Какие свойства растворов называются коллигативными

Любому раствору характерны те или иные физические свойства, к которым относятся и коллигативные свойства растворов. Это такие свойства, на которые не оказывает влияние природа растворенного вещества, а зависят они исключительно от количества частиц этого растворенного вещества.

К коллигативным свойствам растворов относятся:

  • Понижение давление паров
  • Повышение температуры кипения
  • Понижение температуры затвердевания (кристаллизации)
  • Осмотическое давление раствора.

Рассмотрим подробнее каждое из перечисленных свойств.

Понижение давления паров

Давление насыщенного пара (т.е. пара, который пребывает в состоянии равновесия с жидкостью) над чистым растворителем называется давлением или упругостью насыщенного пара чистого растворителя.

Если в некотором растворителе растворить нелетучее вещество, то равновесное давление паров растворителя при этом понижается, т.к. присутствие какого – либо вещества,  растворенного в этом растворителе, затрудняет переход частиц растворителя в паровую фазу.

Экспериментально доказано, что такое понижение давления паров напрямую зависит от количества растворенного вещества. В 1887 г. Ф.М. Рауль описал количественные закономерности коллигативных свойств растворов.

Первый закон Рауля

Первый закон Рауля заключается в следующем:

Давление пара раствора, содержащего нелетучее растворенное вещество, прямо пропорционально мольной доле растворителя в данном растворе:

p = p0 · χр-ль

p = p0 · nр-ля/(nв-ва + nр-ля),  где

p — давление пара над раствором, Па;

p0 — давление пара над чистым растворителем, Па;

χр-ль — мольная доля растворителя.

nв-ва и nр-ля – соответственно количество растворенного вещества и растворителя, моль.

Иногда Первому закону Рауля дают другую формулировку:

относительное понижение давления насыщенного пара растворителя над раствором равно мольной доле растворенного вещества:

 (p0 – p)/p0 = χв-ва

(p0 – p)/p0 = nв-ва/(nв-ва + nр-ля)

При этом принимаем, что χв-ва + χр-ль= 1

Изотонический коэффициент Вант-Гоффа

Для растворов электролитов данное уравнение приобретает несколько иной вид, в его состав входит изотонический коэффициент i:

p0 – p = Δр

Δp = i · p0 · χв-ва, где

Δp — изменение давления паров раствора по сравнению с чистым растворителем;

χв-ва — мольная доля вещества в растворе

i – изотонический коэффициент.

Изотонический коэффициент (или фактор Вант-Гоффа) — это параметр, не имеющий размерности, который характеризует поведение какого – либо вещества в растворе.

То есть, изотонический коэффициент показывает, разницу содержания частиц в растворе электролита по сравнению с раствором неэлектролита такой же концентрации. Он тесно связан связан с процессом диссоциации, точнее, со степенью диссоциации и выражается следующим выражением:

i = 1+α(n-1), где

n – количество ионов, на которые диссоциирует вещество.

α – степень диссоциации.

Повышение температуры кипения или понижение температуры затвердевания (кристаллизации). Второй закон Рауля

Равновесное давление паров жидкости имеет тенденцию к увеличению с ростом температуры, жидкость начинает кипеть, при уравнивании давления ее паров и внешнего давления.

При наличии нелетучего вещества, давление паров раствора снижается, и раствор будет закипать при более высокой температуре, по сравнению с температурой кипения чистого растворителя.

Температура замерзания жидкости также определяется той температурой, при которой давления паров жидкой и твердой фаз уравниваются.

Ф.М. Рауль доказал, что повышение температуры кипения, так же как и понижение температуры замерзания разбавленных растворов нелетучих веществ, прямо пропорционально моляльной концентрации раствора и не зависит от природы растворённого вещества. Это правило известно как Второй закон Рауля:

ΔTкип = E· mв-ва,

ΔTкрист = K·mв-ва, где

E—эбулиоскопическая константа,

K — криоскопическая константа,

mв-ва — моляльность вещества в растворе.

Растворы электролитов не подчиняются Законам Рауля. Но для учёта всех несоответствий Вант-Гофф предложил ввести в приведённые уравнения поправку в виде изотонического коэффициента i, учитывающего процесс распада на ионы молекул растворённого вещества:

ΔTкип = i·E·mв-ва

ΔTкрист = i·К·mв-ва

Осмотическое давление раствора

Некоторые материалы имеют способность к полупроницаемости, т.е. им свойственно пропускать частицы определенного вида и не пропускать частицы другого вида.

Перемещение молекул растворителя (но не растворенного, в нем вещества), через полупроницаемую мембрану в раствор с большей концентрацией из более разбавленного представляет собой такое явление как осмос.

осмосОСМОС

Представим  два таких раствора, которые разделены полупроницаемой мембраной, как показано на рисунке выше. Растворы стремятся к выравниванию концентраций, поэтому вода будет проникать в раствор, тем самым уменьшая его концентрацию.

Для того, чтобы осмос приостановить, необходимо приложить внешнее давление к  раствору. Такое давление, которое требуется приложить, называется осмотическим давлением.

Осмотическое давление и концентрацию раствора неэлектролита позволяет связать уравнение Вант — Гоффа, которое напоминает  уравнение идеального газа Клапейрона – Менделеева:

π = T,

где C — молярная концентрация раствора, моль/м3,

Читайте также:  Какие химические свойства проявляет вода

R — универсальная газовая постоянная (8,314 Дж/моль·К);

T — абсолютная температура раствора.

Преобразуем уравнение следующим образом:

C = n/V = m/(M·V)

π = т·R·T / M·V или

π·V = T /M

Для растворов электролитов осмотическое давление определяется уравнением, в которое входит изотонический коэффициент:

π` = T ,

где i — изотонический коэффициент раствора.

Для растворов электролитов i > 1, а для растворов неэлектролитов i = 1.

Если полупроницаемой перегородкой разделены два раствора, имеющие одинаковое осмотическое давление, то перемещение растворителя через перегородку отсутствует. Такие растворы называются изотоническими.

Раствор, с меньшим осмотическим давлением, по сравнению с более концентрированным раствором, называют гипотоническим, а раствор с большей концентрацией – гипертоническим.

Источник

После изучения этой темы вы должны:

– иметь представления о следующих понятиях и явлениях:

– осмос, осмотическое давление (закон Вант-Гоффа), его роль.

– закон Рауля о давлении паров растворителя над раствором и изменении температур кипения и замерзания растворов (следствия закона Рауля).

Коллигативные свойства – это свойства, которые не зависят от природы частиц растворенного вещества, а зависят только от концентрации частиц в растворе.

Коллигативными свойствами разбавленных растворов являются:

– скорость диффузии

– осмотическое давление (Закон Вант-Гоффа)

– давление насыщенного пара растворителя над раствором (Закон Рауля)

– температура кипения раствора (1следствие из закона Рауля)

– температура кристаллизации раствора (2 следствие из закона Рауля)

Свойства неэлектролитов

Осмосом называется самопроизвольное перемещение молекул растворителя через полупроницаемую мембрану из раствора меньшей концентрации в раствор большей концентрации. В результате протекания осмоса возникает осмотическое давление раствора. Гипертоническим раствором называют тот раствор, у которого осмотическое давление больше. Гипотоническим раствором – раствор с меньшим осмотическим давлением. Изотоничные растворы – это растворы с одинаковой величиной осмотического давления.

Растительная клетка (С >) (внутриклеточный раствор)

Внешняя среда (С <) (межклеточный раствор)

Н2О Н2О

Вант-Гофф, изучая зависимость осмотического давления от внешних факторов установил, что оно не зависит от природы растворенного вещества, а зависит только от числа частиц в растворе и от температуры:

Росм = СмRT, где Росм [кПа], T [K] – абсолютная температура, R = 8,32 кДж/моль – универсальная газовая постоянная, См – молярная концентрация раствора [моль/л].

Осмотическое давление раствора, содержащего несколько веществ, равно сумме осмотических давлений, вызываемых каждым из них.

Давление насыщенного пара растворителя над раствором (Закон Рауля):

Относительное понижение давления насыщенного пара над раствором прямо пропорционально мольной доле растворенного вещества: где – давление насыщенного пара над чистым растворителем; РА-давление насыщенного пара растворителя над раствором; NB – мольная доля растворенного вещества: , где na, nb – число молей растворителя (а) и растворенного вещества (b).

Набольшее практическое значение получили I, II следствие закона Рауля.

I следствие закона Рауля: Повышение температуры кипения раствора прямо пропорционально молярной концентрации растворенного вещества: Dtкип = Kэб.Сm , где Dtкип = t кип р-ра – t кип н2o, 0С ; Kэб – эбулиоскопическая константа растворителя (Kэб н2о ); Сm- моляльная концентрация растворенного вещества, моль/1000г растворителя.

II следствие закона Рауля: Понижение температуры замерзания раствора прямо пропорционально молярной концентрации растворенного вещества: Dtзам = Kкр.Сm , где Dt = t зам.н2о – t зам р-ра, 0С; Kкр – криоскопическая константа растворителя (Ккр н2о =1,86); Сm- моляльная концентрация растворенного вещества, моль/1000г растворителя.

Росм = См R T Dtкип = Кэб Cm Dtзам = Ккр CmßКоллигативные свойства для молекулярных растворов

Примечание: см. приложение 7 – «Криоскопические константы некоторых растворителей», приложение 8 – «Эбулиоскопические константы некоторых растворителей».

Эти уравнения справедливы только для растворов, в которых отсутствует взаимодействие частиц, т.е. для идеальных растворов. В реальных растворах имеют место межмолекулярные взаимодействия между молекулами вещества и растворителя, которые могут приводить либо к процессам диссоциации, либо к процессам ассоциации молекул. Диссоциация молекул вещества в водном растворе характерна для сильных электролитов. В результате диссоциации число частиц увеличивается.

Доля (i) образовавшихся частиц определяется как отношение общего числа частиц к первоначальному числу молекул. Она зависит от степени диссоциации электролита и от числа частиц, на которые распадается молекула:

i = (n -1)a + 1, i – получил название изотонический коэффициент, n – число частиц (ионов), на которые распадается молекула, a – степень диссоциации (в долях).

Росм = iСМ R Т Dt кип = i Кэб Сm Dtзам = i Ккр СmßКоллигативные свойства для растворов электролитов

Примеры расчетов температур кипения, замерзания, осмотического давления растворов различных концентраций.

Читайте также:  У какого элемента лучше выражены металлические свойства

Пример 1. Вычислить температуру замерзания, кипения раствора этилового спирта с процентной концентрацией (w), равной 40 %.

Решение: Вычислим температуру замерзания раствора исходя из II следствия закона Рауля: Dtзам = Kкр.Сm, однако для решения необходимо перейти от одного вида концентрации к другому:

w [m в-ва, г 100г р-ра] ® Сm[ n молей 1000 г р-ля ]

1. Перейдем от массы вещ-ва (m) к молям (n) через пропорцию:

1 моль С2Н5ОН содержит ——- 46 г

х моль //——//——-//——-//——40 г

или по формуле х(n) = = моль/100р-ра,

где m(с2н5он) = 40г, M(с2н5он) = 46г/моль

2. Перейдем от массы раствора к массе растворителя:

m р-ля = m р-ра – m в-ва = 100 – 40 = 60г р-ля

2. Через пропорцию выразим Сm :

0,87 молей С2Н5ОН содержит в 60 г растворителя

х (Сm) -//—–//—–//—–//——/- 1000 г

х (Сm) = = 14,5 молей/1000г р-ля

4. По формуле Dtзам = Kкр.Сm найдем Dt: Dt = 1,86.14,5 = 26,97 0C

5. Dt = tзам н2о – tзамр-ра Þ tзам р-ра = tзам н2о – Dt = 0 – 26,97 = -26,97 0C – температура замерзания 40 % раствора этилового спирта.

Вычислим температуру кипения раствора исходя из I следствия закона Рауля: Dtкип = Kэб. Сm, Сm = 14,5 моль/1000р-ля (см. выше)

Из формулы найдем Dt: Dt = 0,516 . 14,5 = 7,48 0C

Dt = tкипр-ра – tкип н2о Þ tкип р-ра = tкип н2о + Dtкип = 100 + 7,48 = 107,48 0C- температура кипения 40% раствора этилового спирта.

Пример 2. Вычислить концентрацию физиологического раствора (NaCl) изотоничного с осмотическим давлением крови равное » 800 Кпа. Степень диссоциации NaCl принять за 90%.

Решение: Для растворов электролитов Росм(NaCl ) = i·См·R·T Þ

См = (1)

Условие изотоничности означает, что Росм(NaCl ) = Росм крови = 800 кПа,

i = (n-1)·a + 1= (2 – 1) ·0,9 = 1,9

NaCl Û Na++Cl-, где n = 2, a = 0,9

Подставим найденные значения в формулу (1) См = 0,17 моль/л – концентрация хлорида натрия, которая создает осмотическое давление 800 кПа.

Источник

Коллигативные свойства растворов — это свойства растворов, обусловленные только самопроизвольным движением молекул, то есть они определяются не химическим составом, а числом кинетических единиц — молекул в единице объёма или массы[1]. К таким коллигативным свойствам относятся:

  • Понижение упругости растворителя над раствором,
  • Повышение температуры кипения растворов (в сравнении с чистыми растворителями),
  • Понижение температуры замерзания растворов (в сравнении с чистыми растворителями),
  • Возникновение осмотического давления,
  • Диффузия.

Законы Рауля

Первый закон Рауля

Пар, находящийся в равновесии с жидкостью, называют насыщенным. Давление такого пара над чистым растворителем (p0) называют давлением или упругостью насыщенного пара чистого растворителя.

Франсуа Мари Рауль

Франсуа Мари Рауль

В 1886 (1887) году Ф. М. Рауль сформулировал закон:

Давление пара раствора, содержащего нелетучее растворенное вещество, прямо пропорционально мольной доле растворителя в данном растворе:

p = p0 · χр-ль, где
p — давление пара над раствором, Па;
p0 — давление пара над чистым растворителем;
χр-ль —— мольная доля растворителя.

Для растворов электролитов используют несколько другую форму уравнения, позволяющую добавить в неё изотонический коэффициент:

Δp = i · p0 · χв-ва, где
Δp — собственно изменение давления по сравнению с чистым растворителем;
χв-ва — мольная доля вещества в растворе.

Второй закон Рауля

Также Рауль экспериментально доказал, что

повышение температуры кипения раствора по сравнению с температурой кипения растворителя равно и понижение температуры замерзания раствора по сравнению с аналогичным характеризующей величиной для растворителя прямо пропорциональна моляльности раствора, то есть,

ΔTкип/зам= Kэб/кр · mв-ва, где
Kэб/кр — соответственно эбуллиоскопическая (от лат. ebullire — «кипеть» и др.-греч. σκοπέω — «наблюдаю») и криоскопическая (относится к замерзанию) константы, характерные для данного растворителя;
mв-ва — моляльность вещества в растворе.

Осмотическое давление

Рассмотрим ситуацию, при которой частично проницаемая мембрана (то есть, такая, через которую могут проходить лишь мелкие объекты, например, молекулы растворителя, но не крупные — например, молекулы растворённого вещества) разделяет чистый растворитель и раствор (или два раствора с разными концентрациями). Тогда молекулы растворителя находятся практически в равных физических условиях по обе стороны мембраны, однако в более насыщенном растворе некоего вещества их концентрация, разумеется, меньше, чем в более разбавленном (в котором меньше места в растворе занимают молекулы растворённого вещества). Следовательно, со стороны менее насыщенного раствора через мембрану диффундирует большее число молекул, чем с противоположной стороны. А это значит, что растворитель попросту переходит из менее насыщенного раствора в более насыщенный, разбавляя его (выравнивая концентрации обоих растворов) и создавая давление на мембрану. Процесс этот (он называется осмосом) можно прекратить, оказав определённое давление на более насыщенный раствор (например, при помощи поршня) —— это давление и называется осмотическим давлением.

Читайте также:  Какие бывают свойства продукции

Растворы с одинаковым осмотическим давлением называются изотоническими.

Определить осмотическое давление раствора можно по формуле, полученной в 1886 году Я. Х. Вант-Гоффом:

π = CMв-ва · R · T, где
CMв-ва — молярная концентрация раствора, выраженная в , а не в , как обычно;
R — универсальная газовая постоянная;
T — термодинамическая температура системы.

См. также

  • Осмос

Примечания

  1. Д.А.Фридрихсберг. Курс коллоидной химии. — Ленинград “Химия”, 1984. — С. 368.

Литература

  1. Ершов Ю.А. Общая химия.Биофизическая химия.Химия биогенных элементов. — Издание восьмое,стериотипное. — Москва: Высшая школа, 2010. — 559 с.

Эта страница в последний раз была отредактирована 21 декабря 2020 в 10:28.

Источник

Коллигативные свойства
– это свойства растворов, зависящие от числа частиц растворенного
вещества. К коллигативным свойствам растворов относят:

1) понижение давления насыщенного
пара растворителя над раствором,

2) понижение температуры замерзания
и повышение температуры кипения растворов по сравнению с
температурами замерзания и кипения чистых растворителей.

3) осмотическое давление.

 1
закон Рауля.
Давление
насыщенного пара растворителя над раствором пропорционально мольной
доле растворителя
.

,

где Р – давления насыщенного
пара растворителя над раствором, Па;

Р0
– давления насыщенного
пара над растворителем, Па;


c
(р-ля)
– мольная доля растворителя;


n
(раств.
в-ва) – количество растворенного вещества, моль;


n
(р-ля)
– количество вещества растворителя, моль.

Иногда закон Рауля определяют
следующим образом. Относительное понижение давления насыщенного
пара растворителя над раствором равно мольной доле растворенного
вещества
.

   
или    
,

где
c
(раств.
в-ва) – мольная доля растворенного вещества.

2 закон Рауля.
Понижение температуры замерзания и повышение температуры кипения
растворов по сравнению с таковыми для чистого растворителя
пропорциональны моляльной концентрации растворенного вещества
:

,

где
Dtкип
– повышение температуры кипения раствора,
°С;

Dtзам
– понижение температуры замерзания раствора,
°С;

Кэ
– эбуллиоскопическая константы растворителя, (кг×°С)/моль;

Кк
– криоскопическая константы растворителя, (кг×°С)/моль;

b
– моляльная концентрация, моль/кг;


n
(раств.
в-ва) – количество растворенного вещества, моль;

m(р-ля)
– масса растворителя, кг;

m(раств.
в-ва) – масса растворенного вещества, г;

М(раств.
в-ва) – молярная масса растворенного вещества, г/моль.

Зная температуры кипения и
замерзания чистых растворителей и
Dt
можно рассчитать температуры кипения и замерзания растворов:

tкип.(р-ра)
= tкип.(р-ля)
+ Dtкип.       
tзам.(р-ра)
= tзам.(р-ля)
– Dtзам.

Закон Вант-Гоффа.

Осмотическое давление раствора равно газовому давлению, которое
производило бы растворенное вещество, находясь в газообразном
состоянии и занимая объем, равный объему раствора
.

,

где Росм –
осмотическое давление, кПа;

с
– молярная концентрация растворенного вещества, моль/л;

R
– универсальная газовая
постоянная, 8,314 Дж/(моль×К);

Т
– абсолютная температура, К;

V(р-ра)
– объем раствора, л.

Осмос
– односторонняя диффузия вещества через полупроницаемую мембрану.

Осмотическое давление
– сила, обуславливающая осмос. Оно равно внешнему давлению, при
котором осмос видимо прекращается.

Указанные законы
справедливы для разбавленных растворов неэлектролитов.
Их можно применять и к растворам электролитов, но в этом случае
необходимо вводить изотонический коэффициент Вант-Гоффа (i).
Это
поправочный коэффициент, который учитывает увеличение числа частиц в
растворе электролита из-за диссоциации на ионы.

    
         

Значение изотонического
коэффициента Вант-Гоффа рассчитывают как частное от деления
экспериментальных и теоретических значений осмотического давления,
изменения температур кипения и замерзания растворов и понижения
давления растворителя над раствором:

Пример 1.
Вычислите температуру кристаллизации раствора мочевины, содержащего
5 г мочевины
CH4N2O
в 200 г воды. Криоскопическая константа воды равна 1,86 (кг×°С)/моль.

Решение.

tзам(р-ра)
=
t
зам(р-ля)
– Dtзам
= 0°С
– 0,42°С
= –0,42°С.

Пример 2.
Вычислите температуру замерзания раствора, если он содержит 18,06×1022
молекул неэлектролита и 1000 мл воды. Криоскопическая константа воды
равна 1,86 (кг×°С)/моль.

Решение.

m(H2O)
= V(H2O)
×
r(H2O)
= 1000 мл
×
1 г/мл = 1000 г = 1 кг

tзам(р-ра)
= tзам(р-ля)
– Dtзам
= 0°С
– 0,558°С
= –0,558°С.

Пример 3.
Вычислите массовую долю нафталина С10Н8
в бензольном растворе, если он кипит при температуре 81,45°С.
Эбуллиоскопическая константа бензола равна 2,57 (кг×°С)/моль.
Температура кипения чистого бензола 80,2°С.

Решение.
Допустим, что в растворе содержится 100 г
растворителя (бензола).

М(С10Н8)
= 12
×
10 + 1 ×
8 = 128 г/моль

Dtкип
= tкип(р-ра)
tкип(р-ля)
= 81,45°С
– 80,2°С
= 1,25°С

Л.А. Яковишин

Источник