Какие свойства скалярного произведения
Определение 1
Скалярное произведение векторов называют число, равное произведению дин этих векторов на косинус угла между ними.
Обозначение произведения векторов a→ и b→ имеет вид a→,b→. Преобразуем в формулу:
a→,b→=a→·b→·cosa→,b→^. a→ и b→ обозначают длины векторов, a→,b→^ – обозначение угла между заданными векторами. Если хоть один вектор нулевой, то есть имеет значение 0, то и результат будет равен нулю, a→,b→=0
При умножении вектора самого на себя, получим квадрат его дины:
a→,b→=a→·b→·cosa→,a→^=a→2·cos0=a→2
Определение 2
Скалярное умножение вектора самого на себя называют скалярным квадратом.
Вычисляется по формуле:
a→,b→=a→·b→·cosa→,b→^.
Запись a→,b→=a→·b→·cosa→,b→^=a→·npa→b→=b→·npb→a→ показывает, что npb→a→ – это числовая проекция a→ на b→, npa→a→- проекция b→ на a→ соостветсвенно.
Сформулируем определение произведения для двух векторов:
Скалярное произведение двух векторов a→ на b→ называют произведение длины вектора a→ на проекцию b→ на направление a→ или произведение длины b→ на проекцию a→ соответственно.
Скалярное произведение в координатах
Вычисление скалярного произведения можно производить через координаты векторов в заданной плоскости или в пространстве.
Скаларное произведение двух векторов на плоскости, в трехмерном простарнстве называют сумму координат заданных векторов a→ и b→.
При вычислении на плоскости скаларного произведения заданных векторов a→=(ax,ay), b→=(bx,by) в декартовой системе используют:
a→,b→=ax·bx+ay·by,
для трехмерного пространства применимо выражение:
a→,b→=ax·bx+ay·by+az·bz.
Фактически это является третьим определением скалярного произведения.
Докажем это.
Доказательство 1
Для доказательства используем a→,b→=a→·b→·cosa→,b→^=ax·bx+ay·by для векторов a→=(ax,ay), b→=(bx,by) на декартовой системе.
Следует отложить векторы
OA→=a→=ax,ay и OB→=b→=bx,by.
Тогда длина вектора AB→будет равна AB→=OB→-OA→=b→-a→=(bx-ax,by-ay).
Рассмотрим треугольник OAB.
AB2=OA2+OB2-2·OA·OB·cos(∠AOB) верно , исходя из теоремы косинусов.
По условию видно, что OA=a→, OB=b→, AB=b→-a→, ∠AOB=a→,b→^, значит, формулу нахождения угла между векторами запишем иначе
b→-a→2=a→2+b→2-2·a→·b→·cos(a→,b→^).
Тогда из первого определения следует, что b→-a→2=a→2+b→2-2·(a→,b→), значит (a→,b→)=12·(a→2+b→2-b→-a→2).
Применив формулу вычисления длины векторов, получим:
a→,b→=12·((a2x+ay2)2+(b2x+by2)2-((bx-ax)2+(by-ay)2)2)==12·(a2x+a2y+b2x+b2y-(bx-ax)2-(by-ay)2)==ax·bx+ay·by
Докажем равенства:
(a→,b→)=a→·b→·cos(a→,b→^)==ax·bx+ay·by+az·bz
– соответственно для векторов трехмерного пространства.
Скалярное произведение векторов с координатами говорит о том, что скалярный квадрат вектора равен сумме квадратов его координат в пространстве и на плоскости соответственно. a→=(ax,ay,az), b→=(bx,by,bz) и (a→,a→)=ax2+ay2.
Скалярное произведение и его свойства
Существуют свойства скалярного произведения, которые применимы для a→,b→ и c→:
- коммутативность (a→,b→)=(b→,a→);
- дистрибутивность(a→+b→,c→)=(a→,c→)+(b→,c→), (a→+b→,c→)=(a→,b→)+(a→,c→);
- сочетательное свойство (λ·a→,b→)=λ·(a→,b→),(a→,λ·b→)=λ·(a→,b→), λ – любое число;
- скалярный квадрат всегда больше нуля (a→,a→)≥0, где (a→,a→)=0 в том случае, когда a→ нулевой.
Пример 1
Свойства объяснимы благодаря определению скалярного произведения на плоскости и свойствам при сложении и умножении действительных чисел.
Доказать свойство коммутативности (a→,b→)=(b→,a→). Из определения имеем, что (a→,b→)=ay·by+ay·by и (b→,a→)=bx·ax+by·ay.
По свойству коммутативности равенства ax·bx=bx·ax и ay·by=by·ay верны, значит ax·bx+ay·by=bx·ax+by·ay.
Отсюда следует, что (a→,b→)=(b→,a→). Что и требовалось доказать.
Дистрибутивность справедлива для любых чисел:
(a(1)→+a(2)→+…+a(n)→,b→)=(a(1)→,b→)+(a(2)→,b→)+…+(a(n)→,b→)
и (a→,b(1)→+b(2)→+…+b(n)→)=(a→,b(1)→)+(a→,b(2)→)+…+(a→,b→(n)),
отсюда имеем
(a(1)→+a(2)→+…+a(n)→,b(1)→+b(2)→+…+b(m)→)==(a(1)→,b(1)→)+(a(1)→,b(2)→)+…+(a(1)→,b(m)→)++(a(2)→,b(1)→)+(a(2)→,b(2)→)+…+(a(2)→,b(m)→)+…++(a(n)→,b(1)→)+(a(n)→,b(2)→)+…+(a(n)→,b(m)→)
Скалярное произведение с примерами и решениями
Любая задача такого плана решается с применением свойств и формул, касающихся скалярного произведения:
- (a→,b→)=a→·b→·cos(a→,b→^);
- (a→,b→)=a→·npa→b→=b→·npb→a→;
- (a→,b→)=ax·bx+ay·by или (a→,b→)=ax·bx+ay·by+az·bz;
- (a→,a→)=a→2.
Рассмотрим некоторые примеры решения.
Пример 2
Длина a→ равна 3, длина b→ равна 7. Найти скалярное произведение, если угол имеет 60 градусов.
Решение
По условию имеем все данные, поэтому вычисляем по формуле:
(a→,b→)=a→·b→·cos(a→,b→^)=3·7·cos60°=3·7·12=212
Ответ:(a→,b→)=212.
Пример 3
Заданны векторы a→=(1,-1,2-3), b→=(0,2,2+3). Чему равно скалярной произведение.
Решение
В данном примере рассматривается формула вычисления по координатам, так как они заданы в условии задачи:
(a→,b→)=ax·bx+ay·by+az·bz==1·0+(-1)·2+(2+3)·(2+3)==0-2+(2-9)=-9
Ответ: (a→,b→)=-9
Пример 4
Найти скалярное произведение AB→ и AC→. На координатной плоскости заданы точки A(1,-3), B(5,4), C(1,1).
Решение
Для начала вычисляются координаты векторов, так как по условию даны координаты точек:
AB→=(5-1,4-(-3))=(4,7)AC→=(1-1,1-(-3))=(0,4)
Подставив в формулу с использованием координат, получим:
(AB→,AC→)=4·0+7·4=0+28=28.
Ответ: (AB→,AC→)=28.
Пример 5
Заданы векторы a→=7·m→+3·n→ и b→=5·m→+8·n→, найти их произведение.m→ равен 3 и n→ равен 2 единицам, они перпендикулярные.
Решение
(a→,b→)=(7·m→+3·n→, 5·m→+8·n→). Применив свойство дистрибутивности, получим:
(7·m→+3·n→, 5·m→+8·n→)==(7·m→, 5·m→)+(7·m→, 8·n→)+(3·n→, 5·m→)+(3·n→, 8·n→)
Выносим коэффициент за знак произведения и получим:
(7·m→, 5·m→)+(7·m→, 8·n→)+(3·n→, 5·m→)+(3·n→, 8·n→)==7·5·(m→,m→)+7·8·(m→,n→)+3·5·(n→,m→)+3·8·(n→,n→)==35·(m→,m→)+56·(m→,n→)+15·(n→,m→)+24·(n→,n→)
По свойству коммутативности преобразуем:
35·(m→,m→)+56·(m→,n→)+15·(n→,m→)+24·(n→,n→)==35·(m→,m→)+56·(m→,n→)+15·(m→,n→)+24·(n→,n→)==35·(m→,m→)+71·(m→,n→)+24·(n→,n→)
В итоге получим:
(a→,b→)=35·(m→,m→)+71·(m→,n→)+24·(n→,n→).
Теперь применим формулу для скалярного произведения с заданным по условию углом:
(a→,b→)=35·(m→,m→)+71·(m→,n→)+24·(n→,n→)==35·m→2+71·m→·n→·cos(m→,n→^)+24·n→2==35·32+71·3·2·cosπ2+24·22=411.
Ответ: (a→,b→)=411
Если имеется числовая проекция.
Пример 6
Найти скалярное произведение a→и b→. Вектор a→ имеет координаты a→=(9,3,-3), проекция b→ с координатами (-3,-1,1).
Решение
По условию векторы a→ и проекция b→ противоположно направленные, потому что a→=-13·npa→b→→, значит проекция b→ соответствует длине npa→b→→, при чем со знаком «-»:
npa→b→→=-npa→b→→=-(-3)2+(-1)2+12=-11,
Подставив в формулу, получим выражение:
(a→,b→)=a→·npa→b→→=92+32+(-3)2·(-11)=-33.
Ответ: (a→,b→)=-33.
Задачи при известном скалярном произведении, где необходимо отыскать длину вектора или числовую проекцию.
Пример 7
Какое значение должна принять λ при заданном скалярном произведении a→=(1,0,λ+1) и b→=(λ,1,λ) будет равным -1.
Решение
Из формулы видно, что необходимо найти сумму произведений координат:
(a→,b→)=1·λ+0·1+(λ+1)·λ=λ2+2·λ.
В дано имеем (a→,b→)=-1.
Чтобы найти λ, вычисляем уравнение:
λ2+2·λ=-1, отсюда λ=-1.
Ответ: λ=-1.
Физический смысл скалярного произведения
Механика рассматривает приложение скалярного произведения.
При работе А с постоянной силой F→ перемещаемое тело из точки M в N можно найти произведение длин векторов F→ и MN→ с косинусом угла между ними, значит работа равна произведению векторов силы и перемещения:
A=(F→,MN→).
Пример 8
Перемещение материальной точки на 3 метра под действием силы равной 5 ньтонов направлено под углом 45 градусов относительно оси. Найти A.
Решение
Так как работа – это произведение вектора силы на перемещение, значит, исходя из условия F→=5, S→=3, (F→,S→^)=45°, получим A=(F→,S→)=F→·S→·cos(F→,S→^)=5·3·cos(45°)=1522.
Ответ: A=1522.
Пример 9
Материальная точка, перемещаясь из M(2,-1,-3) в N(5,3λ-2,4) под силой F→=(3,1,2), совершила работа равную 13 Дж. Вычислить длину перемещения.
Решение
При заданных координатах вектора MN→ имеем MN→=(5-2, 3λ-2-(-1), 4-(-3))=(3, 3λ-1,7).
По формуле нахождения работы с векторами F→=(3,1,2) и MN→=(3, 3λ-1,7) получим A=(F⇒, MN→)=3·3+1·(3λ-1)+2·7=22+3λ.
По условию дано, что A=13Дж, значит 22+3λ=13. Отсюда следует λ=-3, значит и MN→=(3,3λ-1,7)=(3,-10,7).
Чтобы найти длину перемещения MN→ , применим формулу и подставим значения:
MN→=32+(-10)2+72=158.
Ответ: 158.
Источник
Скалярное произведение векторов равно произведению
Скаля́рное произведе́ние (иногда называемое внутренним произведением) — операция над двумя векторами, результатом которой является скаляр, то есть число, не зависящее от выбора системы координат.
Обычно для скалярного произведения векторов и используется одно из следующих обозначений.
или просто
или (обозначение Дирака, применяемое в квантовой механике для векторов состояния[1]):
В простейшем случае обычного пространства скалярное произведение ненулевых векторов и определяется как произведение длин этих векторов на косинус угла между ними[2]:
Равносильное определение: скалярное произведение есть произведение длины проекции первого вектора на второй и длины второго вектора (см. рисунок). Если хотя бы один из векторов нулевой, то произведение считается равным нулю[3].
У понятия скалярного произведения существует также большое количество обобщений для различных векторных пространств, то есть для множеств векторов с операциями сложения и умножения на скаляры[⇨]. Данное выше геометрическое определение скалярного произведения в общем случае непригодно, так как неясно, что подразумевается под длинами векторов и величиной угла между ними. Поэтому в современной математике используется обратный подход: аксиоматически определяется скалярное произведение, а уже через него — длины и углы[4]. В частности, скалярное произведение определяется для комплексных векторов, многомерных и бесконечномерных пространств, в тензорной алгебре.
Скалярное произведение и его обобщения играют чрезвычайно большую роль в векторной алгебре, теории многообразий, механике и физике. Например, работа силы при механическом перемещении равна скалярному произведения вектора силы на вектор перемещения[5].
Определение[править | править код]
Будем говорить, что в вещественном или комплексном векторном пространстве определено скалярное произведение, если каждой паре векторов из поставлено в соответствие число , удовлетворяющее следующим аксиомам.
- Для любых трёх элементов пространства и любых чисел справедливо равенство: (линейность скалярного произведения по первому аргументу).
- Для любых справедливо равенство , где черта означает комплексное сопряжение.
- Для любого имеем: , причем только при (положительная определённость и невырожденность скалярного произведения соответственно).
Заметим, что из аксиомы 2 следует, что — вещественное число. Поэтому аксиома 3 имеет смысл, несмотря на комплексные (в общем случае) значения скалярного произведения. Если аксиома 3 не выполняется, то произведение называется индефинитным или неопределённым.
Если не только при , то произведение называется квазискалярным.[6]
Определение в евклидовом пространстве[править | править код]
В -мерном вещественном евклидовом пространстве векторы определяются своими координатами — наборами вещественных чисел в ортонормированном базисе. Определить скалярное произведение векторов можно так[4]:
Проверка показывает, что все три аксиомы выполнены.
Например, скалярное произведение векторов и будет вычислено так:
Для комплексных векторов определим аналогично[7]:
.
Пример (для ):
Связанные определения[править | править код]
В современном аксиоматическом подходе уже на основе понятия скалярного произведения векторов вводятся следующие производные понятия[8]:
Длина вектора, под которой обычно понимается его евклидова норма:
(термин ‘длина’ обычно применяется к конечномерным векторам, однако в случае вычисления длины криволинейного пути часто используется и в случае бесконечномерных пространств).
Углом между двумя ненулевыми векторами евклидова пространства (в частности, евклидовой плоскости) называется число, косинус которого равен отношению скалярного произведения этих векторов к произведению их длин (норм):
Данные определения позволяют сохранить формулу: и в общем случае. Корректность формулы для косинуса гарантирует неравенство Коши — Буняковского[9]:
Для любых элементов векторного пространства со скалярным произведением выполняется неравенство:
В случае, если пространство является псевдоевклидовым, понятие угла определяется лишь для векторов, не содержащих изотропных прямых внутри образованного векторами сектора. Сам угол при этом вводится как число, гиперболический косинус которого равен отношению модуля скалярного произведения этих векторов к произведению их длин (норм):
- Ортогональными (перпендикулярными) называются векторы, скалярное произведение которых равно нулю. Это определение применимо к любым пространствам с положительно определённым скалярным произведением. Например, ортогональные многочлены на самом деле ортогональны (в смысле этого определения) друг другу в некотором гильбертовом пространстве.
- Пространство (вещественное или комплексное) с положительно определённым скалярным произведением называется предгильбертовым пространством.
- При этом конечномерное вещественное пространство с положительно определённым скалярным произведением называется также евклидовым, а комплексное — эрмитовым или унитарным пространством.
- Случай, когда скалярное произведение не является знакоопределённым, приводит к т. н. пространствам с индефинитной метрикой. Скалярное произведение в таких пространствах уже не порождает нормы (и она обычно вводится дополнительно). Конечномерное вещественное пространство с индефинитной метрикой называется псевдоевклидовым (важнейшим частным случаем такого пространства является пространство Минковского). Среди бесконечномерных пространств с индефинитной метрикой важную роль играют пространства Понтрягина и пространства Крейна.
Свойства[править | править код]
История[править | править код]
Скалярное произведение было введено У. Гамильтоном в 1846 году[10] одновременно с векторным произведением в связи с кватернионами — соответственно, как скалярная и векторная часть произведения двух кватернионов, скалярная часть которых равна нулю[11].
Вариации и обобщения[править | править код]
В пространстве измеримых интегрируемых с квадратами на некоторой области Ω вещественных или комплексных функций можно ввести положительно определённое скалярное произведение:
При использовании неортонормированных базисов скалярное произведение выражается через компоненты векторов с участием метрического тензора[12]:
При этом сама метрика (говоря точнее, её представление в данном базисе) так связана со скалярными произведениями базисных векторов :
Аналогичные конструкции скалярного произведения можно вводить и на бесконечномерных пространствах, например, на пространствах функций:
где К — положительно определённая, в первом случае симметричная относительно перестановки аргументов (при комплексных x — эрмитова) функция (если нужно иметь обычное симметричное положительно определённое скалярное произведение).
Простейшим обобщением конечномерного скалярного произведения в тензорной алгебре является свёртка по повторяющимся индексам.
См. также[править | править код]
- Гильбертово пространство
- Векторное произведение
- Внешнее произведение
- Псевдоскалярное произведение
- Смешанное произведение
Примечания[править | править код]
- ↑ Hall B. C. Quantum Theory for Mathematicians. — NY: Springer Science & Business Media, 2013. — xvi + 553 p. — (Graduate Texts in Mathematics. Vol. 267). — ISBN 978-1-4614-7115-8. — P. 85.
- ↑ Имеется в виду наименьший угол между векторами, не превосходящий
- ↑ Векторная алгебра // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1977. — Т. 1. — С. 634.
- ↑ 1 2 Гельфанд, 1971, с. 30—31.
- ↑ Тарг С. М. Работа силы // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Большая Российская энциклопедия, 1994. — Т. 4. — С. 193—194. — 704 с. — ISBN 5-85270-087-8.
- ↑ Кудрявцев Л. Д. Математический анализ. II том. — М., Высшая школа, 1970. — с. 316
- ↑ Гельфанд, 1971, с. 86.
- ↑ Гельфанд, 1971, с. 34.
- ↑ §9.5. Линейные пространства со скалярным произведением: евклидовы и унитарные
- ↑ Crowe M. J. A History of Vector Analysis – The Evolution of the Idea of a Vectorial System. — Courier Dover Publications, 1994. — С. 32. — 270 с. — ISBN 0486679101.
- ↑ Hamilton W. R. On Quaternions; or on a New System of Imaginaries in Algebra // Philosophical Magazine. 3rd Series. — London, 1846. — Т. 29. — С. 30.
- ↑ Гельфанд, 1971, с. 240.
Литература[править | править код]
- Гельфанд И. М. Лекции по линейной алгебре. — 4-е изд. — М.: Наука, 1971. — 272 с.
Ссылки[править | править код]
- Емелин А. Скалярное произведение векторов. Дата обращения 14 ноября 2019.
Источник
Скалярным произведением двух ненулевых векторов называется число, равное произведению длин этих векторов на косинус угла между ними. Если хотя бы один из двух векторов нулевой, то угол между ними не определён, а скалярное произведение считается равным нулю. Скалярное произведение векторов и обозначается
(1.7)
где — величина угла между векторами и .
Скалярное произведение вектора самого на себя называется скалярным квадратам.
Пример 1.13. Найти скалярные произведения , если известно, что , угол между векторами и равен , , а вектор образует с вектором угол (рис.1.36).
Решение. По определению находим
Так как векторы и противоположно направленные, то угол между векторами и равен . Поэтому
Угол между противоположно направленными векторами и равен , поэтому
Вектор ортогонален вектору (и вектору ), так как величина угла между ними равна , а . Поэтому .
Угол между векторами и равен , поэтому .
Геометрический смысл скалярного произведения векторов
Рассмотрим ортогональную проекцию ненулевого вектора на ось, задаваемую вектором (рис. 1.37). Согласно пункту 1 замечаний 1.4, алгебраическое значение длины проекции равно произведению длины вектора на косинус угла между векторами и :
Умножив обе части этого равенства на , получим . Сравнивая с (1.7), делаем вывод: скалярное произведение ненулевых векторов и равно произведению длины вектора на алгебраическое значение длины ортогональной проекции вектора на ось, задаваемую вектором :
(1.8)
Эта формула остается справедливой и в случае , так как .
Аналогично (см. пункт 2 замечаний 1.4) доказывается формула и делается вывод о том, что скалярное произведение ненулевых векторов и равно произведению длины вектора на алгебраическое значение длины ортогональной проекции вектора на ось, задаваемую вектором .
Алгебраические свойства скалярного произведения
Для любых векторов и любого действительного числа :
1. ;
2. ;
3. ;
4. , причем из равенства следует, что .
Первое свойство определяет симметричность скалярного произведения, второе и третье — аддитивность и однородность по первому множителю, четвертое свойство — неотрицательность скалярного квадрата. Эти свойства аналогичны свойствам произведения чисел: первое свойство соответствует закону коммутативности умножения чисел, второе — закону дистрибутивности умножения по отношению к сложению, третье — закону ассоциативности умножения. Поэтому рассматриваемая операция и называется произведением векторов. Поскольку ее результатом является число (скаляр), то такое произведение векторов называется скалярным.
Свойства 1 и 4 следуют непосредственно из определения. Докажем, например, аддитивность скалярного произведения по первому множителю (свойство 2): . Если вектор — нулевой, то все скалярные произведения равны нулю по определению, т.е. для имеем верное равенство. Пусть . Учитывая, что проекция суммы векторов равна сумме проекций (то же относится и к алгебраическим значениям длин ортогональных проекций), можно записать .
Умножая обе части на , получаем .
Учитывая (1.8), последнее равенство равносильно , что и требовалось доказать. Однородность скалярного произведения по первому множителю (свойство 3) доказывается аналогично, используя соответствующее свойство ортогональных проекций векторов.
Замечания 1.9
1. Свойства аддитивности и однородности скалярного произведения означают линейность скалярного произведения по первому множителю:
для любых векторов и любых действительных чисел и .
2. В силу коммутативности скалярное произведение линейно и по второму множителю, т.е. линейно по любому множителю.
3. Для любых векторов справедливо неравенство Коши — Буняковского
Это неравенство выражает условие ограниченности косинуса угла между ненулевыми векторами. В самом деле, поскольку , то из (1.7)
и, следовательно, справедливо доказываемое неравенство. Заметим, что неравенство Коши — Буняковского выполняется как равенство только для коллинеарных векторов, т.е. при .
4. Из неравенства Коши — Буняковского следует неравенство треугольника (длина стороны треугольника меньше суммы длин двух других его сторон и больше модуля их разности):
Докажем последнее неравенство . Используя неравенство , которое следует из неравенства Коши — Буняковского, оценим скалярный квадрат суммы векторов:
т.е. , что равносильно доказываемому неравенству.
Геометрические свойства скалярного произведения
С помощью скалярного произведения можно находить основные метрические величины: длины отрезков (или, что то же самое, длины векторов) и величины углов.
1. Длина вектора а находится по формуле: .
2. Величина угла между ненулевыми векторами находится по формуле:
Отсюда заключаем, что:
— ненулевые векторы и перпендикулярны тогда и только тогда, когда их скалярное произведение равно нулю: ;
— угол между ненулевыми векторами и острый тогда и только тогда, когда их скалярное произведение положительно;
— угол между ненулевыми векторами и тупой тогда и только тогда, когда их скалярное произведение отрицательно.
3. Алгебраическое значение длины ортогональной проекции вектора на ось, задаваемую вектором .
4. Ортогональная проекция вектора на ось, задаваемую вектором .
Если ось задается единичным вектором , то .
Свойства 1 и 2 следуют непосредственно из определения скалярного произведения. Третье и четвертое свойства вытекают из геометрического смысла скалярного произведения (см. (1.8)) и п.1 замечаний 1.4.
Пример 1.14. Доказать тождества
Решение. Используя коммутативность и линейность скалярного произведения, запишем равенства
Заменяя скалярные квадраты векторов квадратами их длин (см. геометрическое свойство 1), получаем
Если из первого равенства вычесть второе, то придем к тождеству (а). Если же сложить оба равенства, то получим тождество (б).
Доказанные равенства выражают следующие свойства параллелограмма, построенного на векторах и ( и — его диагонали):
а) скалярное произведение векторов равно одной четвертой от разности квадратов диагоналей параллелограмма, построенного на множителях;
б) сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон.
Продолжение
Выражение скалярного произведения через координаты векторов
Математический форум (помощь с решением задач, обсуждение вопросов по математике).
Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.
Источник