, газовую сажу.

Красители добавляют для окрашивания пластических масс. Применяют как минеральные красители (мумия, охра, умбра, литопон, крон и т. д.), так и органические (нигрозин, родамин).

Смазочные вещества стеарин, олеиновая кислота, трансформаторное масло – снижают вязкость композиции и предотвращают прилипание материала к стенкам пресс-формы.

2. Классификация пластмасс

В зависимости от поведения связующего вещества при нагреве пластмассы разделяют на термореактивные и термопластичные.

Термореактивные пластмассы при нагреве до определенной температуры размягчаются и частично плавятся, а затем в результате химической реакции переходят в твердое, неплавкое и нерастворимое состояние. Термореактивные пластмассы необратимы: отходы в виде грата и бракованные детали обычно используют после измельчения только в качестве наполнителя при производстве пресспорошков.

Термопластичные пластмассы при нагреве размягчаются или плавятся, а при охлаждении твердеют. Термопластичные пластмассы обратимы, но после повторной переработки пластмасс в детали физико-механические свойства их несколько ухудшаются.

К группе термореактивных пластмасс относятся пресспорошки, волокниты и слоистые пластики. Они выгодно отличаются от термопластичных пластмасс отсутствием хладотекучести под нагрузкой, более высокой теплостойкостью, малым изменением свойств в процессе эксплуатации. Термореактивные пластмассы перерабатывают в детали (изделия) преимущественно методом прессования или литьё под давлением (рис. 2).

Рис. 2. Схема и установка для получения деталей из термореактивных пластмасс

В таблице 1 приведены свойства, области применения и интервал рабочих температур некоторых термореактивных пластмасс. На рис. 3 показаны некоторые изделия из термореактивных пластмасс.

Таблица 1.

Рис. 3. Изделия, где применены термореактивные пластмассы

Технология изготовления термопластов довольно проста: гранулы засыпаются в камеру термопластавтомата, где, при необходимой температуре, переходят в текучее состояние, затем расплавленная масса попадает в специальную форму, где происходит прессование и дальнейшее охлаждение (рис. 4). Как правило, большинство термопластов может быть использовано вторично.

Рис. 4. Пресс-форма для литья пластмасс

В таблице 2 приведены свойства, области применения и интервал рабочих температур некоторых термопластичных пластмасс. На рис. 5 показаны некоторые изделия из термопластичных пластмасс.

Таблица 2.

Рис. 5. Изделия из термопластичных пластмасс

Выбор пластмассы для изготовления конкретного изделия определяется его эксплуатационными условиями. Критерии выбора разнообразны и зависят от назначения изделия. Основными критериальными характеристиками полимерных материалов являются механические (прочность, жесткость, твердость), температурные (изменения механических и деформационных характеристик при нагревании или охлаждении) и электрические. Последние отражают широкое применение пластмасс в радиоэлектронной и электротехнической отраслях. Кроме того, существенное значение приобрели триботехнические характеристики и ряд специальных свойств (огнестойкость, звукопоглощение, оптические особенности, химическая стойкость). Немаловажны также экономические условия (стоимость полимерного материала, тираж изделия, условия производства).

Читайте также:  Какие свойства проявляют аминокислоты

3. Механические свойства пластмасс

Механические свойства определяют поведение физического тела под действием приложенного к нему усилия. Численно это поведение оценивается прочностью и деформативностью. Прочность характеризует сопротивляемость разрушению, а деформативность — изменение размеров полимерного тела, вызванное приложенной к нему нагрузкой. Поскольку и прочность, и деформация являются функцией одной независимой переменной — внешнего усилия, то механические свойства еще называют деформационнопрочностными (рис. 6).

Рис. 6. Механические испытания пластмасс на деформацию прочность (слева), ударную вязкость (по центру), твёрдость (справа)

Модуль упругости является интегральной характеристикой, дающей представление прежде всего о жесткости конструкционного материала. Ударная вязкость характеризует способность материалов сопротивляться нагрузкам, приложенным с большой скоростью. В практике оценки свойств пластмасс наибольшее применение нашло испытание поперечным ударом, реализуемым на маятниковых копрах.

Твердость определяет механические свойства поверхности и является одной из дополнительных характеристик полимерных материалов. По твердости оценивают возможные пути эффективного применения пластиков. Пластмассы мягкие, эластичные, имеющие низкую твердость, используются в качестве герметизирующих, уплотнительных и прокладочных материалов. Твердые и прочные могут применяться в производстве деталей конструкционного назначения: зубчатых колес и венцов, тяжело нагруженных подшипников, деталей резьбовых соединений и пр. (рис. 7).

Рис. 7. Детали конструкционного применения из пластмасс

В таблице 3 указаны механические свойства термопластов общего назначения.

Таблица 3.

Несколько примеров по обозначению (см. табл. ниже).

ПЭВДПолиэтилен высокого давленияГОСТ 16337-77
ПЭНДПолиэтилен низкого давленияГОСТ 16338-85
ПСПолистирольная плёнкаГОСТ 12998-85
ПВХПластификаторыГОСТ 5960-72
АБСАкрилбутодиентстиролГОСТ 8991-78
ПММАПолиметилметаакрилатГОСТ 2199-78

4. Сварка пластмасс

Сварке подвергаются только так называемые термопластичные пластмассы (термопласты), которые при нагревании становятся пластичными, а после охлаждения принимают первоначальные вид и свойства. Кроме них, существуют термореактивные пластмассы, которые изменяют свои свойства при нагреве. Нагревать пластмассы при сварке следует не выше температуры их разложения, т. е. в пределах 140—240 °С.

Пластмассы можно сваривать различными способами:

  • нагретым газом;
  • контактной теплотой от нагревательных элементов;
  • трением;
  • ультразвуком (рис. 8).

Основные условия для получения качественного соединения пластмасс при сварке следующие:

  1. Диаметр присадочного прутка не должен превышать 4 мм для достаточно быстрого его нагрева и обеспечения необходимой производительности сварки.
  2. Сварку следует вести по возможности быстро во избежание термического разложения материала.
  3. Необходимо точно выдерживать температуру сварки во избежание недостаточного нагрева или перегрева свариваемого материала.

На рис. 8 показано оборудование и методы сварки пластмасс.

Рис. 8. Сварочный экструдер для сварки пластмасс, полимеров

5. Другие свойства пластмасс

Химическая стойкость. Химическая стойкость пластмасс, как правило, выше, чем у металлов. Химическая стойкость пластмасс в основном определяется свойствами связующего (смолы) и наполнителя. Наиболее химически стойкими в отношении всех агрессивных сред являются фторсодержащие полимеры —фторопласты 4 и 3. К числу кислотостойких пластмасс в отношении концентрированной соляной кислоты могут быть отнесены винипласт и фенопласты с асбестовым наполнителем. Стойкими к действию щелочей являются винипласт и хлорвиниловый пластик.

Электроизоляционные свойства. Почти все пластмассы — хорошие диэлектрики. Этим объясняется их широкое применение в электро- и радиотехнике. Большинство пластмасс плохо переносит т. в. ч. и поэтому они применяются в качестве электроизоляционных материалов для деталей, которые предназначаются для работы при частоте тока 50 Гц. Однако такие ненаполненные высокополимеры, как фторопласт и полистирол, практически не меняют своих диэлектрических качеств в зависимости от частоты тока и могут работать при высоких и сверхвысоких частотах.

Повышение температуры, как правило, ухудшает электроизоляционные характеристики пластмасс. Исключение составляет полистирол, сохраняющий электроизоляционные свойства в интервале температур от —60 до +60° С, и фторопласт 4 — в интервале температур от —60 до +200°. С.

Фрикционные свойства. В зависимости от условий работы пластмассовые детали могут обладать различными по величине фрикционными характеристиками. Так, например, текстолит при малых нагрузках имеет малый коэффициент трения, что и позволяет широко использовать его вместо бронзы, антифрикционных чугунов и т. д. Коэффициент трения тормозных материалов типа КФ-3 высок, что и отвечает назначению этих материалов. Из этих двух примеров следует, что утверждение, высказанное выше, справедливо

Читайте также:  На каких биологических свойствах основан искусственный отбор

Просмотров: 16 072

Источник

Какие свойства пластмасс лежат в основе их промышленного применения

По своей природе пластмассы имеют органическое происхождение, в основе их строения лежат соединения высокомолекулярного характера. Само это название говорит о том, что данный материал в результате нагревания или же давления может превращаться в заданную форму, которую и сохранит после того, как остынет. Такой процесс называется литьем под давлением. По желанию заказчика специалисты производств превращают пластмассы в жидкое состояние, чтобы потом переместить материал в любую форму. Существует различные формы, интересные эффекты и цветовое разнообразие. Среди пластика (другое название пластмассы) выделяют различные виды: полиацеталь, полиуретан, полиамид и винипласт. Все они прочно заняли лидирующее место в нашем быту в связи с широкой сферой своего применения и предлагаются к продаже в компании “МетПромStar”.

Популярные пластмассы

Такой вид пластмассы, как полиамид, заслужил мировое признание. Ученые несколько преобразили этот материал, доведя его до состояния ткани. Они ввели в состав пластмассы необходимые стабилизаторы, придав ей следующие свойства: повышенную устойчивость к влаге, способность к быстрому высыханию, прочность, легкий вес, а также мягкость и отличную воздухопроницаемость. Так в нашу жизнь вошел капрон, нейлон, силон и перлон, ставший незаменимым в легкой промышленности. Из ткани шьют в основном верхнюю одежду: непромокаемые плащи, легкие ветровки, теплые куртки и пуховики. Любое из изделий можно легко сложить, придав компактность, и оно при этом не помнется. Нейлон не подвержен разрушающему действию реагентов, под воздействием огня он не приводит к возгоранию, а только плавится без какого-либо резкого запаха. Изделия из этой ткани можно даже стирать и гладить, правда, только теплым утюгом и без пара. Есть у ткани и недостатки. Она подвержена воздействию ультрафиолета и сильно электризуется.

Кроме того, полиамид используется и для производства рыболовных сетей и различных канатов. Нити ткани скручивают вместе с нитями из шерсти или хлопка, получая в итоге прочнейшие, отлично структурированные нити.

Винипласт имеет отличные визуальные характеристики, он гладкий, приятный на вид. Он обладает высокой прочностью, не подвержен действию механических разрушителей. Винипласт может сильно гнуться и при этом не сломается и не деформируется. Однако такой отталкивающий фактор, как присутствие частиц хлора делает его применение в быту крайне нежелательным. Зато в машиностроительной отрасли он является одним из основных элементов для конструкционных материалов. В химической промышленности из него делают многочисленные реакторы и растворители. Используют эту разновидность пластмассы и для защиты металлических конструкций под землей в виде клейкой ленты. Он также прочно склеивается различными видами клеев, сделанными на основе перхлорвиниловой смолы. Интересно, что винипласт способен приклеиться к дереву, бетону и даже металлу. Помимо того, он послушен для механической работы на обычных станках и достаточно быстро сваривается горячим воздухом при помощи сварочного прутика.

Полиацеталь абсолютно безвреден для потребителя, он не содержит вредных химических соединений. Достоинства полиацеталя сделали его неоспоримым лидером по количеству использования в различных сферах промышленности. Он не чувствителен к реагентам и горячей воде. Материал обладает самым низким показателем трения, благодаря чему он слабо подвержен изнашиваемости. Как и винипласт, полиацеталь применяется в химической промышленности. Незаменим он и в остальных отраслях, как то: машиностроение, пищевая, медицинская и даже легкая промышленности. Широко известна такая модификация полиацеталя, как текаформ. Из нее производят:

• Автомобильные дворники, стеклоподъемники, дверные замки, приборные щитки, различные датчики уровня бензина и другие автомобильные детали;

• Подшипники, конвейерные ролики, эксцентрики и многое другое в сфере машиностроения;

• Детали для электрических бритв, миксеров, кофеварок, чайников, кондиционеров, а также видеокассеты и многие другие предметы бытовой техники;

• Многочисленные детали для часовой промышленности.

Кроме того, текаформ успешно применяется и в пищевой промышленности, ведь он может свободно контактировать с продуктами, не нанося вреда здоровью людей.

Читайте также:  Какими свойствами обладают структуры

Еще один, не менее популярный в использовании вид пластмассы – это полиуретан. Он может принимать как мягкую, так и твердую форму, превращаясь в поролон и пенопласт соответственно. Обычному потребителю он известен в виде обувной подошвы, шины для автомобиля, доски для серфинга и ремня швейной машинки. В промышленных масштабах из него делают трубопроводы, подшипники и медицинские протезы. Производят полиуретан из нефти с составляющими изоцината и полиола, к которым добавляют вспенивающие вещества и катализаторы.

Благодаря своим универсальным свойствам и доступной цене пластик стал частью нашей жизни, с успехом заменив металл и резину.

Автор: Администрация   

Источник

§23. Кристаллические решетки

1. В каком агрегатном состоянии будет находиться кислород при -205°С?
Так как температура кипения кислорода равна -183°С, а плавления  -218°, то при -205°С кислород будет в жидком состоянии.

2. Вспомните произведение А. Беляева «Продавец воздуха» и охарактеризуйте свойства твердого кислорода, используя его описание, приведенное в книге.
В произведении Беляева есть описание жидкого воздуха: «Жидкий воздух!.. Ведь его плотность в 800 раз больше атмосферного… Жидкий воздух представляет легко подвижную прозрачную жидкость бледно-голубого цвета  с температурой минус сто девяносто три градуса Цельсия при нормально-атмосферном давлении… Полученный из аппарата воздух бывает мутным в следствие примеси замерзшей углекислоты, которая в незначительном количестве содержится в воздухе. После профильтрования через бумажный фильтр воздух становится прозрачным… При испарении жидкого воздуха сначала выделяется кипящий азот, точка кипения которого минус сто девяносто четыре градуса Цельсия, потом аргон…»

3. К какому типу веществ (кристаллические или аморфные) относятся пластмассы? Какие свойства пластмасс лежат в основе их промышленного применения?
Пластмассы – это аморфные вещества. Название «пластмассы» означает, что эти материалы под действием нагревания и давления способны формироваться и сохранять заданную форму после охлаждения или отвердения. Именно эти свойства лежат в основе широкого применения пластмасс в промышленности.

4. К какому типу относится кристаллическая решетка алмаза? Перечислите характерные для алмаза физические свойства.
Алмаз – прозрачное кристаллическое вещество, которое является самым твердым из всех существующих. Такая твердость алмаза вызвана особой структурой атомной кристаллической решетки, где каждый атом углерода окружен другими атомами углерода, расположенными в вершинах правильного тетраэдра. У алмаза наиболее высокая теплопроводность среди всех твердых тел 900-2300 Вт/(м·К), большой показатель преломления и дисперсия.

5. К какому типу относится кристаллическая решетка йода? Перечислите характерные для йода физические свойства.
Йод – простое вещество при нормальных условиях – кристаллы черно-серого цвета с фиолетовым металлическим блеском, легко образует фиолетовые пары, обладающие резким запахом. Молекула вещества двухатомна (формула I₂). Молекулярная кристаллическая решетка.

6. Почему температура плавления металлов изменяется в очень широких пределах? Для подготовки ответа на этот вопрос используйте дополнительную литературу.
Температура плавления зависит от прочности структуры кристаллической решетки, которая, в свою очередь, зависит от формы решетки, структуры составляющих ее ионов и многих других факторов. Кроме того, атомов металлов очень много, и они весьма разнятся по своим свойствам – диаметру атома, заряду ядра, количество внешних электронов и т.д. из-за этого и разница в значениях энергии связи и, как следствие, температурах плавления.

7. Почему изделие из кремния при ударе раскалывается на кусочки, а изделие из свинца только расплющивается? В каком из указанных случаев происходит разрушение химической связи, а в каком – нет? Почему?
В кремнии атомная кристаллическая решетка, атомы соединены между собой ковалентной связью. Во время удара ковалентные химические связи Si-Si разрываются, и изделия из кремния раскалываются.
Атомы свинца связаны между собой металлической связью и образуют металлическую кристаллическую решетку, где все электроны общие. При ударе происходит деформация кристаллической решетки, но разрушение химической связи не происходит, так как этому мешают общие электроны.

Источник