Какие свойства присуще жидкостям и газам

Естественные науки, включающая химию и физику, обычно рассматриваются как науки, изучающие природу и свойства вещества и энергии в неживых системах. Вещество во Вселенной – атомы, молекулы и ионы, которые составляют все физические тела, все, что имеет массу и занимает пространство. Энергия — это способность вызывать изменения. Энергия не может быть создана или уничтожена; он может быть только сохранена и преобразована из одной формы в другую. Потенциальная энергия — это энергия, хранящаяся в объекте из-за его положения – например, ведро с водой, повешенное над дверью, может упасть. Кинетическая энергия — это энергия, движения, любой объект или частица, находящаяся в движении, обладает кинетической энергией, зависящей от массы и скорости тела. Кинетическая энергия может быть преобразована в другие виды энергии, такие как электрическая энергия и тепловая энергия.
Существует пять известных фаз или состояний вещества: твердое тело, жидкость, газ, плазма и бозе-эйнштейновский конденсат. Основное различие в структурах каждого состояния находится в плотностях частиц.
ТВЕРДОЕ ТЕЛО
В твердом теле частицы плотно упакованы, поэтому они не могут двигаться очень сильно. Частицы твердого вещества имеют очень низкую кинетическую энергию. Электроны каждого атома находятся в движении, поэтому атомы имеют небольшую вибрацию, но они фиксируются в своем положении. Твердые тела имеют определенную форму, и могут длительное время ее сохранять. У них также есть определенный объем. Частицы твердого тела уже настолько плотно упакованы вместе, что увеличивающееся давление не будет сжимать твердое тело до меньшего объема.
ЖИДКОСТИ
В жидкой фазе частицы вещества имеют большую кинетическую энергию, чем частицы в твердом теле. Частицы жидкости не удерживаются в регулярном расположении, но все еще очень близки друг к другу, поэтому жидкости имеют определенный объем. Жидкости, как и твердые тела, трудно сжимаемы. Частицы жидкости имеют достаточно места для обтекания друг друга, поэтому жидкости имеют неопределенную форму. Жидкость принимает форму емкости, в которую она помещена. Сила распределяется равномерно по всей жидкости, поэтому, когда объект помещается в жидкость, частицы жидкости перемещаются за объектом.
Величина восходящей плавучей силы равна весу жидкости, в объеме тела. Когда плавучая сила равна силе тяжести, объект будет плавать. Этот принцип плавучести был обнаружен греческим математиком Архимедом, который, согласно легенде, выпрыгнул из своей ванны и побежал обнаженным по улицам, крича «Эврика!», после того, как догадался о выталкивающих силах в жидкости. Эту силу еще называют силой Архимеда, как дань уважения и признания древнему ученому.
Частицы жидкости, как правило, удерживаются слабым межмолекулярным притяжением, а не свободно перемещаются, как частицы газа. Эта сила сцепления соединяет частицы вместе, образуя капли или потоки.
Ученые сообщили, что в апреле 2016 года они создали странное состояние материи, которое, как предполагалось, существовало, но никогда не было видно в реальной жизни. Хотя этот тип материи можно держать в руке, как если бы он был сплошным, увеличение материала выявило бы беспорядочные взаимодействия его электронов, более характерные для жидкости. Это тип материи называют квантовой спиновой жидкостью Китаева, в ней электроны входят в своеобразный квантовый танец, в котором они взаимодействуют или «разговаривают» друг с другом. Обычно, когда вещество остывает, спин его электронов имеет тенденцию выстраиваться в линию. Но в этой квантовой спиновой жидкости электроны взаимодействуют так, что они влияют на то, как другие вращаются и никогда не выравниваются независимо от того, насколько материал холодный. Материал будет вести себя так, как будто его электроны, считающиеся неделимыми, разрушались.
ГАЗЫ
Частицы газа находятся на большом расстоянии друг от друга и имеют высокую кинетическую энергию. Если пространство не ограничено, частицы газа будут разбросаны бесконечно; если оно ограничено, газ будет расширяться, чтобы заполнить весь объем. Когда газ оказывается под давлением, то есть уменьшается объем емкости, пространство между частицами уменьшается, а давление, оказываемое их столкновениями, увеличивается. Если объем сосуда поддерживается постоянным, но температура газа увеличивается, то давление также увеличивается. Частицы газа обладают достаточной кинетической энергией для преодоления межмолекулярных сил, которые удерживают твердые частицы и жидкости вместе, поэтому газ не имеет определенного объема и формы.
ПЛАЗМА
Плазма не является общим состоянием материи здесь, на Земле, но может быть самым распространенным состоянием материи во Вселенной. Плазма состоит из сильно заряженных частиц с чрезвычайно высокой кинетической энергией. Благородные газы (гелий, неон, аргон, криптон, ксенон и радон) часто используются для создания светильников, используя электричество для их ионизации в плазменное состояние. Звезды, по сути, являются перегретыми шарами плазмы.
КОНДЕНСАТ БОЗЕ-ЭЙНШТЕЙНА
В 1995 году технология позволила ученым создать новое состояние материи – конденсат Бозе-Эйнштейна (КБЭ). Используя комбинацию лазеров и магнитов, Эрик Корнелл и Карл Вейман охладили образец рубидия с точностью до нескольких градусов до абсолютного нуля. При этой чрезвычайно низкой температуре молекулярное движение очень близко к остановке. Так как кинетическая энергия почти не передается от одного атома к другому, атомы начинают сжиматься вместе. Уже не тысячи отдельных атомов, а один «супер атом». КБЭ используется для изучения квантовой механики на макроскопическом уровне. Свет, кажется, замедляется, когда он проходит через КБЭ, что позволяет изучать парадокс частиц/волн. КБЭ также обладает многими свойствами сверхтекучей жидкости без трения, также используются для моделирования условий, которые могут выполняться в черных дырах.
СМЕНА ФАЗЫ
Добавление энергии к веществу приводит к физическому изменению – материя переходит из одного состояния в другое. Например, добавление тепловой энергии – тепла – к жидкой воде приводит к тому, что она становится паром или газом. Извлечение энергии также приводит к физическим изменениям, например, когда жидкая вода становится льдом – твердой – при удалении тепла. Физическое изменение фазы также может быть вызвано движением и давлением.
ПЛАВЛЕНИЕ И ОТВЕРДЕВАНИЕ
Когда тепло прикладывается к твердому веществу, его частицы начинают быстрее вибрировать и склонны двигаться дальше друг от друга. Когда вещество при стандартном давлении достигает определенной точки, называемой точкой плавления, твердое вещество начинает превращаться в жидкость. Точку плавления чистого вещества часто можно определить с точностью до 0,1 градуса Цельсия, точкой, в которой твердая и жидкая фазы находятся в равновесии. Если вы продолжаете нагревать образец, температура не будет повышаться выше точки плавления, пока весь образец не будет сжижен. Тепловая энергия используется для преобразования твердого вещества в жидкую форму. Как только весь образец станет жидким, температура снова начнет расти. Соединения, которые в остальном очень похожи, могут иметь разные точки плавления, поэтому точка плавления может быть полезным способом различения среди них. Например, сахароза имеет точку плавления 186,1 градусов Цельсия, тогда как температура плавления глюкозы составляет 146 градусов Цельсия. Твердая смесь, такая как металлический сплав, часто может быть разделена на ее составные части путем нагревания смеси и извлечения жидкостей по мере достижения ими различных точек плавления.
Точка замерзания – это температура, при которой жидкое вещество достаточно охлаждается для образования твердого вещества. По мере охлаждения жидкости движение частиц замедляется. Во многих веществах частицы выравниваются точными геометрическими узорами для образования кристаллических твердых веществ. Большинство жидкостей сжимаются, когда они замерзают. Одной из важных характеристик воды является то, что она расширяется при замерзании, поэтому лед плавает. Если бы лед не плавал, не было бы жидкой воды под замерзшим льдом, и многие формы водной жизни были бы невозможны.
Температура замерзания часто близка к той же температуре, что и температура плавления, но не считается характерной для вещества, поскольку несколько факторов могут ее изменить. Например, добавление растворенных веществ в жидкость приведет к снижению температуры замерзания. Примером этого является использование суспензии соли для снижения температуры, при которой вода замерзает на наших дорогах. Другие жидкости можно охлаждать до температур, значительно ниже их температуры плавления, до того, как они начнут затвердевать. Такие жидкости называются суперохлаждаемыми и часто требуют наличия пылевой частицы или затравочного кристалла для начала процесса кристаллизации.
СУБЛИМАЦИЯ
Когда твердое вещество превращается непосредственно в газ без прохождения жидкой фазы, процесс известен как сублимация. Сублимация происходит, когда кинетическая энергия частиц больше атмосферного давления, окружающего образец. Это может произойти, когда температура образца быстро увеличивается за точку кипения (испарение вспышки). Чаще всего вещество может быть «высушено в замороженном состоянии» путем его охлаждения в условиях вакуума, так что вода в веществе подвергается сублимации и удаляется из образца. Несколько летучих веществ будут подвергаться сублимации при нормальной температуре и давлении. Наиболее известным из этих веществ является CO2 или сухой лед.
ПАРООБРАЗОВАНИЕ
Испарение представляет собой превращение жидкости в газ. Испарение может происходить путем испарения или кипения.
Поскольку частицы жидкости находятся в постоянном движении, они часто сталкиваются друг с другом, передавая при этом энергию. Этот перенос энергии имеет малое влияние внутри жидкости, но когда достаточная энергия передается частице вблизи поверхности, она может получить достаточную энергию, чтобы полностью удалиться из образца в виде частицы свободного газа. Этот процесс называется испарением, и он продолжается до тех пор, пока остается жидкость. Энергия, передаваемая поверхностным молекулам, вызывающая их вылет, уносится от оставшегося жидкого образца.
Когда к жидкости добавляется достаточно тепла, образуя пузырьки пара ниже поверхности, мы говорим, что жидкость кипит. Температура, при которой жидкость кипит, является переменной. Точка кипения зависит от давления вещества. Жидкость под более высоким давлением будет требовать больше тепла до того, как в ней могут образоваться пузырьки пара. На больших высотах атмосферном давлении ниже, чем при нормальных условиях, поэтому жидкость будет кипеть при более низкой температуре. Такое же количество жидкости на уровне моря находится под большим атмосферным давлением и будет кипеть при более высокой температуре.
КОНДЕНСАЦИЯ И ДЕСУБЛИМАЦИЯ
Конденсация – это когда газ превращается в жидкость. Конденсация происходит, когда газ охлаждается или сжимается до такой степени, что кинетическая энергия частиц больше не может преодолевать межмолекулярные силы. Первоначальный кластер частиц инициирует процесс, который имеет тенденцию дополнительно охлаждать газ, так что конденсация продолжается. Когда газ превращается непосредственно в твердое вещество, не проходя через жидкую фазу, процесс называется осаждением или десублимацией. Примером этого является то, как при пониженных температурах преобразуется водяной пар в атмосфере в иней и лед. Иней имеет тенденцию обрисовывать сплошные листья травы и веток, потому что воздух, касающийся этих твердых веществ, охлаждается быстрее, чем воздух, который не касается твердой поверхности.
Источник
Контрольная работа по физике. 7 класс. Тема: “Первоначальные сведения о строении вещества”. Вариант 4
КОНТРОЛЬНАЯ РАБОТА ПО ФИЗИКЕ
7 КЛАСС
ТЕМА: “ПЕРВОНАЧАЛЬНЫЕ СВЕДЕНИЯ О СТРОЕНИИ ВЕЩЕСТВА”
ВАРИАНТ 4
Уровень А
1. Какое из утверждений верно?
А) Все вещества состоят из молекул
Б) Молекулы состоят из атомов
1) А
2) Б
3) А и Б
4) Ни А, ни Б
Ответ
2. Благодаря диффузии
1) нагревается воздух в комнате при включенных батареях отопления
2) происходит движение влаги вверх по стеблю растения
3) распространяются запахи
4) растекается вода по поверхности стола
Ответ
3. Какое из утверждений верно?
А) Благодаря взаимному отталкиванию молекул между ними существуют промежутки
Б) Притяжение между молекулами становится заметным только на расстояниях сравнимых с размерами самих молекул
1) Только А
2) Только Б
3) А и Б
4) Ни А, ни Б
Ответ
4. Какое общее свойство присуще жидкостям и газам?
1) Только наличие собственной формы
2) Только наличие собственного объема
3) Наличие собственной формы и собственного объема
4) Отсутствие собственной формы
Ответ
5. В жидкостях частицы совершают колебания возле положения равновесия, сталкиваясь с соседними частицами. Время от времени частица совершает прыжок к другому положению равновесия. Какое свойство жидкостей можно объяснить таким характером движения частиц?
1) Малую сжимаемость
2) Текучесть
3) Давление на дно сосуда
4) Изменение объема при нагревании
Ответ
6. Какое из утверждений верно? При переходе вещества из твердого состояния в жидкое
А) Увеличивается среднее расстояние между его молекулами
Б) Молекулы начинают сильнее притягиваться друг к другу
В) Разрушается кристаллическая решетка
1) Только А
2) Только Б
3) Только В
4) А и В
Ответ
Уровень В
7. Установите соответствие между физическими понятиями и их примерами.
К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами.
ФИЗИЧЕСКИЕ ПОНЯТИЯ ПРИМЕРЫ
А) Физическая величина 1) Эхо
Б) Единица измерения 2) Водяной пар
В) Измерительный прибор 3) Килограмм
4) Скорость
5) Секундомер
Ответ
Уровень С
8. Определите предел измерений мензурки, цену деления и объем жидкости, налитой в мензурку.
Ответ
Жидкое состояние вещества
В жидком состоянии расстояние между частицами значительно меньше, чем в газообразном. Частицы занимают основную часть объема, постоянно соприкасаясь друг с другом и притягиваются друг к другу. Наблюдается некоторая упорядоченность частиц (ближний порядок). Частицы подвижны относительно друг друга.
В жидкостях между частицами возникают вандерваальсовы взаимодействия: дисперсионные, ориентационные и индукционные. Небольшие группы частиц, объединенных теми или иными силами, называются кластерами. В случае одинаковых частиц кластеры в жидкости называются ассоциатами
В жидкостях при образовании водородных связей увеличивается упорядочение частиц. Однако водородные связи и вандерваальсовы силы непрочны – молекулы в жидком состоянии находятся в непрерывном хаотическом движении, которое получило название броуновского движения .
Для жидкого состояния справедливо распределение молекул по скоростям и энергиям Максвелла-Больцмана.
Теория жидкостей разработана гораздо хуже, чем газов, поскольку свойства жидкостей зависят от геометрии и полярности взаимно близко расположенных молекул. Кроме того, отсутствие определенной структуры жидкостей затрудняет их формализованное описание – в большинстве учебников жидкостям уделено гораздо меньше места, чем газам и твердым кристаллическим веществам.
Между жидкостями и газами нет резкой границы – она полностью исчезает в критических точках. Для каждого газа известна температура, выше которой он не может быть жидким ни при каком давлении; при этой критической температуре исчезает граница (мениск) между жидкостью и ее насыщенным паром.
Контрольная работа по физике Первоначальные сведения о строении вещества 7 класс
Существование критической температуры (“температуры абсолютного кипения”) установил Д.И.Менделеев в 1860 г
Таблица 7.2 — Критические параметры (tк, pк, Vк) некоторых веществ
Вещество | tк, оС | pк, атм | Vк, см3/моль | tплавлоС | tкипоС |
He | -267,9 | 2,26 | 57,8 | -271,4 | -268,94 |
H2 | -239,9 | 12,8 | 65,0 | -259,2 | -252,77 |
N2 2 | -147,0 | 33,54 | 90,1 | -210,01 | -195,82 |
O2 2 | -118,4 | 50,1 | -218,76 | -182,97 | |
CH4 | -82,1 | 45,8 | 99,0 | -182,49 | -161,58 |
CO2 | +31,0 | 72,9 | 94,0 | -56,16 | -78,48(субл) |
NH3 | 132,3 | 111,3 | 72,5 | -77,76 | -33,43 |
Cl2 | 144,0 | 76,1 | -101,0 | -34,06 | |
SO2 | 157,5 | 77,8 | -75,48 | -10,02 | |
H2O | 374,2 | 218,1 | 0,0 | 100,0 |
Давление насыщенных паров – парциальное давление, при котором скорости испарения и конденсации пара равны :
, (7.6)
где А и В – константы.
Температура кипения – температура, при которой давление насыщенных паров жидкости равно атмосферному давлению.
Жидкости обладают текучестью – способность к перемещению под действием небольших сдвигающих усилия; жидкость занимает объем , в который ее помещают.
Сопротивление жидкости текучести получило название вязкости, [Па . с].
Поверхностное натяжение [Дж/м2 ] – работа, необходимая для создания единицы поверхности.
Жидкокристаллическое состояние – вещества в жидком состоянии, обладающие высокой степенью упорядочности, занимают промежуточное положение между кристаллами и жидкостью. Они обладают текучестью, но в то же время имеют дальний порядок. Например – производные коричневой кислоты, азолитинов, стероидов.
Температура просветления – температура, при которой жидкие кристаллы (жк) переходят в обычное жидкое состояние.
7.5 Твёрдые вещества
В твёрдом состоянии частицы настолько сближаются друг с другом, что между ними возникают прочные связи, отсутствует поступательное движение и сохраняются колебания около своего положения. Твёрдые вещества могут находиться в аморфном и кристаллическом состоянии.
7.5.1 Вещества в аморфном состоянии
В аморфном состоянии вещества не имеют упорядоченной структуры.
Стеклообразное состояние – твердое аморфное состояние вещества, которое получается в результате глубокого переохлаждения жидкости. Это состояние неравновесно, однако стекла могут существовать длительное время. Размягчение стекла происходит в некотором диапазоне температур – интервале стеклования, границы которого зависят от скорости охлаждения. С увеличением скорости охлаждения жидкости или пара возрастает вероятность получения данного вещества в стеклообразном состоянии.
В конце 60-х годов XX века получены аморфные металлы (металлические стекла) – для этого потребовалось охлаждать расплавленный металл со скоростью 106 — 108 град/с. Большинство аморфных металлов и сплавов кристаллизуются при нагреве свыше 300оС. Одно из важнейших применений – микроэлектроника (диффузионные барьеры на границе металл-полупроводник) и магнитные накопители (головки ЖМД). Последнее – благодаря уникальной магнитомягкости (магнитная анизотропия меньше на два порядка, чем в обычных сплавах).
Аморфные вещества изотропны, т.е. имеют одинаковые свойства во всех направлениях.
7.5.2 Вещества в кристаллическом состоянии
Твердые кристаллические вещества обладают упорядоченной структурой с повторяющимися элементами, что позволяет исследовать их методом дифракции рентгеновских лучей (метод рентгеноструктурного анализа, используется с 1912 г.
Монокристаллы (одиночные соединения) характеризуются анизотропностью – зависимость свойств от направления в пространстве.
Регулярное расположение частиц в твёрдом теле изображается в виде кристаллической решётки. Кристаллические вещества плавятся при определённой температуре, называемой температурой плавления.
Кристаллы характеризуются энергией, постоянной кристаллической решётки и координационном числом.
Постоянная решётка характеризует расстояние между центрами частиц, занимающих узлы в кристалле, в направлении характеристических осей.
Координационным числом обычно называется число частиц, непосредственно примыкающих к данной частице в кристалле (смотри рисунок 7.2 – координационное число восемь и по цезию и по хлору)
Энергией кристаллической решётки называют энергию, необходимую для разрушения одного моля кристалла и удаления частиц за пределы их взаимодействия.
Рисунок 7.2 — Строение кристалла хлористого цезия CsCl (а) и объемноцентрированная кубическая элементарная ячейка этого кристалла (б)
7.5.3 Кристаллические структуры
Наименьшей структурной единицей кристалла, которая выражает все свойства его симметрии, является элементарная ячейка. При многократном повторении ячейки по трём измерениям получают кристаллическую решётку.
Имеется семь основных ячеек: кубическая, тетраэдрическая, гексагональная, ромбоэдрическая, орто ромбоэдрическая, моноклинная и триклинная. Имеется семь производных о основных элементарных ячеек, например объёмно центрированная, кубическая гранецентрированная.
а — элементарная ячейка кристалла NaCl; б — плотная гранецентрированная кубическая упаковка NaCl; в- объемноцентрированная кубическая упаковка кристалла CsCl Рисунок Рисунок 7.3 — Элементарная ячейка
Изоморфные вещества – вещества близкой химической природы, образующие одинаковые кристаллические структуры: CaSiO4 и MgSiO4
Полиморфизм–соединения, существующие в двух и более кристаллических структурах, например SiO2 (в виде гексагонального кварца, ромбического тридимита и кубического кристобаллита.)
Аллотропные модификации – полиморфные модификации простых веществ, например, углерод: алмаз, графит, карбин, фуллерен.
По природе частиц в узлах кристаллической решётки и химических связей между ними кристаллы подразделяются на:
1) молекулярные – в узлах находятся молекулы, между которыми действуют вандерваальсовы силы, имеющие невысокую энергию: кристаллы льда;
2) атомно – ковалентные кристаллы – в узлах кристаллов располагаются атомы, образующие друг с другом прочные ковалентные связи, обладают высокой энергией решётки, например, алмаз (углерод);
3) ионные кристаллы – структурными единицами кристаллов этого типа являются положительно и отрицательно заряженные ионы, между которыми происходит электрическое взаимодействие, характеризуемое достаточно высокой энергией, например NaCL, KCL;
4) металлические кристаллы – вещества, которые обладают высокой электропроводимостью, теплопроводимостью, ковкостью, пластичностью, металлическим бликом и высокой отражательной способностью по отношению к свету; связь в кристаллах металлическая, энергия металлической связи является промежуточной между энергиями ковалентных и молекулярных кристаллов;
5) кристаллы со смешанными связями – между частицами существуют сложные взаимодействия, которые можно описать наложениям двух или более видов связей друг на друга, например клатраты (соединения включены) – образованы включением молекул (гостей) в полости кристаллического каркаса, состоящего из частиц другого вида (хозяев): газовые клатраты CH4.6H2O, клатраты мочевины.
Дата добавления: 2015-08-08; просмотров: 605;
ПОСМОТРЕТЬ ЕЩЕ:
Характеристика жидкого состояния вещества
Предыдущая123456789101112Следующая
В отличие от газов между молекулами жидкости действуют достаточно большие силы взаимного притяжения, что определяет своеобразный характер молекулярного движения. Тепловое движение молекулы жидкости включает колебательное и поступательное движения. Каждая молекула в течение какого-то времени колеблется около определенной точки равновесия, затем перемещается и снова занимает новое равновесное положение. Это определяет ее текучесть. Силы межмолекулярного притяжения не дают молекулам при их движении далеко отходить друг от друга. Суммарный эффект притяжения молекул можно представить, как внутреннее давление жидкостей, которое достигает очень больших значений. Этим и объясняются постоянство объема и практическая несжимаемость жидкостей, хотя они легко принимают любую форму.
Свойства жидкостей зависят также от объема молекул, формы и полярности их. Если молекулы жидкости полярны, то происходит объединение (ассоциация) двух и более молекул в сложный комплекс. Такие жидкости называют ассоциированнымижидкостями. Ассоциированные жидкости (вода, ацетон, спирты) имеют более высокие температуры кипения, обладают меньшей летучестью, более высокой диэлектрической проницаемостью. Например, этиловый спирт и диметиловый эфир имеют одинаковую молекулярную формулу (С2Н6О). Спирт является ассоциированной жидкостью и кипит при более высокой температуре, чем диметиловый эфир, который относится к неассоциированным жидкостям.
Жидкое состояние характеризуют такие физические свойства, как плотность, вязкость, поверхностное натяжение.
Поверхностное натяжение.
Состояние молекул, находящихся в поверхностном слое, существенно отличается от состояния молекул в глубине жидкости. Рассмотрим простой случай – жидкость – пар (рис. 2).
Рис. 2. Действие межмолекулярных сил на поверхности раздела и внутри жидкости
На рис. 2 молекула (а) находится внутри жидкости, молекула (б) – в поверхностном слое. Сферы вокруг них – расстояния, на которые распространяются силы межмолекулярного притяжения окружающих молекул.
На молекулу (а) равномерно действуют межмолекулярные силы со стороны окружающих молекул, поэтому силы межмолекулярного взаимодействия компенсируются, равнодействующая этих сил равна нулю (f=0).
Плотность пара значительно меньше плотности жидкости, так как молекулы удалены друг от друга на большие расстояния. Поэтому молекулы, находящиеся в поверхностном слое, почти не испытывают силы притяжения со стороны этих молекул. Равнодействующая всех этих сил будет направлена внутрь жидкости перпендикулярно ее поверхности. Таким образом, поверхностные молекулы жидкости всегда находятся под действием силы, стремящейся втянуть их внутрь и, тем самым, сократить поверхность жидкости.
Чтобы увеличить поверхность раздела жидкости, необходимо затратить работу А (Дж). Работа, необходимая для увеличения поверхности раздела S на 1 м2, является мерой поверхностной энергии или поверхностным натяжением.
Таким образом, поверхностное натяжение д (Дж/м 2 = Нм/м 2 = Н/м) – результат некомпенсированности межмолекулярных сил в поверхностном слое:
д = F/S (F – поверхностная энергия) (2.3)
Существует большое число методов определения поверхностного натяжения. Наиболее распространены сталагмометрический метод (метод счета капель) и метод наибольшего давления газовых пузырьков.
При помощи методов рентгеноструктурного анализа было установлено, что в жидкостях есть некоторая упорядоченность пространствен-ного расположения молекул в отдельных микрообъемах. Вблизи каждой молекулы наблюдается так называемый ближний порядок. При удалении от нее на некоторое расстояние эта закономерность нарушается. И во всем объеме жидкости порядка в расположении частиц нет.
Рис. 3. Сталагмометр Рис. 4.
какие общие свойства присущи газам
Вискозиметр
Вязкость з (Па·с) – свойство оказывать сопротивление перемещению одной части жидкости относительно другой. В практической жизни человек сталкивается с большим множеством жидких систем, вязкость которых различна, – вода, молоко, растительные масла, сметана, мед, соки, патока и т.д.
Вязкость жидкостей обусловлена межмолекулярным воздействием, ограничивающим подвижность молекул. Она зависит от природы жидкости, температуры, давления.
Для измерения вязкости служат приборы, называемые вискозиметрами. Выбор вискозиметра и метода определения вязкости зависит от состояния исследуемой системы и ее концентрации.
Для жидкостей с малой величиной вязкости или небольшой концентрацией широко используют вискозиметры капиллярного типа.
Предыдущая123456789101112Следующая
Жидкости:
1. Жидкости сохраняют объем, но не сохраняют формы: вследствие текучести жидкость обычно принимает форму сосуда;
2. Характер молекулярного движения: молекулы колеблются около положению равновесия и перескакивают в другие позиции.
Твердые тела:
1. Твердые тела сохраняют объем и форму;
2.
Контрольная работа по физике Первоначальные сведения о строении вещества 7 класс
Характер молекулярного движения — колебания атомов или молекул близок к положению равновесия.
ПОХОЖИЕ ЗАДАНИЯ:
Источник