Какие свойства площади вы знаете
В элементарной математике, самыми трудными считаются геометрические задачи. Как научиться решать геометрические задачи, особенно сложные, конкурсные? При решении геометрических задач, как правило, алгоритмов нет, и выбирать наиболее подходящую к данному случаю теорему не просто. Поэтому, желательно в каждой теме выработать какие-то общие положения, которые полезно знать всякому решающему геометрические задачи.
Предлагаем один из алгоритмов решения многих геометрических задач – метод площадей, т.е. решение задач с использованием свойств площадей.
Основные свойства площадей.
Свойство №1 Если вершину треугольника передвигать по прямой, параллельной основанию, то площадь при этом не измениться. | Доказательство: Рассмотрим ▲ABC и ▲ADC. Они имеют общее основание и равные высоты, так как прямые AC и BD параллельные, то расстояние между ними равно h – высоте ▲ABC и ▲ADC. Если площадь треугольника находится по формуле $$S = frac{1}{2} cdot a cdot h$$, то $$S_{ABC} = S_{ADC} = frac{1}{2} cdot AC cdot h$$. |
Свойство №2 Если | Доказательство: Пусть h1 = h2 в двух треугольниках с основаниями a и b. Рассмотрим отношение площадей этих треугольников $$frac{S_{1}}{S_{2}}= frac{frac{1}{2} cdot a cdot h_{1}}{frac{1}{2} cdot b cdot h_{2}}$$. Упростив, получим $$frac{S_{1}}{S_{2}}= frac{a}{b}$$. |
Если два треугольника имеют общий | Доказательство: |
Тогда
$$frac{S_{1}}{S_{2}} = frac{frac{1}{2} cdot a_{1} cdot b_{1} cdot
sin B}{frac{1}{2} cdot a cdot b cdot sin B}$$. Упростив, получим $$frac{S_{1}}{S_{2}} = frac{ a_{1} cdot b_{1}} { a cdot b}$$.
Свойство №4 Отношение площадей подобных треугольников равны квадрату коэффициента подобия. | Доказательство: Рассмотрим ▲ABC и ▲MBN. Пусть AB = k MB, BC = k NB и $$angle ABC = angle MBN$$. Используя формулу площади треугольника вида $$S = frac{1}{2} cdot a cdot b cdot singamma$$, рассмотрим отношение подобных площадей ▲ABC и ▲MBN. Тогда $$frac{S_{1}}{S_{2}} = frac{frac{1}{2} cdot AB cdot BC cdot sin B}{frac{1}{2} cdot MB cdot NB cdot sin B}= frac{k cdot NB cdot k cdot MB}{MB cdot NB} = k^{2}$$ . |
Свойство № 5 Медиана треугольника делит его на две равновеликие части. | Доказательство: Рассмотрим ▲ABC . Пусть медиана BM , тогда $$AM = MC = frac{1}{2}AC$$. Медиана делит треугольник на два с одинаковой высотой. Найдем площади треугольников ▲ABM и ▲MBC по формуле $$S = frac{1}{2}cdot a cdot h$$. Получим $$S_{ABM} = frac{1}{2}cdot AM cdot h$$ и $$S_{MBC} = frac{1}{2}cdot MC cdot h$$. Значит $$S_{ABM} = S_{MBC}$$. |
Свойство №6 Медианы треугольника делят его на три равновеликие части. | Доказательство: Рассмотрим ▲ABC. Проведем медианы из всех вершин, которые пересекаются в точке O. Получим треугольники ▲AOB, ▲BOC, ▲AOC. Пусть их площади равны соответственно S1, S2, S3. А площадь ▲ABC равна S. Рассмотрим ▲ABK и ▲CBK, они равной площади, т.к. BK медиана. В треугольнике ▲AOC OK – медиана, значит площади треугольников ▲AOKи ▲COK равны. Отсюда следует, что S1 = S2. Аналогично можно доказать, что S2 = S3 и S3 = S1 . |
Свойство №7 Средние линии треугольника площади S отсекают от него треугольники площади . | Доказательство: Рассмотрим ▲ABC. NM – средняя линия в треугольнике и она равна половине основания AC. Если SABC = S , то $$S_{NBM} = frac{1}{2} cdot NM cdot h_{1}= frac{1}{2}(frac{1}{2} cdot AC)(frac{1}{2}cdot h) = frac{1}{4}cdot S$$. Аналогично можно доказать, что площади всех треугольников равны одной четвертой части площади ▲ABC. |
Свойство №8 Медианы треугольника делят его на 6 равновеликих частей. | Доказательство: По свойству №7 площади ▲AOB, ▲BOC, ▲AOC равны. По свойству №5 площади ▲AOM, ▲BOM равны. Значит S1 = S6 . Аналогично S2 = S3. Если S1 + S6 = S2 + S3 и 2S1 = 2S2 значит S1 = S2. И так далее. получим, что все шесть треугольника имеют равные площади и они составляют шестую часть от площади ▲ABC. |
Источник
Статья рассказывает о понятии площадей и их свойств. Заключительная часть статьи включит себя математическое описание квадрируемых фигур с приведением примеров решения.
Понятие площади, свойства площади
Для вычисления площади основываются на свойствах площадей:
Определение 1
- положительность;
- аддитивность, это когда замкнутая область представлена несколькими фигурами, которые не имеют общих точек и равняются сумме площадей этих фигур.
- инвариантность;
- нормированность.
Единица измерения площади – это элементарный квадрат, имеющий сторону r.
Если рассмотреть фигуру G с ограничениями и за обозначение площади принять S(G), то при построении прямых, изобразить параллельными осям Ох и Оу, причем на расстоянии, равном rобозначению r. Заданные прямые преобразуют сетку, которая разбивает хОу на квадраты. Буквой М обозначается фигура, которая состоящая из элементарных квадратов, которые располагаются внутри G, причем не касаются границ, а М’– фигуру, которая состоит из квадратов и имеющая с границей G хотя бы одну общую точку, а ММ’фигуру, которая объединяет М и М’ (на рисунке изображается синей и красной областями).
Площади фигур возьмем за обозначение М и ММ’, значит S(M) и S(MM’) будут равны, исходя из количества составляющих квадратов. Рассмотрим рисунок, изображенный ниже.
Если постоянно уменьшать одну из сторон квадрата, то можно получить сетку с множеством значений площадей S(M) и S(MM)’. Рассмотрим на рисунке, приведенном ниже.
Множество SM имеет ограничения, значит, имеет тонкую грань в виде a=supSM, тогда внутреннюю площадь обозначим как G. Множество SMM’ имеет ограничения снизу, значит, нижняя грань обозначается как A=infSMM’, внешнюю площадь обозначим как G.
Фигура Gс внешней площадью равной внутренней называют квадрируемой, а число S(G)=a=A является площадью этой фигуры. S(G)=a=A значит, что площадь квадрируемой функции является числом единственным и обладает этим свойством.
Определение 2
Площадь фигуры G называется предел последовательности значений SM’, когда r→0. Квадрируемая фигура G имеет площадь равную 0.
Квадрируемость можно ввести иным образом, то есть рассмотреть вписанные и описанные окружности, через которые произвести вычисления.
Определение 3
Фигура G считается квадрируемой, когда для любого положительного числа SM’ имеется входящая и включающая многоугольные фигуры P и Q, отсюда следует, что P⊂G⊂Q и S(Q)-S(P)<ε.
Для примера подходит круг с вписанным и описанным 2n+1 треугольниками, где nn является натуральным числом.
Квадрируемые фигуры
Рассмотрим, как необходимо изображать и задавать квадрируемые фигуры. Все встречающиеся фигуры в разделах геометрии называют квадрируемыми. Любая такая фигура имеет ограничения, то есть будем находить площади ограниченных фигур. Объединение и пересечение или разность также является квадрируемой фигурой.
Самыми распространенными видами для вычисления площадей считаются:
- Если фигура квадрируема, тогда она имеет ограничения линиями графиков y = f(x) и x = g(y). Первый рисунок, приведенный ниже, ограничивается сверху параболой y=-18(x-4)2+9, а снизу кривой вида y=13x·sin x+2, справа и слева прямыми, имеющими значения х=1, х=9. Второй рисунок имеет границы в виде линий y=13(x-6)2+1, y=ln(x-1)+7, y=-ex-8+8, y=-13x+5. Рассмотрим рисунок, приведенный ниже.
- Фигура считается квадрируемой, если имеется возможность ограничения гладкими кривыми, то есть границы задаются при помощи параметрического уравнения вида x=ϕ(t)y=ψ(t), где функции ϕ(t) и ψ(t) являются непрерывными на интервале t1; t2, не имеют пересечений и соответствуют условию ϕ'(t0)≠0ψ'(t0)≠0 при любом значении t0∈t1; t2. Для примера рассмотрим фигуру, которая ограничивается осями координат и частью астроиды вида x=3cos3ty=3sin3t , где t∈0; π2.
- Фигура считается квадрируемой, когда она ограничена замкнутыми кривыми, где начала и конец совпадают. Явным примером такой функции является лепесток фигуры, имеющий уравнение r=5cos5φ. Рассмотрим на рисунке, приведенном ниже.
Итоги
Площадь – это такая функция, благодаря которой она определена как класс квадрируемых фигур со свойствами аддитивности, инвариантности и нормированности.
Источник
План урока:
Понятие площади многоугольника
Свойство аддитивности площади
Площадь квадрата
Соотношение между единицами измерения площадей
Площадь прямоугольника
Понятие площади многоугольника
Понятие площади уже знакомо нам из младших классов и повседневной жизни. Эта величина, которая, грубо говоря, характеризует размер плоских фигур. Она показывает, какую часть плоскости занимает та или иная фигура. Исторически понятие площади многоугольника считалось неопределяемым, так же как понятия точка, прямая, плоскость и т. д. Основная же задача геометров (а именно так называют математиков, специализирующихся на геометрии) сводилась к измерению площади.
Как известно, для проведения любых измерений должна существовать некоторая единица измерения. Так, массу измеряют в килограммах, длину – в метрах и т. д. При этом единицы измерения разных величин могут быть связаны друг с другом. С практической точки зрения удобно принять в качестве единицы измерения площади квадрат, сторона которого равна 1 метру. Принимается, что площадь такого квадрата равна 1 квадратному метру (обозначается символом м2):
Аналогично можно определить такие величины, как квадратный сантиметр (см2), квадратный километр (км2), квадратный миллиметр (мм2) и т.д.:
Как мы знаем, иногда в задачах единицу измерения длины не указывают вовсе. Например, говорят, что сторона квадрата равна единице. В таких случаях и площадь является безразмерной величиной. Принимается, что площадь квадрата со стороной, равной единице, также равна единице. Такой квадрат называется единичным.
Общепринято, что площадь фигуры обозначается буквой S.
Свойство аддитивности площади
Предположим, что нам надо найти площадь прямоугольника со сторонами 2 и 1. Его можно разбить на два квадрата со стороной 1, то есть на два единичных квадрата:
Этот прямоугольник занимает на плоскости в два раза больше места, чем единичный квадрат, поэтому логично считать, что его площадь равна 2. В данном случае мы разбили многоугольник на две фигуры, площадь каждой из которых нам была известна. Далее мы сложили площади известные нам площади и получили площадь прямоугольника.
В общем случае справедливо утверждение, что площадь всякой фигуры равна сумме площадей фигур, из которых она может быть составлена. Это свойство называют аддитивностью площади:
Площадь – не единственная величина, обладающая свойством аддитивности. Например, длина любого отрезка равна сумме длин отрезков, из которых он состоит. В классической физике считается, что масса сложного тела равна сумме масс тел, составляющих его. Аддитивность можно считать основным свойством площади.
Свойство аддитивности подсказывает нам, как измерять площадь произвольных многоугольников. Достаточно разбить такой многоугольник на несколько фигур, чья площадь нам известна, и сложить их площади.
Задание. Найдите площадь фигуры, показанной на рисунке. Длина стороны одной клеточки равна единице.
Решение. Каждая клеточка является, по сути, единичным квадратом, чья площадь равна 1. Можно видеть, что нарисованная фигура состоит 11 таких квадратов:
В силу свойства аддитивности площадь фигуры равна сумме площадей этих квадратов:
Если две фигуры можно разбить на одинаковые фигуры, то их называют равносоставленными фигурами. Покажем пример равносоставленных фигур, которые состоят из двух половинок круга:
Довольно очевидно, что равносоставленные фигуры имеют равную площадь. Также очевидно, что любые две равные фигуры являются равносоставленными, а потому их площади тоже равны.
Важно понимать разницу между равными и равносоставленными фигурами. Фигуры равны, если их можно наложить друг на друга, и при этом они полностью совпадут. Равносоставленные же фигуры могут и не накладываться друг на друга.
Ещё одно важное понятие – равновеликие фигуры. Так называют фигуры, чьи площади равны. Мы уже сказали, что любые две равносоставленные фигуры имеют одинаковую площадь, то есть являются равновеликими. Верно ли обратное? Всякие ли равновеликие фигуры являются равносоставленными? Оказывается, что нет. Можно нарисовать окружность и квадрат, имеющие равные площади, но разбить их на одинаковые фигуры не получится:
С помощью равных и равновеликих фигур можно находить площади фигур, которые невозможно разбить на единичные квадраты.
Задание. Найдите площадь прямоугольного треугольника, катеты которого равны единице.
Решение. Достроим такой прямоугольник до единичного квадрата. В результате гипотенуза треугольника окажется диагональю квадрата:
Получили, что единичный квадрат состоит из двух равных треугольников, чью площадь нам и надо найти. Обозначим площадь треугольника как S. Тогда справедливо равенство
Итак, зная свойства площади фигур, мы попытаемся дать этому понятию определение. Можно сказать, что площадь – это число, характеризующее плоскую фигуру и имеющее следующие свойства:
- площадь квадрата со стороной 1 равна единице:
- равносоставленные фигуры имеют равную площадь.
Такого описания вполне достаточно, чтобы вывести все формулы для нахождения площади многоугольников.
Площадь квадрата
Из младших классов известно, что для вычисления площади квадрата достаточно умножить его сторону саму на себя. Докажем это строго, используя лишь свойства площадей.
Попробуем вычислить площадь квадрата, если известна его сторона. Если она равна 2, то квадрат можно разбить на четыре единичных квадрата, а если она равна 3, то квадрат можно разделить уже на девять единичных квадратов:
Тогда площадь квадрата со стороной 2 равна 4, а со стороной 3 уже равна 9. В общем случае квадрат со стороной n (где n– натуральное число) можно разбить n2 единичных квадратов, поэтому его площадь будет равна n2.
Но что делать в случае, если сторона квадрата – это не целое, а дробное число? Пусть оно равно некоторой дроби 1/m, например, 1/2 или 1/3. Тогда поступим наоборот – разделим сам единичный квадрат на несколько частей. Получится почти такая же картина:
В общем случае единичный квадрат можно разбить на m2 квадратов со стороной 1/m. Тогда площадь каждого из таких квадратов (обозначим ее как S)может быть найдена из уравнения:
Снова получили, что площадь квадрата в точности равна его стороне, возведенной во вторую степень.
Наконец, рассмотрим случай, когда сторона квадрата равна произвольной дроби, например, 5/3. Возьмем квадраты со стороной 1/3 и построим из них квадрат, поставив 5 квадратов в ряд. Тогда его сторона как раз будет равна 5/3:
Площадь каждого маленького квадратика будет равна 1/9, а всего таких квадратиков 5х5 = 25. Тогда площадь большого квадрата может быть найдена так:
В общем случае, когда дробь имеет вид n/m, где m и n– натуральные числа, площадь квадрата будет равна величине
Получили, что если сторона квадрата – произвольное рациональное число, то его площадь в точности равна квадрату этой стороны. Конечно, возможна ситуация, когда сторона квадрата – это иррациональное число. Тогда осуществить подобное построение не получится. Здесь помогут значительно более сложные рассуждения, основанные на методе «от противного».
Предположим, что есть некоторое иррациональное число I, такое, что площадь квадрата (S) со стороной I НЕ равна величине I2. Для определенности будем считать, что I2<S (случай, когда I2>S, рассматривается абсолютно аналогично). Однако тогда, извлекая корень из обеих частей неравенства, можно записать, что
Далее построим два квадрата, стороны которых имеют длины I и R, и совместим их друг с другом:
Так как мы выбрали число R так, чтобы оно было больше I, то квадрат со стороной I является лишь частью квадрата со стороной R.Но часть меньше целого, значит, площадь квадрата со стороной I (а она равна S) должна быть меньше, чем площадь квадрата со стороной R (она равна R2):
из которого следует противоположный вывод – величина R2 меньше, чем S. Полученное противоречие показывает, что исходная утверждение, согласно которому площадь квадрата со стороной I НЕ равна I2, является ошибочным. А значит, площадь квадрата всегда равна его стороне, умноженной на саму себя.
Задание. Найдите площадь квадрата, если его сторона равна
Задание. Площадь квадрата равна 25. Найдите длину его стороны.
Решение. Пусть сторона квадрата обозначается буквой х (как неизвестная величина). Тогда условие, согласно которому его площадь равна 25, можно переписать в виде уравнения:
Его простейшее квадратное уравнение, для его решения надо просто извлечь квадратный корень из правой части:
Примечание. Строго говоря, записанное уравнение имеет ещё один корень – это число (– 5). Однако его можно отбросить, так как длина отрезка не может быть отрицательным числом. В более сложных геометрических задачах отрицательные корни также отбрасывают.
Задание. Численно площадь квадрата равна периметру квадрата (с учетом того, что площадь измеряется в см2, а периметр – в см). Вычислите его площадь.
Решение. Снова обозначим сторону квадрата как х, тогда площадь (S)и периметр (Р) будут вычисляться по формулам:
По условию эти величины численно равны, поэтому должно выполняться равенство, являющееся уравнением:
Естественно, сторона квадрата не может быть равна нулю, поэтому нас устраивает только ответ х = 4. Тогда и площадь, и периметр будут равны 16.
Ответ: 16 см2.
Обратите внимание, что ответ задачи зависит от единицы измерения. Если использовать миллиметры, то сторона квадрата окажется равной 40 мм, периметр будет равен 160 мм, а площадь составит 1600 мм2. Именно поэтому в условии задачи сказано, что площадь и периметр равны численно. «По-настоящему» равными бывают только величины, измеряемые в одинаковых единицах измерения.
Соотношение между единицами измерения площадей
Площадь измеряется в «квадратных» величинах: м2, см2, км2 и т.д. Как связаны эти единицы измерения? Для ответа на этот вопрос построим квадрат со стороной 1 см и разобьем каждую его сторону на отрезки длиной 1 мм. Естественно, что таких отрезков будет 10, ведь, в 1 см равен 10 мм. Далее разобьем большой квадрат на маленькие, их число будет равно 102 = 100:
Площадь большого квадрата равна 1 см2, а площадь маленьких составляет 1 мм2. Так как большой квадрат состоит из 100 маленьких, мы можем записать:
Существуют специальные единицы измерения площади, известные как ар (обозначается сокращением а) и гектар (сокращение га). Первый представляет собой квадрат со стороной 10 м, а второй – со стороной 100 м. Верны следующие соотношения:
В частности, если стороны квадратов отличаются в 10 раз, то их площади отличаются уже в 100 раз. Отсюда вытекает быстрый метод перевода единиц площади. Пусть надо перевести 1 квадратный километр в квадратные дециметры. Сначала мы считаем, во сколько раз километр длиннее дециметра:
Задание. Площадь окружности равна 24 см2. Выразите эту величину в мм2 и м2.
Решение. Миллиметр в 10 раз меньше сантиметра, а потому 1 см2 равен 100 мм2:
Площадь прямоугольника
Ещё из младшей школы известно, что площадь прямоугольника равна произведению его сторон. Докажем этот факт, используя только свойства площади и выведенную нами ранее формулу площади квадрата.
Возьмем произвольный прямоугольник со сторонами a и b. Далее достроим его до квадрата со стороной (а + b):
С одной стороны, площадь большого квадрата (со стороной а + b) равна величине (а + b)2. С другой стороны, он состоит из 4 фигур, а потому его площадь равна сумме
Итак, мы доказали следующее утверждение:
Задание. Найдите площадь прямоугольника со сторонами 5 и 8 см?
Решение. Просто перемножаем эти числа:
Задание. Найдите площадь фигуры, изображенной на рисунке:
Решение. Необходимо разбить фигуры на несколько прямоугольников:
Далее считаем площадь каждого отдельного прямоугольника:
Задание. Полкомнаты необходимо покрыть паркетом. Длина и ширина комнаты равны 6 и 5,5 метрам, а каждая дощечка паркета имеет габариты 30х5 см. Сколько дощечек паркета необходимо купить для ремонта?
Решение. В таких задачах прежде всего следует все длины выразить в одних единицах измерения. Перепишем габариты комнаты:
Важно убедиться, что пол можно полностью покрыть целым числом дощечек, не используя какие-либо дощечки наполовину. Для этого габариты дощечки должны быть кратны габаритам комнаты. Это условие соблюдается:
Получается, что для покрытия пола дощечки необходимо разместить их в 20 рядов, в каждом из которых будет 110 досок. Тогда общее количество досок будет равно
Задание. Площадь прямоугольника равна 64, а одна из его сторон имеет длину 16. Найдите вторую сторону прямоугольника.
Решение. Запишем формулу площади прямоугольника:
Задание. Найдите стороны прямоугольника, если площадь равна 500, а одна из сторон в 5 раз больше другой стороны.
Решение. Обозначим меньшую сторону переменной х. Тогда большая сторона будет в 5 раз больше, то есть она равна 5х. Площадь прямоугольника будет вычисляться как произведение этих чисел
Мы получили два значения х, 10 и (– 10). Естественно, длина отрезка не может выражаться отрицательным числом, поэтому нам подходит только значение 10. Это длина меньшей стороны. Большая же сторона в 5 раз длиннее, то есть ее длина равна
Задание. Одна сторона прямоугольника длиннее другой на 5 см, а площадь прямоугольника равна 150 см2. Вычислите обе стороны прямоугольника.
Решение. Снова обозначим длину меньшей стороны буквой х, тогда большая сторона будет иметь длину х + 5 см. По условию произведение этих сторон равно 150:
Это обычное квадратное уравнение, решаемое с помощью:
Снова получили два корня, из которых только один является положительным. Итак, меньшая сторона равна 10 см. Тогда большая сторона буде равна
Задание. Периметр прямоугольника равен 16 см, а площадь составляет 15 см2. Каковы стороны этого прямоугольника?
Решение. Обозначим смежные стороны буквами a и b. Тогда и две другие стороны также будут равны а и b. Так как периметр (его обозначают буквой Р) по определению является суммой длин всех сторон, то для прямоугольника он будет равен:
Если сюда вместо S подставить 15, а вместо а выражение 8 – b, то получим такое уравнение:
Оба полученных корня являются положительными числами, то есть устраивают нас. Зная b, легко найдем и a:
В первом случае получается, что стороны равны 3 и 5 см. Во втором случае получились те же числа, только в другом порядке: 5 и 3 см. То есть эти два ответа, по сути, идентичны друг другу.
Ответ: 5 см; 3 см.
Источник