Какие свойства проявляет сероводород

Какие свойства проявляет сероводород thumbnail

Сероводород

Строение молекулы и физические свойства

Сероводород H2S – это бинарное соединение водорода с серой, относится к летучим водородным соединениям. Следовательно, сероводород бесцветный ядовитый газ, с запахом тухлых яиц. Образуется при гниении. В твердом состоянии имеет молекулярную кристаллическую решетку.

Геометрическая форма молекулы сероводорода похожа на структуру воды — уголковая молекула. Но валентный угол H-S-H меньше, чем угол H-O-H в воде и составляет 92,1о.

Какие свойства проявляет сероводород

Способы получения сероводорода

1. В лаборатории сероводород получают действием минеральных кислот на сульфиды металлов, расположенных в ряду напряжений левее железа.

Например, при действии соляной кислоты на сульфид железа (II):

FeS   +   2HCl   →   FeCl2   +   H2S↑

Еще один способ получения сероводорода – прямой синтез из водорода и серы:

S  +  H2  →  H2S

Еще один лабораторный способ получения сероводорода – нагревание парафина с серой.

Видеоопыт получения и обнаружения сероводорода можно посмотреть здесь.

2. Также сероводород образуется при взаимодействии растворимых солей хрома (III) и алюминия с растворимыми  сульфидами. Сульфиды хрома (III) и алюминия необратимо гидролизуются в водном растворе.

Например: хлорид хрома (III) реагирует с сульфидом натрия с образованием гидроксида хрома (III), сероводорода и хлорида натрия:

2CrCl3  +  3Na2S  +  6H2O  →   2Cr(OH)3  +  3H2S↑  +  6NaCl

Химические свойства сероводорода

1. В водном растворе сероводород проявляет слабые кислотные свойства. Взаимодействует с сильными основаниями, образуя сульфиды и гидросульфиды:

Например, сероводород реагирует с гидроксидом натрия:

H2S  +  2NaOH  →   Na2S   +  2H2O
H2S  +  NaOH → NaНS   +  H2O

2. Сероводород H2S – очень сильный восстановитель за счет серы в степени окисления -2. При недостатке кислорода и в растворе H2S окисляется до свободной серы (раствор мутнеет):

2H2S   +   O2    →   2S    +   2H2O

В избытке кислорода:

2H2S   +   3O2  →   2SO2  +   2H2O           

3. Как сильный восстановитель, сероводород легко окисляется под действием окислителей.

Например, бром и хлор окисляют сероводород до молекулярной серы:

H2S  +  Br2   →  2HBr  +   S↓

H2S  +  Cl2   →  2HCl  +   S↓

Под действием избытка хлора в водном растворе сероводород окисляется до серной кислоты:

H2S   +  4Cl2   +   4H2O →  H2SO4  +  8HCl

Например, азотная кислота окисляет сероводород до молекулярной серы:

H2S  +  2HNO3(конц.)  →  S  +  2NO2  +  2H2O

При кипячении сера окисляется до серной кислоты:

H2S   +  8HNO3(конц.)  →  H2SO4  +  8NO2   +   4H2O

Прочие окислители окисляют сероводород, как правило, до молекулярной серы.

Например, оксид серы (IV) окисляет сероводород:

2H2S  +  SO2  →  3S   +  2H2O

Соединения железа (III) также окисляют сероводород:

H2S  +  2FeCl3  →  2FeCl2  +  S  +  2HCl

Бихроматы, хроматы и прочие окислители также  окисляют сероводород до молекулярной серы:

3H2S   +   K2Cr2O7   +    4H2SO4    →   3S    +   Cr2(SO4)3   +   K2SO4   +   7H2O

2H2S   +   4Ag  +  O2  →  2Ag2S  +  2H2O

Серная кислота окисляет сероводород либо до молекулярной серы:

H2S   +   H2SO4(конц.)  →  S   +   SO2   +   2H2O

Либо до оксида серы (IV):

H2S   +   3H2SO4(конц.)  →  4SO2   +  4H2O

4. Сероводород в растворе реагирует с растворимыми солями тяжелых металлов: меди, серебра, свинца, ртути, образуя черные сульфиды, нерастворимые ни в воде, ни в минеральных кислотах.

Например, сероводород реагирует в растворе с нитратом свинца (II). при этом образуется темно-коричневый (почти черный) осадок, нерастворимый ни в воде, ни в минеральных кислотах:

H2S   +   Pb(NO3)2   →  PbS   +   2HNO3

Взаимодействие с нитратом свинца в растворе – это качественная реакция на сероводород и сульфид-ионы.

Видеоопыт взаимодействия сероводорода с нитратом свинца можно посмотреть здесь.

Источник

СЕРОВОДОРОД

 Физические свойства

Газ, бесцветный, с запахом тухлых яиц, ядовит,
растворим в воде (в 1V
H2O растворяется 3V H2S при н.у.); t°пл. = -86°C; t°кип. = -60°С.

Влияние сероводорода на организм:

Сероводород не толькоскверно
пахнет, он еще и чрезвычайно ядовит. При вдыхании этого газа в большом
количестве быстро наступает паралич дыхательных нервов, и тогда человек
перестает ощущать запах – в этом и заключается смертельная опасность
сероводорода.

Насчитывается
множество случаев отравления вредным газом, когда пострадавшими были
рабочие, на ремонте трубопроводов. Этот газ тяжелее, поэтому он
накапливается в ямах, колодцах, откуда быстро выбраться не так-то
просто.

Получение

1)    
 H2
+ S 
→ H2S↑ (при t) 

2)    
 FeS
+ 2HCl
→  FeCl2
+ H2S↑­ 

Химические свойства

1)     Раствор H2S в воде – слабая двухосновная кислота.

 Диссоциация происходит в две ступени:

H2S → H+
+ HS-
(первая ступень, образуется гидросульфид – ион)

 HS-  → 2H+ + S2-
(вторая ступень) 

Сероводородная
кислота образует два ряда солей – средние (сульфиды) и кислые (гидросульфиды):

Na2S – сульфид натрия;

CaS
– сульфид кальция;

NaHS
– гидросульфид натрия;

Ca(HS)2 – гидросульфид
кальция.

2)    
Взаимодействует с основаниями: 

H2S + 2NaOH(избыток) → Na2S + 2H2O

H2S (избыток) + NaOH → NaНS + H2O

3)     H2S проявляет очень сильные
восстановительные свойства: 

H2S-2
+ Br2 → S0 + 2HBr

H2S-2
+ 2FeCl3 → 2FeCl2 + S0 + 2HCl

H2S-2
+ 4Cl2 + 4H2O → 
H2S+6O4 + 8HCl

3H2S-2
+ 8HNO3(конц) →  3H2S+6O4
+ 8NO + 4H2O

H2S-2
+ H2S+6O4(конц) →  S0 + S+4O2 +
2H2O 

(при нагревании реакция идет по – иному:

H2S-2 + 3H2S+6O4(конц) 
→ 4S+4O2 + 4H2O

4)     Сероводород
окисляется:

при
недостатке
O2

2H2S-2 +
O2
→ 2S0
+
2H2O

при избытке O2

2H2S-2
+ 3O2 → 2S+4O2 + 2H2O 

5)     Серебро при контакте с сероводородом
чернеет:
 

4Ag
+ 2H2S + O2
→ 2Ag2S↓ + 2H2O 

Потемневшим
предметам можно вернуть блеск. Для этого в эмалированной посуде их кипятят с
раствором соды и алюминиевой фольгой. Алюминий восстанавливает серебро до
металла, а раствор соды удерживает ионы серы.

6)     Качественная реакция на сероводород и
растворимые сульфиды –
образование темно-коричневого (почти черного) осадка PbS: 

H2S +
Pb(NO3)2 → PbS↓ + 2HNO3

Na2S
+ Pb(NO3)2 → PbS↓ + 2NaNO3

Pb2+
+
S2-

PbS↓ 

Загрязнение атмосферы вызывает почернение
поверхности картин, написанных масляными красками, в состав которых входят
свинцовые белила.
Одной
из основных причин потемнения художественных картин старых мастеров было
использование свинцовых белил, которые за несколько веков, взаимодействуя со
следами сероводорода в воздухе (образуются в небольших количествах при гниении
белков; в атмосфере промышленных регионов и др.) превращаются в
PbS. Свинцовые белила – это пигмент, представляющий
собой карбонат свинца (
II).
Он реагирует с сероводородом, содержащимся в загрязнённой атмосфере, образуя
сульфид свинца (
II),
соединение чёрного цвета:

Читайте также:  Какие из указанных свойств характерны для неметаллов

PbCO3 + H2S = PbS + CO2 + H2O

При обработке сульфида свинца (II) пероксидом водорода происходит реакция:

PbS +
4
H2O2 = PbSO4 + 4H2O,

при этом образуется сульфат свинца (II), соединение белого цвета.

Таким образом реставрируют почерневшие
масляные картины.

Какие свойства проявляет сероводород

7)     Реставрация:
 

PbS
+ 4H2O2
→ PbSO4(белый)
+ 4H2O 

Сульфиды

Получение сульфидов

1)     Многие сульфиды получают нагреванием
металла с серой:
 

Hg
+ S

HgS

2)     Растворимые
сульфиды получают действием сероводорода  на щелочи: 

H2S + 2KOH →
K2S + 2H2O 

3)     Нерастворимые
сульфиды получают обменными реакциями: 

CdCl2
+ Na2S → 2NaCl + CdS↓

Pb(NO3)2
+ Na2S → 2NaNO3 + PbS↓

ZnSO4
+ Na2S → Na2SO4 + ZnS↓

MnSO4
+ Na2S → Na2SO4 + MnS↓

2SbCl3
+ 3Na2S → 6NaCl + Sb2S3↓

SnCl2
+ Na2S → 2NaCl + SnS↓

Химические свойства сульфидов

1)     Растворимые
сульфиды сильно гидролизованы, вследствие чего их водные растворы имеют
щелочную реакцию: 

K2S +
H2O → KHS + KOH

S2- +
H2O → HS- + OH- 

2)     Сульфиды
металлов, стоящих в ряду напряжений левее железа (включительно), растворимы в
сильных кислотах: 

ZnS + H2SO4
→ ZnSO4 + H2S­

3)    
Нерастворимые сульфиды можно перевести в растворимое состояние действием
концентрированной
HNO3

FeS2
+ 8HNO3 → Fe(NO3)3 + 2H2SO4
+ 5NO + 2H2O 

 ЗАДАНИЯ ДЛЯ ЗАКРЕПЛЕНИЯ

Задание №1
Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения:
Cu →CuS →H2S →SO2

Задание №2
Составьте
уравнения окислительно-восстановительных реакций полного и неполного
сгорания сероводорода. Расставьте коэффициенты методом электронного
баланса, укажите окислитель и восстановитель для каждой реакции, а так
же процессы окисления и восстановления.

Задание №3
Запишите
уравнение химической реакции сероводорода с раствором нитрата свинца
(II) в молекулярном, полном и кратком ионном виде. Отметьте признаки
этой реакции, является ли реакция обратимой?

Задание №4

Сероводород пропустили через 18%-ый раствор сульфата меди (II) массой
200 г. Вычислите массу осадка, выпавшего в результате этой реакции.

Задание №5
Определите объём сероводорода (н.у.), образовавшегося при взаимодействии
соляной кислоты с 25% – ым раствором сульфида железа (II) массой 2 кг?

Источник

Сероводород (H₂S) представляет собой бесцветный газ c запахом тухлых яиц. По плотности он тяжелее водорода. Сероводород смертельно ядовит для человека и животных. Даже незначительное его содержание в воздухе вызывает головокружение и тошноту, но самым страшным является то, что при длительном его вдыхании этот запах уже не ощущается.
Однако при отравлении сероводородом существует простое противоядие: следует завернуть в платок кусок хлорной извести, затем смочить, и какое-то время нюхать этот сверток.
Сероводород получают путем взаимодействия серы с водородом при температуре 350 °С:

H₂ + S → H₂S↑

Это окислительно-восстановительная реакция: в ходе нее изменяются степени окисления участвующих в ней элементов.

В лабораторных условиях сероводород получают воздействием на сульфид железа серной или соляной кислоты:

FeS + 2HCl → Fe­Cl₂ + H₂S

Это реакция обмена: в ней взаимодействующие вещества обмениваются своими ионами. Данный процесс обычно проводят с помощью аппарата Киппа.

Свойства сероводорода

При горении сероводорода образуется оксид серы 4 и водяной пар:

2H₂S + 3О₂ → 2Н₂О + 2SO₂

H₂S горит голубоватым пламенем, а если над ним подержать перевернутый химический стакан, то на его стенках появится прозрачный конденсат (вода).

Однако при незначительном понижении температуры данная реакция проходит несколько иначе: на стенках предварительно охлажденного стакана появится уже желтоватый налет свободной серы:

2H₂S + О₂ → 2Н₂О + 2S

На этой реакции основан промышленный способ получения серы.

При поджигании предварительно подготовленной газообразной смеси сероводорода и кислорода происходит взрыв.

Реакция сероводорода и оксида серы(IV) также позволяет получить свободную серу:

2H₂S + SО₂ → 2Н₂О + 3S

Сероводород растворим в воде, причем три объема этого газа могут раствориться в одном объеме воды, образуя слабую и нестойкую сероводородную кислоту (Н₂S). Эту кислоту также называют сероводородной водой. Как видите, формулы газа-сероводорода и сероводородной кислоты записываются одинаково.

Если к сероводородной кислоте прилить раствор соли свинца, выпадет черный осадок сульфида свинца:

H₂S + Pb(NO₃)₂ → PbS + 2H­NO₃

Это качественная реакция для обнаружения сероводорода. Она же демонстрирует способность сероводородной кислоты вступать в реакции обмена с растворами солей. Таким образом, любая растворимая соль свинца является реактивом на сероводород.
Некоторые другие сульфиды металлов также имеют характерную окраску, например: сульфид цинка ZnS — белую, сульфид кадмия CdS — желтую, сульфид меди CuS — черную, сульфид сурьмы Sb₂S₃ — красную.

Кстати, сероводород является нестойким газом и при нагревании практически полностью разлагается на водород и свободную серу:

H₂S → Н₂ + S

Сероводород интенсивно взаимодействует с водными растворами галогенов:

H₂S + 4Cl₂ + 4H₂O→ H₂­SO₄ + 8HCl

Сероводород в природе и жизнедеятельности человека

Сероводород входит в состав вулканических газов, природного газа и газов, сопутствующих месторождениям нефти. Много его и в природных минеральных водах, например, в Черном море он залегает на глубине от 150 метров и ниже.

Сероводород применяют:

  • в медицине (лечение сероводородными ваннами и минеральными водами);
  • в промышленности (получение серы, серной кислоты и сульфидов);
  • в аналитической химии (для осаждения сульфидов тяжелых металлов, которые обычно нерастворимы);
  • в органическом синтезе (для получения сернистых аналогов органических спиртов (меркаптанов) и тиофена (серосодержащего ароматического углеводорода).
    Еще одно из недавно появившихся направлений в науке — сероводородная энергетика. Всерьез изучается получение энергии из залежей сероводорода со дна Черного моря.

Природа окислительно-восстановительных реакций серы и водорода

Реакция образования сероводорода является окислительно-восстановительной:

Н₂⁰ + S⁰→ H₂⁺S²⁻

Процесс взаимодействия серы с водородом легко объясняется строением их атомов. Водород занимает первое место в периодической системе, следовательно, заряд его атомного ядра равен (+1), а вокруг ядра атома кружится 1 электрон. Водород с легкостью отдает свой электрон атомам других элементов, превращаясь в положительно заряженный ион водорода — протон:

Читайте также:  Какие свойства имеет лимонник

Н⁰ -1е⁻= Н⁺

Сера находится на шестнадцатой позиции в таблице Менделеева. Значит, заряд ядра ее атома равен (+16), и количество электронов в каждом атоме также 16е⁻. Расположение серы в третьем периоде говорит о том, что ее шестнадцать электронов кружатся вокруг атомного ядра, образуя 3 слоя, на последнем из которых находится 6 валентных электронов. Количество валентных электронов серы соответствует номеру группы VI, в которой она находится в периодической системе.

Итак, сера может отдать все шесть валентных электронов, как в случае образования оксида серы(VI):

2S⁰ + 3O2⁰ → 2S⁺⁶O₃⁻²

Кроме того, в результате окисления серы, 4е⁻могут быть отданы ее атомом другому элементу с образованием оксида серы(IV):

S⁰ + О2⁰ → S⁺4 O2⁻²

Сера может отдать также два электрона c образованием хлорида серы(II) :

S⁰ + Cl2⁰ → S⁺² Cl2⁻

Во всех трех вышеуказанных реакциях сера отдает электроны. Следовательно, она окисляется, но при этом выступает в роли восстановителя для атомов кислорода О и хлора Cl.
Однако в случае образования H2S окисление — удел атомов водорода, поскольку именно они теряют электроны, восстанавливая внешний энергетический уровень серы с шести электронов до восьми. В результате этого каждый атом водорода в его молекуле становится протоном:

Н2⁰-2е⁻ → 2Н⁺,

а молекула серы, наоборот, восстанавливаясь, превращается в отрицательно заряженный анион (S⁻²):
S⁰ + 2е⁻ → S⁻²

Таким образом, в химической реакции образования сероводорода окислителем выступает именно сера.

С точки зрения проявления серой различных степеней окисления, интересно и еще одно взаимодействие оксида серы(IV) и сероводорода — реакция получения свободной серы:

2H₂⁺S-²+ S⁺⁴О₂-²→ 2H₂⁺O-²+ 3S⁰

Как видно из уравнения реакции, и окислителем, и восстановителем в ней являются ионы серы. Два аниона серы (2-) отдают по два своих электрона атому серы в молекуле оксида серы(II), в результате чего все три атома серы восстанавливаются до свободной серы.

2S-² – 4е⁻→ 2S⁰ — восстановитель, окисляется;

S⁺⁴ + 4е⁻→ S⁰ — окислитель, восстанавливается.

Источник

Сероводород химические

Общее описание

Вещество в природных условиях встречается в смеси нефтяных газообразных углеводородов, содержится в составе вулканических выделений. В водной среде находится в форме раствора, например, в Черном море содержится в толще воды на глубине более 200 м. Гидросульфит выделяется в процессе разложения белков, которые имеют в составе цистеин или метионин (аминокислоты с содержанием серы). Малое количество сернистого водорода выделяется из кишечных газов животных и человеческих организмов.

Физические характеристики

Сероводород как выглядит

Вещество относится к термически устойчивым соединениям в агрегатном состоянии, при повышении температуры свыше +400ºС разделяется на простые компоненты — Н2 и S. Молекула вещества представляется в изогнутой форме и отличается полярностью (μ = 0,34. 10-29 Кл.м). Водороды не обнаруживаются в дигидросульфидах, в отличие от воды, поэтому в нормальных условиях вещество в жидкое состояние не преобразуется.

Физические свойства сероводорода:

  • При растворении дигидросульфида в водной среде получается малая по силе сероводородная кислота, которая становится сверхпроводником при понижении температуры до -70ºС и показателе давления 150 ГПа.
  • В жидком состоянии H2S обладает сниженной электропроводимостью, по сравнению с водной средой, так как сернистый водород отличается слабой диэлектрической проницаемостью. В таком виде соединение получает свойства органического раствора, который почти не растворяет лед.
  • Твердый дигидросульфид отличается плотностью молекулярного строения, при этом у всех частиц есть 12 расположенных рядом соседей (связи явно различаются со структурным сцеплением льда).
  • Плавится серный водород при показателе 2,5 кДж/моль, а испаряется в случае достижения условий 18,7 кДж/моль.
  • Вещество весит больше воздуха и подвергается сжатию при достижении температуры -60,2ºС. Полное сжатие проходит при -85,7ºС.

В воздушной среде происходит горение вещества с образованием воды и серного диоксида, реакция выражается уравнением: 2H2S + 3O2 = 2SO2 + 2H2O. Если в огонь поместить холодный твердый предмет, то окисление идет до свободной серы, которая образует остаток желтого цвета: O2 + 2H2S = 2S + 2H2O. Чтобы растворить 2,5 объема сернистого водорода, потребуется всего 1 объем жидкости, при этом раствор будет называться сероводородной водой. Смесь становится мутной при содержании на воздухе и на свету, так как происходит кислотная реакция между гидросульфидом и воздухом.

Химические свойства

В результате охлаждения насыщенного раствора можно получить кристаллогидрат H2S . 6H2O. Растворимость сероводородного компонента в органике происходит более активно, чем в воде. В одной порции спирта растворяется 7 частей сероводорода. Интенсивность растворимости достигает максимума при температуре 350ºС, что объясняется получением полисульфидов.

В воде вещество окисляется йодом с выделением свободной серы, а в газовой среде сера окисляет йодистый водород до появления свободного йода по схеме:

  • I2 + H2S = S + 2HI.
  • S + 2HI = I2 + H2S + 6 кДж.

Свойства сероводорода

В газово-воздушной среде при температуре ниже -50ºС образуется молярное соединение H2S . I2. Константа диссоциации сероводородной кислоты слабее угольной, децинормальная смесь имеет кислотность pH = 4.1. Сера с водородом не вступает во взаимодействие в обычных обстоятельствах, только при увеличении температуры идет реакция: S + H2 = H2S + 21 кДж.

Химические свойства сероводорода позволяют выступать ему в качестве восстановителя, примером служит список реакций:

  • Br 2 + H 2 S-2 = 2HBr + S0.
  • 4Cl 2 + 4H 2 O +H 2 S-2 = H 2 S + 6SO 4 + 8HCl.
  • 2FeCl 3 + H2S-2 = S0 + 2FeCl 2 + 2HCl.

Серебро получает черный оттенок, если реагирует с сероводородом, что является результатом взаимного влияния растворимых сульфидов и дигидросульфидов в химии. Средние соли с содержанием аниона S2- носят название сульфидов, а кислые массы с анионом HS относятся к классу гидросульфидов. Соли имеют различную цветность, несмотря на то, что ионы являются бесцветными. Сульфиды в воде почти не растворяются, а гидросульфиды реагируют и образуют водные растворы.

Соли кислоты

Вещества растворяются в воде, если находятся в таблице щелочных металлов. Остальные соединения подобного типа не взаимодействуют с водой. Сульфиды выпадают в осадок в результате реакции гибридизации, когда вводятся металлические соли или соль сероводородной кислоты.

У щелочноземельных и щелочных металлов есть гидросульфиды М2+(Н S)2 и M+ HS. Нестойкими являются гидросульфиды Ca2+ Sr2+ . Растворимые сульфиды героизируются в воде, так как относятся к слабым солям кислоты. Часто такая реакция является необратимой с появлением осадка в виде нерастворимого гидроксида.

Получение вещества

Практическое получение сероводорода проходит в реакции сульфида железа и разбавленных кислот. Другим удобным методом является нагревание сплавленной серы в виде порошка до 170ºС в сочетании с частицами асбеста и парафином. Концентрация смеси составляет 3:2:5, соответственно. В охлажденном состоянии взаимодействие прекращается, а активизируется реакция с повышением температуры.

Читайте также:  Какие свойства теряет метал

Начальный сплав заготавливается заранее и расходуется в случае необходимости, при этом 1 г дает 150 г сероводорода. Для получения чистого вещества смесь пропускается вместе с серными парами над разогретыми глыбами пемзы, при этом температура равняется 100ºС, а давление составляет 90 атм. Температурная диссоциация сероводорода наступает при 400ºС и достигает апогея при достижении 1700ºС.

Вред сероводорода

Взрывоопасной является смесь вещества с воздухом, при этом температура 300ºС ведет к воспламенению и дальнейшему взрыву в случае содержания 5−46% H2S. Ядовитость вещества часто недооценивается и деятельность с ним без защитных средств ведет к отравлению. Всего 0,1% концентрация сероводорода в атмосфере помещения вызывает неприятные последствия для организма.

После вдыхания сероводородных паров наступает потеря обоняния, затем обморок или паралич дыхания, что ведет к смерти человека. Помогает быстрое удаление пострадавшего из проблемного помещения. Симптомами отравления является головная боль, нарушение сознания и тошнота. Иногда обмороки наступают позднее, когда человек уже не работает с газом. Средства защиты необходимы, при этом требуется тщательно запахнуть респираторы и другие предметы предохранения.

Применение дигидросульфида

Сероводород в качестве сульфидов используется в технике, например, с его применением изготавливаются люминофоры, полупроводники. В этом производстве задействуются сульфиды кадмия и цинка. В качестве основы смазок берется дисульфид молибдена.

Польза от применения сероводорода:

Применение сероводорода

  • в области неорганической химии вещество применяется в качестве реагента для выделения осадка тяжелых металлов, если их сульфиды относятся к категории слаборастворимых;
  • в медицине используется в виде искусственных и природных ванн и вводится в состав минеральных вод;
  • серный водород участвует в производстве сульфидов, элементарной серы и серной кислоты;
  • используется в синтезе меркаптанов и тиофена.

В последние годы рассматривается возможность применения вещества из глубин моря. Его планируется использовать в области сероводородной энергетики в виде химического и электронного сырья.

В нормальном состоянии

Эндогенный дигидросульфид в небольшой массе производится клетками живых организмов и является важным компонентом многих биологических действий. Вещество является третьим из найденных ранее трансмиттеров после угарного газа и азотной окиси. Этот тип соединения выделяется в организме с помощью цистеина и относится к группе спазмолитиков и вазодилататоров. Он активно действует на ЦНС, повышает трансмиссию нейронов и способствует функционированию памяти.

Физические свойства сероводорода

Впоследствии вещество окисляется до ионов сульфитов в митохондриях с помощью тиосульфат-редуктазы, затем превращается в ионы сульфатов при воздействии специального фермента. Из организма в конечном виде выводится мочевыми протоками.

В организме человека эндогенный сероводород считается важным фактором для защиты от заболеваний сердца и сосудов, благодаря аналогичности со свойствами азотной окиси. Несмотря на схожесть, действие сероводорода и оксида азота различаются, хотя они оба оказывают кардиопротективное действие. Азот активирует гуанилатциклазу, а дисульфид приводит в тонус чувствительные каналы поставки калия в гладких мышцах.

Исследования показывают, что для поддержания сосудистого тонуса важно сочетание азота, сероводорода и угарного газа. Окись азота в условиях физиологической нормы расширяет крупные артерии и вены, а серный водород отвечает за расслабление периферических сосудов крови. В организме выявляется взаимодействие сигнальных путей азота и сероводорода, что говорит о зависимости спазмолитического, цитопротекторного и противовоспалительного действия газов друг от друга.

В теле человека серный водород реагирует с внутриклеточными ферментами, при этом образуется HSNO (нитрозотиол). Веществу отводится ведущая роль контроля внутриклеточной концентрации энзимов.

При патологических изменениях

В случае инфаркта выявляется дефицит эндогенного сероводородного газа, что негативно сказывается на состоянии сосудов. Сниженная биологическая доступность серного водорода и окиси азота ведет к некрозу мышцы сердца. Дефицит сероводорода способствует высвобождению большого числа радикалов и наступает экссудативный внутриклеточный стресс.

При недостатке серного водорода активность ферментов изменяется и угнетается биологическое воспроизводство азота. В это время применяется сероводородная терапия прекурсорами вещества или донорами, например, диалил-трисульфидами для увеличения содержания газа в крови и мышцах больного. В результате опасность патологии и повреждений сердечной мышцы становится минимальной.

В организме серный водород может запасаться в виде сульфат-серы. Это промежуточный компонент, который образуется при взаимодействии избыточного вещества с кислородом и используется при необходимости. Порции запасного сероводорода вступают в реакцию с кислородом и активизируют выработку азота, что уменьшает число свободных радикалов.

При заболевании Альцгеймера снижается уровень сероводородного компонента в сосудах мозга, как и у пациентов с недугом Паркинсона. Введение прекурсоров вещества дает улучшение самочувствия вплоть до полного избавления от характерных симптомов. При синдроме Дауна, наоборот, содержание сероводорода обнаруживается в очень завышенной концентрации.

Использование при анабиозе

Теоретически и практически доказано, что продукция сернистого водорода у особей, которые впадают в зимнюю спячку, повышается в несколько раз. Дыхание замедляется и составляет около 10 движений в минуту, а температура тела снижается на 2º. На опытах с мышами было установлено, что гипотермия мозга при этом уменьшает повреждение в органе при инсульте или травматическом воздействии.

Сероводородная гибернация

Если бы удалось воспроизвести такое действие в организме человека, то сероводородная гибернация стала бы полезным открытием в клинике спасения жизней после травм, инсультов и инфарктов, а также для хранения органов от донора.

Исследования показывают, что эндогенный серный водород влияет на скорость метаболизма, регулирует естественным способом уровень обменных процессов. Последние опыты показали, что эффект гибернации не возникает у крупных животных, а развивается исключительно у мышей. Анабиозу с помощью сероводородного компонента нельзя подвергнуть свиней или овец, что было практически доказано. Клинические испытания действия сероводорода на человека в части анабиоза были начаты, но неожиданно прекратились медицинской компанией без объяснения причин.

Источник