Какие свойства проявляет фтор в химических реакциях

Фтор исключительно химически активен, он – сильнейший окислитель. Это обусловлено, с одной стороны, большой прочностью образуемых им связей с атомами других элементов (так, энергия связи H-F 566, а Si-F 582 кДж/моль), с другой стороны, малой энергией связи в молекуле фтора (151 кДж/моль, тогда как у хлора 238 кДж/моль). Малое значение энергии связи в молекуле фтора, по-видимому, объясняется сильным отталкиванием электронных пар, находящихся на π-орбиталях, что обусловлено малой длиной F-F связи.
Большая энергия связей между атомом фтора и атомами других элементов является следствием большой электроотрицательности фтора и маленьким размером его атома. Благодаря малой энергии связи молекула фтора легко диссоциирует на атомы и энергия активации реакций со фтором обычно не велика, поэтому процессы с участием фтора протекают очень быстро.
Для фтора характерно:
1. Отсутствие положительных степеней окисления в соединениях с другими элементами.
2. Чрезвычайно низкая энергия активации реакций.
3. Большое выделение энергии при переходе молекулы фтора в анионы F—.
4. Стремление максимально использовать валентные электроны партнеров. Именно в соединениях со фтором реализуются высшие степени окисления многих элементов: BiF5, SF6, IF7, OsF7, CuF3 и др.
Итак, фтор – сильнейший окислитель. По образному выражению академика А. Е. Ферсмана его можно назвать «всесъедающим».
Щелочные металлы, свинец, железо и большинство порошков других металлов загораются в атмосфере фтора при комнатной температуре. На некоторые металлы (алюминий, железо, никель, медь, цинк, марганец, магний) фтор на холоде не действует из-за образования поверхностной пленки фторидов, защищающей металл от дальнейшего взаимодействия. Поэтому сплавы этих металлов или никеля используют для хранения фтора. Однако при нагревании фтор реагирует со всеми металлами, в т.ч. с золотом и платиной.
Со многими неметаллами (водород, йод, бром, сера, фосфор, мышьяк, сурьма, углерод, кремний, бор) фтор взаимодействует на холоде; реакции протекают со взрывом или с образованием пламени.
С серой, фосфором и сурьмой фтор взаимодействует даже при температуре жидкого воздуха (-190 °C):
S + 3F2 = SF6, ΔH°298 = -1207 кДж/моль
2P + 5F2 = 2PF5, ΔH°298 = -3186 кДж/моль
2Sb + 5F2 = 2SbF5
С водородом фтор взаимодействует уже при температуре -252 °C
H2(ж) + F2(тв) = 2HF(тв)
Si(кр) + 2F2(г) = SiF4(г), ΔH°298 = -16156 кДж/моль
Криптон взаимодействует с фтором под действием электрического разряда, а ксенон горит в атмосфере фтора ярким пламенем.
Xe(г) + F2(г) = XeF2(кр), ΔG°f, 298 = -161,2 кДж/моль, ΔH°298 = -176 кДж/моль
Xe(г) + 2F2(г) = XeF4(кр), ΔG°f, 298 = -256,7 кДж/моль
С кислородом фтор реагирует при низких тепературах в электрических разрядах с образованием эндотермических фторидов кислорода.
O2 + F2 = O2F2, -190 °C, электрич. разряд.
При нагревании с фтором реагирует хлор с образованием ClF и ClF3. Бром и йод при взаимодействии с фтором образуют следующие соединения: BrF, BrF3, BrF5, IF, IF3, IF5, IF7.
При нагревании фтор вступает в реакцию и с азотом:
N2 + 3F2 → 2NF3
Непосредственно фтор не реагирует только с углеродом (в виде алмаза), гелием, неоном и аргоном.
В реакциях с фтором в роли восстановителей выступают такие вещества как азотная и серная кислоты:
2HNO3 + 4F2 = 2HF + 2NF3 + 3O2
H2SO4 + 4F2 = 2HF + SF6 + 2O2
Под действием фтора разлагается вода:
0 °C: H2O(тв) + F2 = HF + HOF (фтороксигенат водорода)
0-90 °C: H2O(ж) + 2F2 = 2HF + OF2
>100 °C: H2O(г) + F2(г) = HF(г) + O2(г) (O3), ΔH = -598 кДж
В атмосфере фтора горят такие стойкие вещества, как стекло (в виде ваты), асбест, кварц:
SiO2(α-кварц) + 2F2(г) = SiF4(г) + O2(г), ΔG° = -716 кДж
Катализатором этой реакции является вода. С совершенно сухим кварцем или стеклом фтор не взаимодействует.
2NH3(г) + 3F2(г) = 6HF(г) + N2(г), ΔG° = -1604 кДж, ΔS>0
2NH3(г) + 6F2(г) = 6HF(г) + 2NF3(г), ΔG° = -1772 кДж, ΔS
2NaOH + 2F2 = OF2 + 2NaF + H2O
Поскольку атом фтора имеет небольшой радиус, он может замещать водород в органических молекулах. Кроме того, многие реакции прямого фторирования протекают по цепному механизму и часто имеют взрывной характер.
Источник
Фтор | |
---|---|
Атомный номер | 9 |
Внешний вид простого вещества | Фтор в сосуде Бледно-жёлтый газ, |
Свойства атома | |
Атомная масса (молярная масса) | 18,998403 а. е. м. (г/моль) |
Радиус атома | 71 пм |
Энергия ионизации (первый электрон) | 1680,0 (17,41) кДж/моль (эВ) |
Электронная конфигурация | [He] 2s2 2p5 |
Химические свойства | |
Ковалентный радиус | 72 пм |
Радиус иона | (-1e)133 пм |
Электроотрицательность (по Полингу) | 3,98 |
Электродный потенциал | 0 |
Степени окисления | −1 |
Термодинамические свойства простого вещества | |
Плотность | (при −189 °C)1,108 г/см³ |
Молярная теплоёмкость | 31,34 Дж/(K·моль) |
Теплопроводность | 0,028 Вт/(м·K) |
Температура плавления | 53,53 K |
Теплота плавления | (F-F) 0,51 кДж/моль |
Температура кипения | 85,01 K |
Теплота испарения | 6,54 (F-F) кДж/моль |
Молярный объём | 17,1 см³/моль |
Кристаллическая решётка простого вещества | |
Структура решётки | моноклинная |
Параметры решётки | 5,50 b=3,28 c=7,28 β=90.0 Å |
Отношение c/a | — |
Температура Дебая | n/a K |
F | 9 |
18,9984 | |
[He]2s22p5 | |
Фтор |
Фтор — элемент главной подгруппы седьмой группы, второго периода периодической системы химических элементов Менделеева, с атомным номером 9. Обозначается символом F Fluorum. Фтор — чрезвычайно химически активный неметалл и самый сильный окислитель, является самым лёгким элементом из группы галогенов. Простое вещество фтор (CAS-номер: 7782-41-4) при нормальных условиях — двухатомный газ бледно-жёлтого цвета с резким запахом, напоминающим озон или хлор (формула F2). Очень ядовит.
История
Схема атома фтора
Первое соединение фтора — флюорит (плавиковый шпат) CaF2 — описано в конце XV века под названием «флюор». В 1771 году Карл Шееле получил плавиковую кислоту.
Как один из атомов плавиковой кислоты, элемент фтор был предсказан в 1810 году, а выделен в свободном виде лишь семьдесят шест лет спустя Анри Муассаном в 1886 году электролизом жидкого безводного фтористого водорода, содержащего примесь кислого фторида калия KHF2.
Происхождение названия
Название «фтор» (φθόρος — разрушение), предложенное Андре Ампером в 1810 году, употребляется в русском и некоторых других языках; во многих странах приняты названия, производные от латинского «Fluorum» (которое происходит, в свою очередь, от fluere — «течь», по свойству соединения фтора, флюорита (CaF2), понижать температуру плавления руды и увеличивать текучесть расплава).
Распространение в природе
Содержание фтора в атомных процентах в природе показано в таблице:
Объект | Содержание |
---|---|
Почва | 0,02 |
Воды рек | 0,00002 |
Воды океана | 0,0001 |
Зубы человека | 0,01 |
В природе значимые скопления фтора содержатся разве что только в минерале флюорите.
В некоторой степени относительно богаты фтором растения чечевица и лук
Содержанием в почве фтор обязан вулканическим газам, за счет того, что в их состав обычно входит большое количество фтороводорода.
Изотопный состав
Фтор является моноизотопным элементом, так как в природе существует только один стабильный изотоп фтора 19F. Известны еще 17 радиоактивных изотопов фтора с массовым числом от 14 до 31, и один ядерный изомер — 18Fm. Самым долгоживущим из радиоактивных изотопов фтора является 18F с периодом полураспада 109,771 минуты, важный источник позитронов, использующийся в позитрон-эмиссионной томографии.
Ядерные свойства изотопов фтора
Изотоп | Относительная масса, а.е.м. | Период полураспада | Тип распада | Ядерный спин | Ядерный магнитный момент |
---|---|---|---|---|---|
17F | 17,0020952 | 64,5 c | β+-распад в 17O | 5/2 | 4.722 |
18F | 18,000938 | 1,83 часа | β+-распад в 18O | 1 | |
19F | 18,99840322 | Стабилен | — | 1/2 | 2.629 |
20F | 19,9999813 | 11 c | β−-распад в 20Ne | 2 | 2.094 |
21F | 20,999949 | 4,2 c | β−-распад в 21Ne | 5/2 | |
22F | 22,00300 | 4,23 c | β−-распад в 22Ne | 4 | |
23F | 23,00357 | 2,2 c | β−-распад в 23Ne | 5/2 |
Магнитные свойства ядер
Ядра изотопа 19F имеют полуцелый спин, поэтому возможно применение этих ядер для ЯМР-исследований молекул. Спектры ЯМР-19F являются достаточно характеристичными для фторорганических соединений.
Электронное строение
Применение метода МО для молекулы F2
Электронная конфигурация атома фтора следующая: 1s22s22p5. Атомы фтора в соединениях могут проявлять степень окисления равную −1. Положительные степени окисления в соединениях не реализуются, так как фтор является самым электроотрицательным элементом.
Квантовохимический терм атома фтора — ²P3/2
Строение молекулы
С точки зрения теории молекулярных орбиталей, строение двухатомной молекулы фтора можно охарактеризовать следующей диаграммой. В молекуле присутствует 4 связывающих орбители и 3 разрыхляющих. Очевидно, что порядок связи в молекуле равен 1.
Кристаллическая решётка
Кристаллическая структура α-фтора (стабильная при атмосферном давлении)
Кристаллическая решётка фтора в твёрдом состоянии является моноклиной гранецентрированной со следующими параметрами решётки:
Параметр | и значение |
---|---|
a | 550 пм |
b | 328 пм |
c | 728 пм |
α=β=γ | 90° |
Получение
Лабораторный метод получения фтора
Источником для производства фтора служит фтористый водород HF, получающийся в основном либо при действии серной кислоты H2SO4 на флюорит CaF2, либо при переработке апатитов и фосфоритов.
Лабораторный метод
Лабораторные условия — фтор можно получать с помощью химических установок. В медный сосуд 1, заполненный расплавом KF·3HF помещают медный сосуд 2, имеющий отверстия в дне. В сосуд 2 помещают толстый никелевый анод. Катод помещается в сосуд 1. Таким образом, в процессе электролиза газообразный фтор выделяется из трубки 3, а водород из трубки 4. Важным требованием является обеспечение герметичности системы, для этого используют пробки из фторида кальция со смазкой из оксида свинца (II) и глицерина.
В 1986 году, во время подготовки к конференции по поводу празднования 100-летия открытия фтора, Карл Кристе открыл способ чисто химического получения фтора с использованием реакции во фтороводородном растворе K2MnF6 и SbF5 при 150 °C:
K2MnF6 + 2SbF5 → 2KSbF6 + MnF3 + ½F2
2K2MnF6 + 4SbF5 → 4KSbF6 + 2MnF3 + F2
Хотя этот метод не имеет практического применения, он демонстрирует, что электролиз необязателен.
Промышленный метод
Промышленное производство фтора осуществляется электролизом расплава кислого фторида калия KF·3HF (часто с добавлениями фторида лития), который образуется при насыщении расплава KF фтористым водородом до содержания 40—41 % HF. Процесс электролиза проводят при температурах около 100 °C в стальных электролизёрах со стальным катодом и угольным анодом.
Физические свойства
Слабо светло-оранжевый газ, в малых концентрациях запах напоминает одновременно озон и хлор, очень агрессивен и ядовит.
Химические свойства
Самый активный неметалл, бурно взаимодействует почти со всеми веществами (редкие исключения — фторопласты), и с большинством из них — с горением и взрывом. Контакт фтора с водородом приводит к воспламенению и взрыву даже при очень низких температурах (до −252°C). В атмосфере фтора горят даже вода и платина:
2F2 + 2H2O → 4HF + O2
К реакциям, в которых фтор формально является восстановителем, относятся реакции разложения высших фторидов, например:
XeF8 → XeF6 + F2
MnF4 → MnF3 + 1/2 F2
Фтор также способен окислять кислород, образуя фторид кислорода OF2.
Хранение
Фтор хранят в газообразном состоянии (под давлением) и в жидком виде (при охлаждении жидким азотом) в аппаратах из никеля и сплавов на его основе (монель-металл), из меди, алюминия и его сплавов, латуни, нержавеющей стали.
Применение в химической деятельности (химической промышленноси)
Газообразный фтор используется для получения:
гексафторида урана UF6 из UF4, применяемого для разделения изотопов урана для ядерной промышленности.
трёхфтористого хлора ClF3 — фторирующий агент и мощный окислитель ракетного топлива
шестифтористой серы SF6 — газообразный изолятор в электротехнической промышленности
фторидов металлов (например, W и V), которые обладают некоторыми полезными свойствами
фреонов — хороших хладагентов
тефлонов — химически инертных полимеров
гексафтороалюмината натрия — для последующего получения алюминия электролизом
различных соединений фтора
Ракетная техника
Соединения фтора широко применяются в ракетной технике как окислитель ракетного топлива.
Применение в медицине
Соединения фтора широко применяются в медицине как кровезаменители.
Биологическая и физиологическая роль
Фтор является жизненно необходимым для организма элементом. В организме человека фтор, в основном, содержится в эмали зубов в составе фторапатита — Ca5F(PO4)3. При недостаточном (менее 0,5 мг/литр питьевой воды) или избыточном (более 1 мг/литр) потреблении фтора организмом могут развиваться заболевания зубов: кариеса и флюорозу (крапчатости эмали) и остеосаркомы, соответственно.
Малое содержание фтора разрушает эмаль за счет вымывания фтора из фторапатита с образованием гидроксоапатита, и наоборот.
Для профилактики кариеса рекомендуется использовать зубные пасты с добавками фтора или употреблять фторированную воду (до концентрации 1 мг/л), или применять местные аппликации 1-2 % раствором фторида натрия или фторида олова. Такие действия могут сократить вероятность появления кариеса на 30-50 %.
Предельно допустимая концентрация связанного фторав воздухе промышленных помещениях равен 0,0005 мг/литр.
Дополнительная информация
Фториды
Соединения фтора в ракетной технике
Соединения фтора в медицине
Категория:Соединения фтора
Фтор, Fluorum, F(9)
Фтор (Fluorine, франц. и нем. Fluor) получен в свободном состоянии в 1886 г., но его соединения известны давно и широко применялись в металлургии и производстве стекла. Первые упоминания о флюорите (СаР,) под названием плавиковый шпат (Fliisspat) относятся к XVI в. В одном из сочинений, приписываемых легендарному Василию Валентину, упоминаются окрашенные в различные цвета камни — флюссе (Fliisse от лат. fluere — течь, литься), которые применялись в качестве плавней при выплавке металлов. Об этом же пишут Агрикола и Либавиус. Последний вводит особые названия для этого плавня — плавиковый шпат (Flusspat) и минеральный плавик. Многие авторы химико-технических сочинений XVII и XVIII вв. описывают разные виды плавикого шпата. В России эти камни именовались плавик, спалт, спат; Ломоносов относил эти камни к разряду селенитов и называл шпатом или флусом (флус хрустальный). Русские мастера, а также собиратели коллекций минералов (например, в XVIII в. князь П. Ф. Голицын) знали, что некоторые виды шпатов при нагревании (например, в горячей воде) светятся в темноте. Впрочем, еще Лейбниц в своей истории фосфора (1710) упоминает в связи с этим о термофосфоре (Thermophosphorus).
По-видимому, химики и химики-ремесленники познакомились с плавиковой кислотой не позднее XVII в. В 1670 г. нюрнбергский ремесленник Шванхард использовал плавиковый шпат в смеси с серной кислотой для вытравливания узоров на стеклянных бокалах. Однако в то время природа плавикового шпата и плавиковой кислоты была совершенно неизвестна. Полагали, например, что протравливающее действие в процессе Шванхарда оказывает кремневая кислота. Это ошибочное мнение устранил Шееле, доказав, что при взаимодействии плавикового шпата с серной кислотой кремневая кислота получается в результате разъедания стеклянной реторты образующейся плавиковой кислотой. Кроме того, Шееле установил (1771), что плавиковый шпат представляет собой соединение известковой земли с особой кислотой, которая получила название «Шведская кислота».
Лавуазье признал радикал плавиковой кислоты (radical fluorique) простым телом и включил его в свою таблицу простых тел. В более или менее чистом виде плавиковая кислота была получена в 1809 r. Гей-Люссаком и Тенаром путем перегонки плавикового шпата с серной кислотой в свинцовой или серебряной реторте. При этой операции оба исследователя получили отравление. Истинную природу плавиковой кислоты установил в 1810 г. Ампер. Он отверг мнение Лавуазье о том, что в плавиковой кислоте должен содержаться кислород, и доказал аналогию этой кислоты с хлористоводородной кислотой. О своих выводах Ампер сообщил Дэви, который незадолго до этого установил элементарную природу хлора. Дэви полностью согласился с доводами Ампера и затратил немало усилий на получение свободного фтора электролизом плавиковой кислоты и другими путями. Принимая во внимание сильное разъедающее действие плавиковой кислоты на стекло, а также на растительные и животные ткани, Ампер предложил назвать элемент, содержащийся в ней, фтором (греч.- разрушение, гибель, мор, чума и т. д.). Однако Дэви не принял этого названия и предложил другое — флюорин (Fluorine) по аналогии с тогдашним названием хлора — хлорин (Chlorine), оба названия до сих пор употребляются в английском языке. В русском языке сохранилось название, данное Ампером.
Многочисленные попытки выделить свободный фтор в XIX в. не привели к успешным результатам. Лишь в 1886 г. Муассану удалось сделать это и получить свободный фтор в виде газа желто-зеленого цвета. Так как фтор является необычайно агрессивным газом, Муассану пришлось преодолеть множество затруднений, прежде чем он нашел материал, пригодный для аппаратуры в опытах со фтором. U-образная трубка для электролиза фтористо- водородной кислоты при 55°С (охлаждаемая жидким хлористым метилом) была сделана из платины с пробками из плавикового шпата. После того как были исследованы химические и физические свойства свободного фтора, он нашел широкое применение. Сейчас фтор — один из важнейших компонентов синтеза фторорганических веществ широкого ассортимента. В русской литературе начала XIX в. фтор именовался по-разному: основание плавиковой кислоты, флуорин (Двигубский,1824), плавиковость (Иовский), флюор (Щеглов, 1830), флуор, плавик, плавикотвор. Гесс с 1831 г. ввел в употребление название фтор.
Источник