Какие свойства преобразования подобия

Страница 1 из 2

Вопрос 1. Что такое преобразование подобия?
Ответ. Преобразование фигуры (F) в фигуру (F’) называется преобразованием подобия, если при этом проеобразовании расстояния между точками изменяются в одно и то же число раз (рис. 233). Это значит, что если произвольные точки (X), (Y) фигуры (F) при преобразовании подобия переходят в точки (X’), (Y’) фигуры (F’), то (X’Y’ = kcdot XY), причем число (k) – одно и то же для всех точек (X), (Y). Число (k) называется коэффициентом подобия. При (k = 1) преобразование подобия, очевидно, является движением.

Вопрос 2. Что такое гомотетия (центр гомотетии, коэффициент гомотетии)?
Ответ. Пусть (F) – данная фигура и (O) – фиксированная точка (рис. 234). Проведем через произвольную точку (X) фигуры (F) луч (OX) и отложим на нем отрезок (OX’), равный (kcdot OX), где (k) – положительное число. Преобразование фигуры (F), при котором каждая ее точка (X) переходит в точку (X’), построенную указанным способом, называется гомотетией относительно центра (O). Число (k) называется коэффициентом гомотетии, фигуры (F) и (F’) называется гомотетичными.

Вопрос 3. Докажите, что гомотетия есть преобразование подобия.

Ответ. Теорема 11.1. Гомотетия есть преобразование подобия.

Доказательство. Пусть (O) – центр гомотетии, (k) – коэффициент гомотетии, (X) и (Y) – две произвольные точки фигуры (рис. 235).

При гомотетии точки (X) и (Y) переходят в точки (X’) и (Y’) на лучах (OX) и (OY) соответственно, причем (OX’ = kcdot OX), (OY’ = kcdot OY). Отсюда следуют векторные равенства

(overline{OX’} = koverline{OX},, overline{OY’} = koverline{OY}).

Вычитая эти равенства почленно, получим:

(overline{OY’} – overline{OX’} = k(overline{OY} – overline{OX})).

Так как (overline{OY’} – overline{OX’} = overline{X’Y’}), (overline{OY} – overline{OX} = overline{XY}), то (overline{X’Y’} = koverline{XY}). Значит, (|overline{X’Y’}| = k|overline{XY}|), т.е. (X’Y’ = kXY). Следовательно, гомотетия есть преобразование подобия. Теорема доказана.

Вопрос 4. Какие свойства преобразования подобия вы знаете? Докажите, что преобразование подобия сохраняет углы между полупрямыми.

Ответ. Так же как и для движения, доказывается, что при преобразовании подобия три точки (A, B, C), лежащие на одной прямой, переходят в три точки (A_1, B_1, C_1), также лежащие на одной прямой. Причем если точка (B) лежит между точками (A) и (C), то точка (B_1) лежит между точками (A_1) и (C_1). Отсюда следует, что преобразование подобия переводит прямые в прямые, полупрямые в полупрямые, отрезки в отрезки.

Докажем, что преобразование подобия сохраняет углы между полупрямыми.

Действительно, пусть угол (ABC) преобразованием подобия с коэффициентом (k) переводится в угол (A_1B_1C_1) (рис. 237). Подвергнем угол (ABC) преобразованию гомотетии относительно его вершины (B) с коэффициентом гомотетии (k). При этом точки (A) и (C) перейдут в точки (A_2) и (C_2). Треугольники (A_2BC_2) и (A_1B_1C_1) равны по третьему признаку. Из равенства треугольников следует равенство углов (A_2BC_2) и (A_1B_1C_1). Значит, углы (ABC) и (A_1B_1C_1) равны, что и требовалось доказать.

Вопрос 5. Какие фигуры называются подобными?

Ответ. Две фигуры называются подобными, если они переводятся друг в друга преобразованием подобия.

Вопрос 6. Каким знаком обозначается подобие фигур? Как записывается подобие треугольников?

Ответ. Для обозначения подобия фигур используется специальный значок: (sim).

Запись (Fsim F’) читается так: “Фигура (F) подобна фигуре (F’)”.

Запись подобия треугольников (ABC) и (A_1B_1C_1): (triangle ABC sim triangle A_1B_1C_1).

Вопрос 7. Сформулируйте и докажите признак подобия треугольников по двум углам.

Ответ. Теорема 11.2. Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.

Доказательство. Пусть у треугольников (ABC) и (A_1B_1C_1) (angle A = angle A_1), (angle B = angle B_1). Докажем, что (triangle ABC sim triangle A_1B_1C_1).

Пусть (k = frac{AB}{A_1B_1}). Подвергнем треугольник (A_1B_1C_1) преобразованию подобия с коэффициентом подобия (k), например гомотетии (рис. 238). При этом получим некоторый треугольник (A_2B_2C_2), равный треугольнику (ABC). Действительно, так как преобразование подобия сохраняет углы, то (angle A_2 = angle A_1), (angle B_2 = angle B_1). А значит, у треугольников (ABC) и (A_2B_2C_2) (angle A = angle A_2), (angle B = angle B_2). Далее, (A_2B_2 = kA_1B_1 = AB). Следовательно, треугольники (ABC) и (A_2B_2C_2) равны по второму признаку (по стороне и прилежищим к ней углам).

Так как треугольники (A_1B_1C_1) и (A_2B_2C_2) гомотетичны и, значит, подобны, а треугольники (A_2B_2C_2) и (ABC) равны и поэтому тоже подобны, то треугольники (A_1B_1C_1) и (ABC) подобны.

Теорема доказана.

Вопрос 8. Сформулируйте и докажите признак подобия треугольников по двум сторонам и углу между ними.

Ответ. Теорема 11.3. Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то треугольники подобны.

Доказательство (аналогично доказательству теоремы 11.2). Пусть у треугольников (ABC) и (A_1B_1C_1) (angle C = angle C_1) и (AC = kA_1C_1), (BC = kB_1C_1). Докажем, что (triangle ABC sim triangle A_1B_1C_1).

Подвергнем треугольник (A_1B_1C_1) преобразованию подобия с коэффициентом подобия (k), например гомотетии (рис. 240). При этом получим некоторый треугольник (A_2B_2C_2), равный треугольнику (ABC). Действительно, так как преобразование подобия сохраняет углы, то (angle C_2 = angle C_1). А значит, у треугольников (ABC) и (A_2B_2C_2) (angle C = angle C_2). Далее, (A_2C_2 = kA_1C_1 = AC), (B_2C_2 = kB_1C_1 = BC). Следовательно, треугольники (ABC) и (A_2B_2C_2) равны по первому признаку (по двум сторонам и углу между ними).

Так как треугольники (A_1B_1C_1) и (A_2B_2C_2) гомотетичны и, значит, подобны, а треугольники (A_2B_2C_2) и (ABC) равны и поэтому тоже подобны, то треугольники (A_1B_1C_1) и (ABC) подобны.

Теорема доказана.

Вопрос 9. Сформулируйте и докажите признак подобия треугольников по трем сторонам.

Ответ. Теорема 11.4. Если стороны одного треугольника пропорциональны сторонам другого треугольника, то такие треугольники подобны.

Доказательство (аналогично доказательству теоремы 11.2). Пусть у треугольников (ABC) и (A_1B_1C_1) (AB = kA_1B_1), (AC = kA_1C_1), (BC = kB_1C_1). Докажем, что (triangle ABC sim triangle A_1B_1C_1).

Подвергнем треугольник (A_1B_1C_1) преобразованию подобия с коэффициентом подобия (k), например гомотетии (рис. 242). При этом получим некоторый треугольник (A_2B_2C_2), равный треугольнику (ABC). Действительно, у треугольников соответствующие стороны равны:

(A_2B_2 = kA_1B_1 = AB),

(A_2C_2 = kA_1C_1 = AC),

(B_2C_2 = kB_1C_1 = BC).

Следовательно, треугольники (ABC) и (A_2B_2C_2) равны по третьему признаку (по трем сторонам).

Так как треугольники (A_1B_1C_1) и (A_2B_2C_2) гомотетичны и, значит, подобны, а треугольники (A_2B_2C_2) и (ABC) равны и поэтому тоже подобны, то треугольники (A_1B_1C_1) и (ABC) подобны.

Теорема доказана.

Вопрос 10. Докажите, что катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу.

Ответ. У прямоугольного треугольника один угол прямой. Поэтому по теореме 11.2 для подобия двух прямоугольных треугольников достаточно, чтобы у них было по равному острому углу.

Пусть (ABC) – прямоугольный треугольник с прямым углом (C). Проведем высоту (CD) из вершины прямого угла (рис. 243).

Треугольники (ABC) и (CBD) имеют общий угол при вершине (B). Следовательно, они подобны: (triangle ABC sim triangle CBD). Из подобия треугольников следует пропорциональность соответствующих сторон:

[frac{AB}{BC} = frac{BC}{BD},, или, BC = sqrt{ABcdot BD}.]

Это соотношение обычно формулируют так: катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу.

Источник

Пусть рассматривается некоторая фигура и фигура, полученная из нее преобразованием подобия (центр О, коэффициент k, см. рис. 263). Установим основные свойства преобразования подобия.

1. Преобразование подобия устанавливает между точками фигур взаимно однозначное соответствие.

Это значит, что при заданном центре О и коэффициенте подобия k всякой точке первой фигуры отвечает единственным образом определенная точка второй фигуры и что, обратно, всякая точка второй фигуры получена преобразованием единственной точки первой Фигуры.

Рис. 266.

Доказательство. То, что любой точке А исходной фигуры отвечает определенная точка А преобразованной фигуры, следует из определения, указывающего точный способ преобразования. Легко видеть, что, и обратно, преобразованная точка А определяет исходную точку А однозначно: обе точки должны лежать на одном луче при и на противоположных лучах при и отношение их расстояний до начала луча О известно: при Поэтому точка А, лежащая на известном нам расстоянии от начала О, определена единственным образом.

Следующее свойство можно назвать свойством взаимности.

2. Если некоторая фигура получена из другой фигуры преобразованием подобия с центром О и коэффициентом подобия k, то, и обратно, исходная фигура может быть получена преобразованием подобия из второй фигуры с тем же центром подобия и коэффициентом подобия

Это свойство, очевидно, следует хотя бы из рассуждений, приведенных при доказательстве свойства 1. Читателю остается проверить, что соотношение верно для обоих случаев: КО и

Фигуры, получаемые одна из другой преобразованием подобия, называют гомотетичными или подобно расположенными.

3. Любые точки, лежащие на одной прямой, преобразуются при гомотетии в щочки, лежащие на одной прямой, параллельной исходной (совпадающей с ней, если она проходит через О).

Доказательство. Случай, когда прямая проходит через О, ясен; любые точки этой прямой переходят в точки этой же прямой. Рассмотрим общий случай: пусть (рис. 266) А, В, С — три точки основной фигуры, лежащие на одной прямой; пусть А — образ точки А при преобразовании подобия.

Проведем покажем, что образы В и С также лежат на АК. Действительно, проведенная прямая и прямая АС отсекают на ОА, ОВ, ОС пропорциональные части: Таким образом, видно, что точки , лежащие на лучах ОВ и ОС и на прямой АК (аналогично получится и при являются соответственными для В и С. Можно сказать, что при преобразовании подобия всякая прямая, не проходящая через центр подобия, преобразуется в прямую, параллельную себе.

Из сказанного уже видно, что всякий отрезок преобразуется также в отрезок.

4. При преобразовании подобия отношение любой пары соответствующих отрезков равно одному и тому же числу — коэффициенту подобия.

Доказательство. Следует различать два случая.

1) Пусть данный отрезок АВ не лежит на луче, проходящем через центр подобия (рис. 266). В этом случае данные два отрезка — исходный АВ и ему подобно соответствующий АВ – суть отрезки параллельных прямых, заключенные между сторонами угла АОВ. Применяя свойство п. 203, находим , что и требовалось доказать.

Рис. 267.

2) Пусть данный отрезок, а значит, и ему подобно соответствующий лежат на одной прямой, проходящей через центр подобия (отрезки АВ и АВ на рис. 267). Из определения подобного преобразования имеем откуда, образуя производную пропорцию, находим , что и требовалось доказать.

5. Углы между соответствующими прямыми (отрезками) подобно расположенных фигур равны.

Доказательство. Пусть данный угол и угол, соответствующий ему при преобразовании подобия с центром О и некоторым коэффициентом k. На рис. 263, 264 представлены два варианта: . В любом из этих случаев по свойству 3 стороны углов попарно параллельны. При этом в одном случае обе пары сторон одинаково направлены, во втором — обе противоположно направлены. Таким образом, по свойству углов с параллельными сторонами углы равны.

Итак, доказана

Теорема 1. У подобно расположенных фигур любые соответствующие пары отрезков находятся в одном и том же постоянном отношении, равном коэффициенту подобия; любые пары соответствующих углов равны.

Таким образом, из двух подобно расположенных фигур любая может считаться изображением другой в некотором выбранной масштабе.

Пример 1. Построить фигуру, подобно расположенную с квадратом ABCD (рис. 268) при данном центре подобия О и коэффициенте подобия

Решение. Соединяем одну из вершин квадрата (например, А) с центром О и строим точку А такую, что Эта точка и будет соответствовать А в преобразовании подобия. Дальнейшее построение удобно провести так: соединим остальные вершины квадрата с О и через А проведем прямые, параллельные соответствующим сторонам АВ и AD. В точках их пересечения с О В и и будут помещаться вершины В и D. Так же проводим ВС параллельно ВС и находим четвертую вершину С. Почему ABCD также является квадратом? Обосновать самостоятельно!

Рис. 268.

Рис. 269.

Пример 2. На рис. 269 показана пара подобно расположенных треугольных пластинок. На одной из них изображена точка К. Построить соответствующую точку на второй.

Решение. Соединим К с одной из вершин треугольника, например с А. Полученная прямая пересечет сторону ВС в точке L. Находим соответствующую точку L как пересечение и ВС и строим искомую точку К на отрезке , пересекая его прямой ОК.

Теорема 2. Фигура, гомотетичная окружности (кругу), есть снова окружность (круг). Центры кругов подобно соответствуют.

Доказательство. Пусть С—центр окружности Ф радиуса R (рис. 270), О — центр подобия. Коэффициент подобия обозначим через k. Пусть С — точка, подобно соответствующая центру С окружности . (Мы еще не знаем, будет ли она сохранять роль центра!) Рассмотрим всевозможные радиусы окружности все они при преобразовании подобия перейдут в отрезки, параллельные себе и имеющие равные длины

Таким образом, все концы преобразованных радиусов разместятся вновь на одной окружности с центром С и радиусом R, что и требовалось доказать.

Рис. 270.

Обратно, любые две окружности находятся в гомотетичном соответствии (в общем случае даже двояком, с двумя разными центрами).

Действительно, проведем любой радиус первой окружности (радиус СМ на рис. 271) и оба параллельных ему радиуса второй окружности. Точки пересечения линии центров СС и прямых, соединяющих конец радиуса СМ с концами радиусов, параллельных ему, т. е. точки О и О” на рис. 271, могут быть приняты за центры гомотетии (первого и второго рода).

Рис. 271.

В случае концентрических окружностей имеется единственный центр гомотетии — общий центр окружностей; равные окружности находятся в соответствии гомотетии с центром в середине отрезка .

Источник

Преобразования подобия, их свойства. Доказательство теоремы: гомотетия есть преобразование подобия. Основные признаки подобия треугольников, решение типовых задач. Углы, вписанные в окружность. Пропорциональность отрезков хорд и секущих окружности.

1

РЕФЕРАТ

На тему: «Подобие фигур»

Выполнила:

ученица

Проверила:

Содержание

1. Преобразование подобия

2. Свойства преобразования подобия

3. Подобие фигур

4. Признак подобия треугольников по двум углам

5. Признак подобия треугольников по двум сторонам и углу между ними

6. Признак подобия треугольников по трем сторонам

7. Подобие прямоугольных треугольников

8. Углы, вписанные в окружность

9. Пропорциональность отрезков хорд и секущих окружности

10. Задачи на тему «Подобие фигур»

1. ПРЕОБРАЗОВАНИЕ ПОДОБИЯ

Преобразование фигуры Fв фигуру F’называется преобразованием подобия, если при этом преобразовании расстояния между точками изменяются в одно и то же число раз (рис. 1). Это значит, что если произвольные точки X, Yфигуры Fпри преобразовании подобия переходят в точки X’, Y’фигуры F’,то X’Y’ = k-XY, причем число k– одно и то же для всех точек X, Y. Число kназывается коэффициентом подобия. При k = lпреобразование подобия, очевидно, является движением.

Рис.1

Пусть F — данная фигура и О — фиксированная точка (рис. 2). Проведем через произвольную точку X фигуры F луч ОХ и отложим на нем отрезок ОХ’, равный k?OX, где k — положительное число. Преобразование фигуры F, при котором каждая ее точка X переходит в точку X’, построенную указанным способом, называется гомотетией относительно центра О. Число k называется коэффициентом гомотетии, фигуры F и F’ называются гомотетичными.

Теорема 1. Гомотетия есть преобразование подобия

Доказательство. Пусть О — центр гомотетии, k — коэффициент гомотетии, X и Y – две произвольные точки фигуры (рис.3)

Рис.3 Рис.4

При гомотетии точки X и Y переходят в точки X’ и Y’ на лучах ОХ и OY соответственно, причем OX’ = k?OX, OY’ = k?OY. Отсюда следуют векторные равенства ОХ’ = kOX, OY’ = kOY.

Вычитая эти равенства почленно, получим: OY’-OX’ = k (OY- OX).

Так как OY’ – OX’= X’Y’, OY -OX=XY, то Х’ Y’ = kХY. Значит, /X’Y’/=k /XY/, т.e. X’Y’ = kXY. Следовательно, гомотетия есть преобразование подобия. Теорема доказана.

Преобразование подобия широко применяется на практике при выполнении чертежей деталей машин, сооружений, планов местности и др. Эти изображения представляют собой подобные преобразования воображаемых изображений в натуральную величину. Коэффициент подобия при этом называется масштабом. Например, если участок местности изображается в масштабе 1:100, то это значит, что одному сантиметру на плане соответствует 1 м на местности.

Задача. На рисунке 4 изображен план усадьбы в масштабе 1:1000. Определите размеры усадьбы (длину и ширину).

Решение. Длина и ширина усадьбы на плане равны – 4 см и 2,7 см. Так как план выполнен в масштабе 1:1000, то размеры усадьбы равны соответственно 2,7 х1000 см = 27 м, 4х100 см = 40 м.

2. СВОЙСТВА ПРЕОБРАЗОВАНИЯ ПОДОБИЯ

Так же как и для движения, доказывается, что при преобразовании подобия три точки А, В, С, лежащие на одной прямой, переходят в три точки А1, В1, С1, также лежащие на одной прямой. Причем если точка В лежит между точками А и С, то точка В1 лежит между точками А1 и С1. Отсюда следует, что преобразование подобия переводит прямые в прямые, полупрямые в полупрямые, отрезки в отрезки.

Докажем, что преобразование подобия сохраняет углы между полупрямыми.

Рис. 5

Действительно, пусть угол ABC преобразованием подобия с коэффициентом k переводится в угол А1В1С1 (рис. 5). Подвергнем угол ABC преобразованию гомотетии относительно его вершины В с коэффициентом гомотетии k. При этом точки А и С перейдут в точки А2 и С2. Треугольники А2ВС2 и А1В1С1 равны по третьему признаку. Из равенства треугольников следует равенство углов А2ВС2 и А1В1С1. Значит, углы ABC и А1В1С1 равны, что и требовалось доказать.

3. ПОДОБИЕ ФИГУР

Две фигуры называются подобными, если они переводятся друг в друга преобразованием подобия. Для обозначения подобия фигур используется специальный значок: ?. Запись F?F’ читается так: «Фигура F подобна фигуре F’».

Докажем, что если фигура F1 подобна фигуре F2, а фигура F2 подобна фигуре F3, то фигуры F1 и F3 подобны.

Пусть Х1 и Y1 — две произвольные точки фигуры F1. Преобразование подобия, переводящее фигуру F1 в F2, переводит эти точки в точки Х2, Y2, для которых X2Y2 = k1X1Y1.

Преобразование подобия, переводящее фигуру F2 в F3, переводит точки Х2, Y2 в точки Х3, Y3, для которых X3Y3 = – k2X2Y2.

Из равенств

X2Y2=kX1Y1,X3Y3 = k2X2Y2

следует, что X3Y3 – k1k2X1Y1. А это значит, что преобразование фигуры F1 в F3, получающееся при последовательном выполнении двух преобразований подобия, есть подобие. Следовательно, фигуры F1 и F3 подобны, что и требовалось доказать.

В записи подобия треугольников: ДABC?ДA1B1C1 — предполагается, что вершины, совмещаемые преобразованием подобия, стоят на соответствующих местах, т. е. А переходит в А1, В – в B1 и С – в С1.

Из свойств преобразования подобия следует, что у подобных фигур соответствующие углы равны, а соответствующие отрезки пропорциональны. В частности, у подобных треугольников ABC и А1В1С1

A=1

А1, В=В1, С=С1

4. ПРИЗНАК ПОДОБИЯ ТРЕУГОЛЬНИКОВ ПО ДВУМ УГЛАМ

Теорема 2. Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.

Доказательство. Пусть у треугольников ABC и A1B1C1А=А1, B=B1. Докажем, что ДАВС~ДА1В1С1.

Пусть . Подвергнем треугольник А1В1С1 преобразованию подобия с коэффициентом подобия k, например гомотетии (рис. 6). При этом получим некоторый треугольник А2В2С2, равный треугольнику ABC. Действительно, так как преобразование подобия сохраняет углы, то A2=А1, B2= B1. А значит, у треугольников ABC и А2В2С2A = A2, B=B2. Далее, A2B2 = kA1B1=AB. Следовательно, треугольники ABC и А2В2С2 равны по второму признаку (по стороне и прилежащим к ней углам).

Так как треугольники А1В1С1 и А2В2С2 гомотетичны и, значит, подобны, а треугольники А2В2С2 и ABC равны и поэтому тоже подобны, то треугольники А1В1С1 и ABC подобны. Теорема доказана.

Рис. 7

Задача. Прямая, параллельная стороне АВ треугольника ABC, пересекает его сторону АС в точке А1, а сторону ВС в точке В1. Докажите, что Д ABC ~ ДА1В1С.

Решение (рис. 7). У треугольников ABC и А1В1С угол при вершине С общий, а углы СА1В1 и CAB равны как соответствующие углы параллельных АВ и А1В1 с секущей АС. Следовательно, ДАВС~ДА1В1С по двум углам.

5. ПРИЗНАК ПОДОБИЯ ТРЕУГОЛЬНИКОВ ПО ДВУМ СТОРОНАМ И УГЛУ МЕЖДУ НИМИ

Теорема 3. Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то треугольники подобны.

Доказательство (аналогично доказательству теоремы 2). Пусть у треугольников ABC и A1B1C1C=C1и АС=kА1С1, ВС=kВ1С1. Докажем, что ДАВС~ДА1В1С1.

Подвергнем треугольник A1B1C1преобразованию подобия с коэффициентом подобия k, например гомотетии (рис. 8).

При этом получим некоторый треугольник А2В2С2, равный треугольнику ABC. Действительно, так как преобразование подобия сохраняет углы, то С2= =С1. А значит, у треугольников ABC и А2В2С2C=C2. Далее, A2C2 = kA1C1=AC, B2C2 = kB1C1=BC. Следовательно, треугольники ABC и А2В2С2 равны по первому признаку (по двум сторонам и углу между ними).

Так как треугольники A1B1C1 и А2В2С2 гомотетичны и, значит, подобны, а треугольники А2В2С2 и ABC равны и поэтому тоже подобны, то треугольники А1В1С1 и ABC подобны. Теорема доказана.

Рис. 9

Задача . В треугольнике ABC с острым углом С проведены высоты АЕ и BD (рис. 9). Докажите, что ДABC~ ДEDC.

Решение. У треугольников ABC и EDC угол при вершине С общий. Докажем пропорциональность сторон треугольников, прилежащих к этому углу. Имеем ЕС=AC cos г, DC = ВС соs г. То есть стороны, прилежащие к углу С, у треугольников пропорциональны. Значит, ДАВС~ДEDC по двум сторонам и углу между ними.

6. ПРИЗНАК ПОДОБИЯ ТРЕУГОЛЬНИКОВ ПО ТРЕМ СТОРОНАМ

Теорема 4. Если стороны одного треугольника пропорциональны сторонам другого треугольника, то такие треугольники подобны.

Доказательство (аналогично доказательству теоремы 2). Пусть у треугольников ABC и А1В1С1AB = kA1B1, AC = kA1C1, BC = kB1C1. Докажем, что ДАВС~ДА1В1С1.

Подвергнем треугольник А1В1С1преобразованию подобия с коэффициентом подобия k, например гомотетии (рис. 10). При этом получим некоторый треугольник А2В2С2, равный треугольнику ABC. Действительно, у треугольников соответствующие стороны равны:

A2В2 = kA1В1= АВ, A2C2 = kA1C1=AC, B2C2 = kB1C1=BC.

Следовательно, треугольники равны по третьему признаку (по трем сторонам).

Так как треугольники А1В1С1 и А2В2С2 гомотетичны и, значит, подобны, а треугольники A2В2C2 и ABC равны и поэтому тоже подобны, то треугольники А1В1С1 и ABC подобны. Теорема доказана.

Рис. 10

Задача. Докажите, что у подобных треугольников периметры относятся как соответствующие стороны.

Решение. Пусть ABC и А1В1С1– подобные треугольники. Тогда стороны треугольника А1В1С1 пропорциональны сторонам треугольника ABC, т. е. А1В1 =kAB, B1C1 = kBC, A1C1=kAC. Складывая эти равенства почленно, получим:

A1B1+ B1C1+A1C1=k(AB+BC+AC).

Отсюда

т. е. периметры треугольников относятся как соответствующие стороны.

7. ПОДОБИЕ ПРЯМОУГОЛЬНЫХ ТРЕУГОЛЬНИКОВ

У прямоугольного треугольника один угол прямой. Поэтому по теореме 2 для подобия двух прямоугольных треугольников достаточно, чтобы у них было по равному острому углу.

С помощью этого признака подобия прямоугольных треугольников докажем некоторые соотношения в треугольниках.

Пусть ABC — прямоугольный треугольник с прямым углом С. Проведем высоту CD из вершины прямого угла (рис. 11).

Треугольники ABC и CBD имеют общий угол при вершине В. Следовательно, они подобны: ДABC~ДCBD. Из подобия треугольников следует пропорциональность соответствующих сторон:

Это соотношение обычно формулируют так: катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу.

Прямоугольные треугольники ACD и CBD также подобны. У них равны острые углы при вершинах А и С. Из подобия этих треугольников следует пропорциональность их сторон:

Это соотношение обычно формулируют так: высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между проекциями катетов I на гипотенузу.

Докажем следующее свойство биссектрисы треугольника: биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные двум другим сторонам.

Пусть CD — биссектриса треугольника ABC (рис. 12). Если треугольник ABC равнобедренный с основанием АВ, то указанное свойство биссектрисы очевидно, так как в этом случае биссектриса CD является и медианой.

Рассмотрим общий случай, когда АС?ВС. Опустим перпендикуляры AF и BE из вершин А и В на прямую CD.

Прямоугольные треугольники ACF и ВСЕ подобны, так как у них равны острые углы при вершине С. Из подобия треугольников следует пропорциональность сторон:

Прямоугольные треугольники ADF и BDE тоже подобны. У них углы при вершине D равны как вертикальные. Из подобия треугольников следует пропорциональность сторон:

Сравнивая это равенство с предыдущим, получим:

т. е. отрезки AD и BD пропорциональны сторонам АС и ВС, что и требовалось доказать.

8. УГЛЫ, ВПИСАННЫЕ В ОКРУЖНОСТЬ

Угол разбивает плоскость на две части. Каждая из частей называется плоским углом. На рисунке 13 заштрихован один из плоских углов со сторонами а и Ь. Плоские углы с общими сторонами называются дополнительными.

Если плоский угол является частью полуплоскости, то его градусной мерой называется градусная мера обычного угла с теми же сторонами. Если плоский угол содержит полуплоскость, то его градусная мера принимается равной 360° – б, где б – градусная мера дополнительного плоского угла (рис. 14).

Рис. 13 Рис.14

Центральным углом в окружности называется плоский угол с вершиной в ее центре. Часть окружности, расположенная внутри плоского угла, называется дугой окружности, соответствующей этому центральному углу (рис. 15). Градусной мерой дуги окружности называется градусная мера соответствующего центрального угла.

Рис. 15 Рис. 16

Угол, вершина которого лежит на окружности, а стороны пересекают эту окружность, называется вписанным в окружность. Угол ВАС на рисунке 16 вписан в окружность. Его вершина А лежит на окружности, а стороны пересекают окружность в точках В и С. Говорят также, что угол А опирается на хорду ВС. Прямая ВС разбивает окружность на две дуги. Центральный угол, соответствующий той из этих дуг, которая не содержит точку А, называется центральным углом, соответствующим данному вписанному углу.

Теорема 5. Угол, вписанный в окружность, равен половине соответствующего центрального угла.

Доказательство. Рассмотрим сначала частный случай, когда одна из сторон угла проходит через центр окружности (рис. 17, а). Треугольник АОВ равнобедренный, так как у него стороны OA и ОВ равны как радиусы. Поэтому углы A и В треугольника равны. А так как их сумма равна внешнему углу треугольника при вершине О, то угол В треугольника равен половине угла АОС, что и требовалось доказать.

Рис. 17

Общий случай сводится к рассмотренному частному случаю проведением вспомогательного диаметра BD (рис. 17, б, в). В случае, представленном на рисунке 17, б, АВС= CBD+ ABD= Ѕ COD + Ѕ АОD= Ѕ АОС.

В случае, представленном на рисунке 17, в,

ABC= 1

CBD – ABD = Ѕ COD – Ѕ AOD = Ѕ AOC.

Теорема доказана полностью.

Из теоремы 5 следует, что вписанные углы, стороны которых проходят через точки А и В окружности, а вершины лежат по одну сторону от прямой АВ, равны (рис. 18). В частности, углы, опирающиеся на диаметр, прямые.

9. ПРОПОРЦИОНАЛЬНОСТЬ ОТРЕЗКОВ ХОРД И СЕКУЩИХ ОКРУЖНОСТИ

Если хорды АВ и CD окружности пересекаются в точке S

То AS?BS=CS?DS.

Докажем сначала, что треугольники ASD и CSB подобны (рис. 19). Вписанные углы DCB и DAB равны по следствию из теоремы 5. Углы ASD и BSC равны как вертикальные. Из равенства указанных углов следует, что треугольники ASZ и CSB подобны.

Из подобия треугольников следует пропорция

Отсюда

AS?BS = CS?DS, что и требовалось доказать

Рис.19 Рис.20

Если из точки Р к окружности проведены две секущие, пересекающие окружность в точках А, В и С, D соответственно, то

AP?BP=CP?DP.

Пусть точки А и С — ближайшие к точке Р точки пересечения секущих с окружностью (рис. 20). Треугольники PAD и РСВ подобны. У них угол при вершине Р общий, а углы при вершинах В и D равны по свойству углов, вписанных в окружность. Из подобия треугольников следует пропорция

Отсюда PA?PB=PC?PD, что и требовалось доказать.

10. Задачи на тему «Подобие фигур»

Источник