Какие свойства проявляет железо

Какие свойства проявляет железо thumbnail

Железо – химический элемент

Дополнительно в учебнике “Фоксфорд” 

1. Положение железа в
периодической таблице химических элементов и строение его атома

Железо
– это d- элемент VIII группы; порядковый номер – 26; атомная масса Ar(Fe) = 56; состав атома: 26-протонов;
30 – нейтронов; 26 – электронов.

Схема
строения атома:

Электронная
формула: 1s22s22p63s23p63d64s2

Металл
средней активности, восстановитель:

Fe0-2e-→Fe+2, окисляется восстановитель

Fe0-3e-→Fe+3, окисляется восстановитель

Основные
степени окисления: +2, +3

2. Распространённость
железа

Железо – один из
самых распространенных элементов в природе
. В земной коре его массовая доля составляет 5,1%,
по этому показателю оно уступает только
кислороду, кремнию и алюминию
. Много железа находится и в небесных телах,
что установлено по данным спектрального анализа. В образцах лунного грунта,
которые доставила автоматическая станция “Луна”, обнаружено железо в
неокисленном состоянии.

Железные
руды довольно широко распространены на Земле. Названия гор на Урале говорят
сами за себя: Высокая, Магнитная, Железная. Агрохимики в почвах находят
соединения железа.

Железо
входит в состав большинства горных пород. Для получения железа используют
железные руды с содержанием железа 30-70% и более.

Основными железными
рудами являются
:

магнетит (магнитный железняк) – Fe3O4 содержит 72%
железа, месторождения встречаются на Южном Урале, Курской магнитной аномалии:

гематит (железный блеск, кровавик)– Fe2O3содержит до
65% железа, такие месторождения встречаются в Криворожском районе:

Какие свойства проявляет железо

Какие свойства проявляет железо

лимонит (бурый железняк) – Fe2O3*nH2O
содержит до 60% железа, месторождения встречаются в Крыму:

Какие свойства проявляет железо

пирит (серный колчедан, железный
колчедан, кошачье золото) – FeS2
содержит примерно 47% железа, месторождения встречаются на Урале.

https://sites.google.com/site/himulacom/zvonok-na-urok/9-klass---vtoroj-god-obucenia/urok-no51-zelezo-polozenie-zeleza-v-periodiceskoj-sisteme-i-stroenie-ego-atoma-nahozdenie-v-prirode-fiziceskie-i-himiceskie-svojstva-zeleza/%D0%BF%D0%B8%D1%80%D0%B8%D1%82.jpg?attredirects=0

3. Роль железа в жизни
человека и растений

Биохимики
открыли важную роль железа в жизни растений, животных и человека. Входя в
состав чрезвычайно сложно построенного органического соединения, называемого
гемоглобином, железо обусловливает красную окраску этого вещества, от которого
в свою очередь, зависит цвет крови человека и животных. В организме взрослого
человека содержится 3 г чистого железа, 75% которого входит в состав гемоглобина.
Основная роль гемоглобина – перенос кислорода из легких к тканям, а в обратном
направлении – CO2.

Железо
необходимо и растениям. Оно входит в состав цитоплазмы, участвует в процессе
фотосинтеза. Растения, выращенные на субстрате, не содержащем железа, имеют
белые листья. Маленькая добавка железа к субстрату – и они приобретают зеленый
цвет. Больше того, стоит белый лист смазать раствором соли, содержащей железо,
и вскоре смазанное место зеленеет.

Так
от одной и той же причины – наличия железа в соках и тканях – весело зеленеют
листья растений и ярко румянятся щеки человека.

4. Физические свойства железа.

Железо
– это серебристо-белый металл с температурой плавления 1539оС. Очень
пластичный, поэтому легко обрабатывается, куется, прокатывается, штампуется.
Железо обладает способностью намагничиваться и размагничиваться, поэтому
применяется в качестве сердечников электромагнитов в различных электрических
машинах и аппаратах. Ему можно придать большую прочность и твердость методами
термического и механического воздействия, например, с помощью закалки и
прокатки.

Различают
химически чистое и технически чистое железо. Технически чистое железо, по сути,
представляет собой низкоуглеродистую сталь, оно содержит 0,02 -0,04% углерода,
а кислорода, серы, азота и фосфора – еще меньше. Химически чистое железо
содержит менее 0,01% примесей. Химически чистое железо – серебристо-серый,
блестящий, по внешнему виду очень похожий на платину металл. Химически чистое
железо устойчиво к коррозии  и хорошо
сопротивляется действию кислот. Однако ничтожные доли примесей лишают его этих
драгоценный свойств.

5. Получение железа

Восстановлением
из оксидов углём или оксидом углерода (II), а также водородом:

FeO + C =
Fe + CO

Fe2O3
+ 3CO = 2Fe + 3CO2

Fe2O3
+ 3H2 = 2Fe + 3H2O

 Опыт “Получение железа алюминотермией”

6. Химические свойства железа

Как
элемент побочной подгруппы железо может проявлять несколько степеней окисления.
Мы рассмотрим только соеди­нения, в которых железо проявляет степени окисления
+2 и +3. Таким образом, можно говорить, что у железа имеется два ряда
соединений, в которых оно двух- и трехвалентно.

1) На воздухе железо легко
окисляется в присутствии влаги (ржавление):

4Fe +
3O2 + 6H2 O = 4Fe(OH)3

2) Накалённая железная проволока
горит в кислороде, образуя окалину – оксид железа (II,III) – вещество чёрного цвета:

3Fe +
2O2 = Fe3O4

C  кислородом во влажном воздухе образуется Fe2O3*nH2O

 Опыт “Взаимодействие железа с кислородом”

3)  При высокой
температуре (700–900°C) железо реагирует с парами воды:

3Fe + 4H2O  t˚C→ 
Fe3O4 + 4H2­

4)     Железо
реагирует с неметаллами при нагревании:

2Fe + 3Br2  t˚C→ 
2FeBr3

Fe + S  t˚C→  FeS

5)     Железо
легко растворяется в соляной и разбавленной серной кислотах при обычных
условиях:

Fe + 2HCl = FeCl2 + H2­

Fe + H2SO4(разб.) = FeSO4
+ H2­

6) В концентрированных кислотах –
окислителях железо растворяется только при нагревании

2Fe + 6H2SO4(конц.)  t˚C→ 
Fe2(SO4)3 + 3SO2­ + 6H2O

Fe + 6HNO3(конц.)  t˚C→  Fe(NO3)3
+ 3NO2­ + 3H2O

На холоде
концентрированные азотная и серная кислоты пассивируют железо!

 Опыт “Взаимодействие железа с концентрированными кислотами”

7)     Железо
вытесняет металлы, стоящие правее его в ряду напряжений из растворов их солей.

Fe +
CuSO4 = FeSO4 + Cu

8) Качественные реакции на

Железо (II)

Железо (III)

7. Применение железа.

Основная
часть получаемого в мире железа используется для получения чугуна и стали —
сплавов железа с углеродом и другими металлами. Чугуны содержат около 4%
углерода. Стали содержат углерода менее 1,4%.

Чугуны
необходимы для производства различных отли­вок — станин тяжелых машин и т.п.

Изделия из чугуна

Стали
используются для изготовления машин, различных строительных материалов, балок,
листов, проката, рельсов, инструмента и множества других изделий. Для
производства различных сортов сталей применяют так называемые легиру­ющие
добавки, которыми служат различные металлы: Мn, Сr, Мо и другие, улучшающие
качество стали.

Изделия из стали

“ПОЯВЛЕНИЕ ЖЕЛЕЗА”

ЭТО ИНТЕРЕСНО

ТРЕНАЖЁРЫ

Тренажёр №1
– Генетический ряд Fe 2+

Тренажёр №2
– Генетический ряд Fe 3+

Тренажёр №3
– Уравнения реакций железа с простыми и сложными веществами

Задания для закрепления

№1. Составьте
уравнения реакций получения железа из его оксидов Fe2O3 и
Fe3O4 , используя в качестве восстановителя:
а) водород;
б) алюминий;
в) оксид углерода (II).
Для каждой реакции составьте электронный баланс.

№2. Осуществите
превращения по схеме:
Fe2O3  ->    Fe    -+H2O,
t ->    X    -+CO, t->    Y    -+HCl->    Z
Назовите продукты X, Y, Z?

Источник

Железо – химический элемент четвертого периода и побочной подгруппы VIII группы периодической системы. Атом железа содержит восемь валентных электронов, однако в соединениях железо обычно проявляет степени окисления (+2) и (+3), редко – (+6). Имеются сообщения о получении соединений восьмивалентного железа.

Степень окисления +3 для железа является наиболее устойчивой. Соединения железа(III) могут быть восстановлены только под действием сильных восстановителей, таких как водород в момент выделения, сероводород. Эти реакции проводят в кислой среде:

$Fe_2(SO_4)_3 + H_2S = 2FeSO_4 + S + H_2SO_4$

Железо широко распространено в природе – это самый распространенный металл, после алюминия. Существует гипотеза о том, что внутреннее ядро Земли – целиком состоит из железа с примесью никеля и серы, а возможно и других элементов. 

В природе  железо встречается в виде руд –  оксидов Fe$_2$O$_3$ (гематит, красный железняк) и Fe$_3$O$_4$ (магнетит, магнитный железняк), гидратированного оксида Fe$_2$O$_3 cdot$H$_2$O (лимонит, бурый железняк), карбоната FeCO$_3$ (сидерит), дисульфида FeS2 (пирит), редко встречается в виде самородков, попадающих на землю с метеоритами. Такое метеоритное железо было известно людям издревле. Освоение получения железа из железной руды послужило началом железного века.

Получение железа

В настоящее время железную руду восстанавливают коксом в доменных печах, при этом расплавленное железо частично реагирует с углеродом, образуя карбид железа Fe3C (цементит), а частично растворяет его. При затвердевании расплава образуется чугун. Чугун, используемый для получения стали, называют передельным.

Запомнить! Сталь, в отличие от чугуна, содержит меньшее количество углерода.

При получении стали, лишний углерод, содержащийся в чугуне, необходимо выжечь. Этого добиваются, пропуская над расплавленным чугуном воздух, обогащенный кислородом. Существует и прямой метод получения железа, основанный на восстановлении окатышей магнитного железняка природным газом:

Fe$_3$O$_4$ + CH$_4$ = 3Fe + CO$_2$ + 2H$_2$O

Физические свойства

Железо – серебристо-белый, ковкий и пластичный тугоплавкий (т. пл. 1535°C, т. кип. 2870°C) металл, при температурах ниже 769°C притягивается магнитом, то есть обладает ферромагнетизмом. Ферромагнитные свойства вызваны наличием в структуре металла отдельных зон – доменов, магнитные моменты которых под действием внешнего магнитного поля ориентируются в одну и ту же сторону.  Железо существует в форме нескольких полиморфных (аллотропных) модификаций. При температурах ниже $910^0C$ устойчиво железо с объемно-центрированной кристаллической решеткой ($alpha$-Fe, немагнитное α-железо существующее при $769 – 910^0C$ называют β-Fe), в интервале температур $910 – 1400^0C$ – более плотная модификация с кубической гранецентрированной ($gamma$-Fe), а выше этой температуры и вплоть до температуры плавления вновь становится устойчивой структура с объемно-центрированной ячейкой (δ-Fe).

Химические свойства железа

Запомнить!

  • Степень окисления +2 железо проявляет при взаимодействии со слабыми окислителями: серой, йодом, соляной кислотой, растворами солей. 

  • Степень окисления +3 железо проявляет при взаимодействии с сильными окислителями: хлором, бромом. 

  • Смешанную степень окисления  железо проявляет при взаимодействии с кислородом, водяным паром. 

1) с кислотами. На влажном воздухе окисляется, покрываясь коричневой коркой гидратированного оксида Fe$_2$O$_3 cdot $H$_2$O, ржавчины. Железо легко растворяется в разбавленных кислотах:

Fe + 2HCl = FeCl$_2$ + H$_2$­

но пассивируется в холодных концентрированных растворах кислот-окислителях – серной и азотной.

2) с солями.Будучи металлом средней химической активности, железо вытесняет другие, менее активные металлы из растворов их солей:

Fe + CuSO$_4$ = FeSO$_4$ + Cu

При этом, как и при растворении в кислотах, образуются соли двухвалентного железа.

3) с парами воды.При температуре белого каления железо реагирует с водой. Пропуская перегретый водяной пар через раскаленный на жаровне чугунный пушечный ствол, Лавуазье получил водород:

3Fe + 4H$_2$O = Fe$_3$O$_4$ + 4H$_2$.

4) с кислородом.В кислороде железо сгорает с образованием черyого порошка железной окалины – оксида железа(II, III) Fe$_3$O$_4$,имеющей тот же состав, что и природный минерал магнитный железняк^

3Fe + 2O$_2$ = Fe$_3$O$_4$

Искры, вырывающиеся при заточке стальных ножей или при резке стальных листов ацетилено-кислородным пламенем , также представляют собой раскаленные куски железной окалины.

5) с неметаллами. Степень окисления железа в образующихся соединениях зависит от силы окислителя – неметалла. Так, при взаимодействии с хлором образуется хлорид FeCl$_3$:

2Fe + 3Cl$_2$ = 2FeCl$_3$,

 с серой – сульфид FeS:

Fe + S = FeS.

Соединения железа(II)

Запомнить! Оксид и гидроксид железа(II) обладают основными свойствами.

Соединения железа(II) являются сильными восстановителями и на воздухе легко окисляются до соединений трехвалентного железа:

4FeSO$_4$ + O$_2$ + 2H$_2$O = 4Fe(OH)SO$_4$.

Белый осадок гидроксида железа(II) Fe(OH)2, образующийся при действии на соли железа(II) растворов щелочей, на воздухе мгновенно зеленеет, образуя «зеленую ржавчину» – смешанный гидроксид железа(II) и железа(III), который лишь через некоторое время приобретает характерный для Fe$_2$O$_3 cdot$H$_2$O ржавый цвет.

Соединения железа(III)

Гидроксид железа(III) выпадает в виде коричневого осадка при действии растворов щелочей, сульфидов, карбонатов на соли железа(III):

2FeCl$_3$ + 3Na$_2$CO$_3$ + 6H$_2$O = 2Fe(OH)$_3^-$ +3CO$_2$+ 6NaCl

Запомнить! Оксид и гидроксид железа(III) являются слабо амфотерными, с преобладанием основных свойств.

Так, при растворении гидроксида железа(III) в кислотах образуются соли железа(III), а при сплавлении оксида с оксидами активных металлов – ферриты (ферраты(+3)):

2Fe(OH)$_3$ + 2H$_2$SO$_4$ = Fe$_2$(SO$_4$)$_3$ + 3H$_2$O,

Fe$_2$O$_3$ + CaO = CaFe$_2$O$_4$.

В концентрированных щелочах Fe(OH)$_3$ медленно растворяется, образуя гидроксоферраты, например, Na$_3$[Fe(OH)$_6$]:

$Fe(OH)_3 + 3NaOH_{textrm{водн.}} =Na_3[Fe(OH)_6]$

При действии недостатка кислот они разлагаются в образованием осадка гидроксида железа(III):

$Na_3[Fe(OH)_6] + 3HCl_{textrm{нед.}} =3NaCl + Fe(OH)_3downarrow +3H_2O$

$Na_3[Fe(OH)_6] + 6HCl_{textrm{изб.}} =3NaCl + FeCl_3 +6H_2O$

 При пропускании углекислого газа они разлагаются на гидроксид железа(III) и карбонат натрия:

$2Na_3[Fe(OH)_6] + 3CO_2uparrow=3Na_2CO_3 + 2Fe(OH)_3downarrow +3H_2O$

Запомнить! Соли железа(III) и некоторых слабых кислот, например, сернистой и угольной не могут быть выделены из водных растворов по причине полного необратимого гидролиза

$2FeCl_3 + 3Na_2CO_3 + 3H_2O = 2Fe(OH)_3 +3CO_2uparrow + 6NaCl$

О протекании реакции судят по выделению газа и образованию коричневого осадка гидроксида железа(III).

Окисление Fe(OH)3 бромом в щелочной среде приводит к образованию вишневых растворов ферратов (+6):

2Fe(OH)$_3$ + 3Br$_2$ + 10KOH = 2K$_2$FeO$_4$ + 6KBr + 8H$_2$O.

Запомнить! Ферраты содержат железо в степени окисления (+6), и являются сильными окислителями.

Применение железа

В виде чугуна и стали железо находит широкое применение в народном хозяйстве. Хлорид железа(III) используется при травлении медных плат, а сульфат железа(III) – в качестве хлопьеобразователя (коагулянта) при очистке воды. Ферриты двухвалентных металлов (магния, цинка, кобальта, никеля) со структурой шпинели применяют в радиоэлектронике, вычислительной технике. 

Соли железа(III) образуют желто-коричневые растворы, цвет которых объясняется гидролизом, приводящим к образованию коллоидного раствора гидроксида железа(III). Многие из них, например, хлорид FeCl3×6H2O («хлорное железо») сильно гигроскопичны, и при хранении в неплотно закрытых склянках, отсыревают.

Качественные реакции на катионы железа

Какие свойства проявляет железо

На ионы железа существуют удобные качественные реакции. Если к раствору соли железа(III) прибавить разбавленный раствор роданида калия KCNS, то образуется интенсивно-красное окрашивание, вызванное образованием роданида железа(III):

$FeCl_3 + 3KSCN= Fe(SCN)_3 + 3KCl$

Другим реагентом на ионы железа(III) служит комплексное соединение гексацианоферрат(II) калия $K_4[Fe(CN)_6]$, часто называемый также “желтая кровяная соль”. Такое странное на первый взгляд название связано с тем, что раньше эту соль получали нагреванием крови с поташом и железными опилками. С солями железа(III) она дает синий коллоидный раствор  «берлинской лазури» или “турнбуллева синь”:

$K_4[Fe(CN)_6] + FeCl_3 = KFe[Fe(CN)_6] downarrow + 3KCl$

.

Аналогичное синие окрашивание осадка того же состава можно получить при взаимодействии ионов железа(II) с раствором “красной кровяной соли” – гексацианоферрат(III) калия $K_3[Fe(CN)_6]$:

$K_3[Fe(CN)_6] + FeCl_2 = KFe[Fe(CN)_6] downarrow + 2KCl$

.

Таким образом, красная кровяная соль служит реактивом на соли двухвалентного железа. При более высоких концентрациях растворов выделяется нерастворимая в воде форма «берлинской лазури» состава $Fe_4[Fe(CN)_6]_3$. Именно это вещество долгое время использовали при крашении тканей. При работе с кровяными солями следует помнить об их токсичности. 

Источник

Чистое железо (99,97%), очищенное методом электролиза

Чистое железо (99,97%), очищенное методом электролиза

Железо — ковкий металл серебристо-белого цвета с высокой химической реакционной способностью: железо быстро корродирует при высоких температурах или при высокой влажности на воздухе. В чистом кислороде железо горит, а в мелкодисперсном состоянии самовозгорается и на воздухе. Обозначается символом Fe (лат. Ferrum). Один из самых распространённых в земной коре металлов (второе место после алюминия).

СТРУКТУРА

Две модификации кристаллической решетки железа

Две модификации кристаллической решетки железа

Для железа установлено несколько полиморфных модификаций, из которых высокотемпературная модификация — γ-Fe(выше 906°) образует решетку гранецентрированного куба типа Сu (а0 = 3,63), а низкотемпературная — α-Fe-решетку центрированного куба типа α-Fe (a0 = 2,86).
В зависимости от температуры нагрева железо может находиться в трех модификациях, характеризующихся различным строением кристаллической решетки:

  1. В интервале температур от самых низких до 910°С —а-феррит (альфа-феррит), имеющий строение кристаллической решетки в виде центрированного куба;
  2. В интервале температур от 910 до 1390°С — аустенит, кристаллическая решетка которого имеет строение гранецентрированного куба;
  3. В интервале температур от 1390 до 1535°С (температура плавления) — д-феррит (дельта-феррит). Кристаллическая решетка д-феррита такая же, как и а-феррита. Различие между ними только в иных (для д-феррита больших) расстояниях между атомами.

При охлаждении жидкого железа первичные кристаллы (центры кристаллизации) возникают одновременно во многих точках охлаждаемого объема. При последующем охлаждении вокруг каждого центра надстраиваются новые кристаллические ячейки, пока не будет исчерпан весь запас жидкого металла.
В результате получается зернистое строение металла. Каждое зерно имеет кристаллическую решетку с определенным направлением его осей.
При последующем охлаждении твердого железа при переходах д-феррита в аустенит и аустенита в а-феррит могут возникать новые центры кристаллизации с соответствующим изменением величины зерна

СВОЙСТВА

Железная руда

Железная руда

В чистом виде при нормальных условиях это твердое вещество. Оно обладает серебристо-серым цветом и ярко выраженным металлическим блеском. Механические свойства железа включают в себя уровень твердости по шкале Мооса. Она равна четырем (средняя). Железо обладает хорошей электропроводностью и теплопроводностью. Последнюю особенность можно ощутить, дотронувшись до железного предмета в холодном помещении. Так как этот материал быстро проводит тепло, он за короткий промежуток времени забирает большую его часть из вашей кожи, и поэтому вы ощущаете холод.
Дотронувшись, к примеру, до дерева, можно отметить, что его теплопроводность намного ниже. Физические свойства железа — это и его температуры плавления и кипения. Первая составляет 1539 градусов по шкале Цельсия, вторая — 2860 градусов по Цельсию. Можно сделать вывод, что характерные свойства железа — хорошая пластичность и легкоплавкость. Но и это еще далеко не все. Также в физические свойства железа входит и его ферромагнитность. Что это такое? Железо, магнитные свойства которого мы можем наблюдать на практических примерах каждый день, — единственный металл, обладающий такой уникальной отличительной чертой. Это объясняется тем, что данный материал способен намагничиваться под действием магнитного поля. А по прекращении действия последнего железо, магнитные свойства которого только что сформировались, еще надолго само остается магнитом. Такой феномен можно объяснить тем, что в структуре данного металла присутствует множество свободных электронов, которые способны передвигаться.

ЗАПАСЫ И ДОБЫЧА

Железо — один из самых распространённых элементов в Солнечной системе, особенно на планетах земной группы, в частности, на Земле. Значительная часть железа планет земной группы находится в ядрах планет, где его содержание, по оценкам, около 90 %. Содержание железа в земной коре составляет 5 %, а в мантии около 12 %.

Железо

Железо

В земной коре железо распространено достаточно широко — на его долю приходится около 4,1 % массы земной коры (4-е место среди всех элементов, 2-е среди металлов). В мантии и земной коре железо сосредоточено главным образом в силикатах, при этом его содержание значительно в основных и ультраосновных породах, и мало — в кислых и средних породах.
Известно большое число руд и минералов, содержащих железо. Наибольшее практическое значение имеют красный железняк (гематит, Fe2O3; содержит до 70 % Fe), магнитный железняк (магнетит, FeFe2O4, Fe3O4; содержит 72,4 % Fe), бурый железняк или лимонит (гётит и гидрогётит, соответственно FeOOH и FeOOH·nH2O). Гётит и гидрогётит чаще всего встречаются в корах выветривания, образуя так называемые «железные шляпы», мощность которых достигает несколько сотен метров. Также они могут иметь осадочное происхождение, выпадая из коллоидных растворов в озёрах или прибрежных зонах морей. При этом образуются оолитовые, или бобовые, железные руды. В них часто встречается вивианит Fe3(PO4)2·8H2O, образующий чёрные удлинённые кристаллы и радиально-лучистые агрегаты.
Содержание железа в морской воде — 1·10−5-1·10−8 %
В промышленности железо получают из железной руды, в основном из гематита (Fe2O3) и магнетита (FeO·Fe2O3).
Существуют различные способы извлечения железа из руд. Наиболее распространённым является доменный процесс.
Первый этап производства — восстановление железа углеродом в доменной печи при температуре 2000 °C. В доменной печи углерод в виде кокса, железная руда в виде агломерата или окатышей и флюс (например, известняк) подаются сверху, а снизу их встречает поток нагнетаемого горячего воздуха.
Кроме доменного процесса, распространён процесс прямого получения железа. В этом случае предварительно измельчённую руду смешивают с особой глиной, формируя окатыши. Окатыши обжигают, и обрабатывают в шахтной печи горячими продуктами конверсии метана, которые содержат водород. Водород легко восстанавливает железо, при этом не происходит загрязнения железа такими примесями, как сера и фосфор, которые являются обычными примесями в каменном угле. Железо получается в твёрдом виде, и в дальнейшем переплавляется в электрических печах. Химически чистое железо получается электролизом растворов его солей.

ПРОИСХОЖДЕНИЕ

Самородное железо

Самородное железо

Происхождение теллурическое (земное) железо редко встречается в базальтовыхлавах (Уифак, о. Диско, у западного берега Гренландии, вблизи г. Касселя Германия). В обоих пунктах с ним ассоциируют пирротин (Fe1-xS) и когенит (Fe3C), что объясняют как восстановление углеродом (в том числе и из вмещающих пород), так и распадом карбонильных комплексов типа Fe(CO)n. В микроскопических зернах оно не раз устанавливалось в измененных (серпентинизированных) ультраосновных породах также в парагенезисе с пирротином, иногда с магнетитом, за счет которых оно и возникает при восстановительных реакциях. Очень редко встречается в зоне окисления рудных месторождений, при образовании болотных руд. Зарегистрированы находки в осадочных породах, связываемые с восстановлением соединений железа водородом и углеводородами.
Почти чистое железо найдено в лунном грунте, что связывают как с падениями метеоритов, так и с магматическими процессами. Наконец, два класса метеоритов — железокаменные и железные содержат природные сплавы железа в качестве породообразующего компонента.

ПРИМЕНЕНИЕ

Кольцо из железа

Кольцо из железа

Железо — один из самых используемых металлов, на него приходится до 95 % мирового металлургического производства.
Железо является основным компонентом сталей и чугунов — важнейших конструкционных материалов.
Железо может входить в состав сплавов на основе других металлов — например, никелевых.
Магнитная окись железа (магнетит) — важный материал в производстве устройств долговременной компьютерной памяти: жёстких дисков, дискет и т. п.
Ультрадисперсный порошок магнетита используется во многих чёрно-белых лазерных принтерах в смеси с полимерными гранулами в качестве тонера. Здесь одновременно используется чёрный цвет магнетита и его способность прилипать к намагниченному валику переноса.
Уникальные ферромагнитные свойства ряда сплавов на основе железа способствуют их широкому применению в электротехнике для магнитопроводов трансформаторов и электродвигателей.
Хлорид железа(III) (хлорное железо) используется в радиолюбительской практике для травления печатных плат.
Семиводный сульфат железа (железный купорос) в смеси с медным купоросом используется для борьбы с вредными грибками в садоводстве и строительстве.
Железо применяется в качестве анода в железо-никелевых аккумуляторах, железо-воздушных аккумуляторах.
Водные растворы хлоридов двухвалентного и трёхвалентного железа, а также его сульфатов используются в качестве коагулянтов в процессах очистки природных и сточных вод на водоподготовке промышленных предприятий.

Железо (англ. Iron) — Fe

Молекулярный вес55.85 г/моль
Происхождение названиявозможно англо-саксонского происхождения
IMA статусдействителен, описан впервые до 1959 (до IMA)

КЛАССИФИКАЦИЯ

Hey’s CIM Ref1.57

Strunz (8-ое издание)1/A.07-10
Nickel-Strunz (10-ое издание)1.AE.05
Dana (7-ое издание)1.1.17.1

ФИЗИЧЕСКИЕ СВОЙСТВА

Цвет минералажелезно-черный
Цвет чертысерый
Прозрачностьнепрозрачный
Блескметаллический
Спайностьнесовершенная по {001}
Твердость (шкала Мооса)4,5
Изломв зазубринах
Прочностьковкий
Плотность (измеренная)7.3 — 7.87 г/см3
Радиоактивность (GRapi)0
Магнетизмферромагнетик

ОПТИЧЕСКИЕ СВОЙСТВА

Типизотропный
Цвет в отраженном светебелый
Люминесценция в ультрафиолетовом излучениине флюоресцентный

КРИСТАЛЛОГРАФИЧЕСКИЕ СВОЙСТВА

Точечная группаm3m (4/m 3 2/m) — изометрический — гексаоктаэдральный
Пространственная группаIm3m (I4/m 3 2/m)
Сингониякубическая
Параметры ячейкиa = 2.8664Å
Двойникование(111) также в пластинчатых массах {112}
Морфологияв маленьких пузырьках

mineralpro.ru  

13.07.2016  

Источник