Какие свойства сложения были использованы

Какие свойства сложения были использованы thumbnail
  • Ответы к учебнику для 5 класса. А. Г. Мерзляк
  • Переход на главную страницу сайта

Вопросы к параграфу

1. Как в равенстве а + b = с называют число а? Число b? Число с? Выражение а + b?

  • a — слагаемое
  • b — слагаемое
  • c — сумма
  • a+b — сумма

2. Сформулируйте переместительное свойство сложения.

От перестановки слагаемых сумма не меняется.

3. Как записывают в буквенном виде переместительное свойство сложения?

а + b = b + а

4. Сформулируйте сочетательное свойство сложения.

Чтобы к сумме двух чисел прибавить третье число, можно к первому числу прибавить сумму второго и третьего.

5. Как записывают в буквенном виде сочетательное свойство сложения?

(a + b) + c = a + (b + c)

6. Каким свойством обладает число 0 при сложении?

Если одно из двух слагаемых равно 0, то сумма равна другому слагаемому.

Решаем устно

1. Вычислите:

  1. 23 + 17 = 40
  2. 230 + 17 = 247
  3. 23 + 170 = 193
  4. 30 — 13 = 17
  5. 300 — 130 = 170
  6. 300 — 13 = 287
  7. 12 • 4 = 48
  8. 12 • 40 = 480
  9. 120 • 40 = 4800
  10. 72 : 8 = 9
  11. 720 : 8 = 90
  12. 720 : 80 = 9

2. Назовите два последовательных натуральных числа, сумма которых равна 91.

Любые два последовательных натуральных числа различаются между собой на 1. 

1) 90 — 1 = 90 — сумма искомых натуральных чисел без различающих их 1.

2) 90 : 2 = 45 — наименьшее из искомых натуральных чисел.

3) 45 + 1 = 46 — наибольшее из искомых натуральных чисел.

Ответ: 45 и 46.

3. Назовите двузначное число, сумма цифр которого равна наибольшему однозначному числу. Сколько существует таких чисел?

Наибольшее двузначное число — 9.

Значит условию удовлетворяют следующие двузначные числа: 18, 81, 27, 72, 36, 63, 45, 54, 90. Значит существует 9 таких чисел.

Упражнения

167. Найдите сумму:

Мерзляк 5 класс - § 7. Сложение натуральных чисел. Свойства сложения

168. Выполните сложение:

Мерзляк 5 класс - § 7. Сложение натуральных чисел. Свойства сложения

169. Аня и Коля решали задачи. Коля решил 26 задач, а Аня — на 16 задач больше. Сколько задач решили Коля и Аня вместе?

Мерзляк 5 класс - § 7. Сложение натуральных чисел. Свойства сложения

1) 26 + 16 = 42 (задачи) — решила Аня.

2) 42 + 26 = 68 (задач) — решили Коля и Аня вместе.

Ответ: 68 задач.

170. Миша купил книгу за 170 р., что на 12 р. меньше, чем заплатил Петя за свою новую книгу. Сколько рублей заплатили за книги Миша и Петя вместе?

Мерзляк 5 класс - § 7. Сложение натуральных чисел. Свойства сложения

1) 170 + 12 = 182 (рубля) — заплатил за книгу Петя.

2) 170 + 182 = 352 (рубля) — заплатили за свои книги Петя и Миша вместе.

Ответ: 352 рубля.

171. Выполните сложение, выбирая удобный порядок вычислений:

  1. (42 + 37) + 58 = (42 + 58) + 37 = 100 + 37 = 137
  2. 29 + (98 + 71) = (29 + 71) + 98 = 100 + 98 = 198
  3. (215 + 818) + 785 = (215 + 785) + 818 = 1 000 + 818 = 1 818
  4. 634 + (458 + 166) = (634 + 166) + 458 = 800 + 458 = 1 258
  5. 183 + 732 + 268 + 317 = (183 + 317) + (732 + 268) = 500 + 1 000 = 1 500
  6. 339 + 584 + 416 + 661 = (339 + 661) + (584 + 416) = 1 000 + 1 000 = 2 000
  7. (15 083 + 1 458) + (4 917 + 6 542) = (15 083 + 4 917) + (1 458 + 6 542) = 20 000+ 8 000 = 28 000
  8. (1 654 + 18 135) + (7 346 + 11 865) = (1 654 + 7 346) + (18 135 + 11 865) = 9 000 + 30 000 = 39 000

172. Используйте свойства сложения при вычислении суммы:

  1. (146 + 322) + 178 (322 + 178) + 146 = 500 + 146 = 646
  2. 784 + (179 + 116) = (784 + 116) + 179 = 900 + 179 = 1 079
  3. 625 + 481 + 75 + 219 = (625 + 75) + (481 + 219) = 700 + 700 = 1 400
  4. 427 + 88 + 273 + 112 = (427 + 273) + (88 + 112) = 700 + 200 = 900

173. Стена Московского Кремля состоит из трёх участков: южного, восточного и западного. Длина южного участка составляет 685 м, что на 45 м меньше длины восточного. Длина западного участка на 135 м больше длины южного. Сколько метров составляет общая длина стен Московского Кремля?

Мерзляк 5 класс - § 7. Сложение натуральных чисел. Свойства сложения

1) 685 + 45 = 730 (метров) — длина восточной стены Кремля.

2) 685 + 135 = 820 (метров) — длина Западной стены Кремля.

3) 685 + 730 + 820 = 2 235 (метров) — общая длина стен Кремля.

Ответ: 2 235 метров.

174. У Иры в коллекции есть 26 марок, посвящённых историческим событиям, а также марки, посвящённые архитектуре и спорту. Марок по архитектуре у неё на 15 больше, чем по истории, и на 14 меньше, чем на спортивную тему. Сколько марок в коллекции у Иры?

Мерзляк 5 класс - § 7. Сложение натуральных чисел. Свойства сложения

1) 26 + 15 = 41 (марки) — по архитектуре.

2) 41 + 14 = 55 (марок) — посвящённых спорту.

3) 26 + 41 + 55 = 122 (марки) — всего в коллекции Иры.

Ответ: 122 марки.

175. На одной полке было 17 книг, на второй — на 18 книг больше, чем на первой, а на третьей — на 6 книг больше, чем на первой и второй вместе. Сколько всего книг было на трёх полках?

Мерзляк 5 класс - § 7. Сложение натуральных чисел. Свойства сложения

1) 17 + 18 = 35 (книг) — на второй полке.

2) 35 + 17 = 52 (книги) — на первой и второй полке вместе.

3) 52 + 6 = 58 (книг) — на третьей полке.

4) 52 + 58 = 110 (книг) всего на трёх полках.

Ответ: 110 книг.

176. Отправившись в велосипедный поход, группа туристов в первый день проехала 42 км, что на 12 км меньше, чем во второй, а в третий — на 4 км больше, чем в первый и второй вместе. Сколько километров проехали туристы за три дня?

Мерзляк 5 класс - § 7. Сложение натуральных чисел. Свойства сложения

1) 42 + 12 = 54 (км) — туристы проехали во второй день.

2) 42 + 54 = 96 (км) — туристы проехали всего за первый и второй день.

3) 96 + 4 = 100 (км) — туристы проехали в третий день.

4) 96 + 100 = 196 (км) — туристы проехали за три дня всего.

Ответ: 196 км.

177. Упростите выражение:

  1. (74 + x) + 38 = (74 + 38) + x = 112 + x
  2. 238 + (а + 416) = (238 + 416) + a = 654 + a
  3. у + 324 + 546 = y + (325 + 546) = y + 870
  4. 2 753 + m + 4 199 = (2 753 + 4 199) + m = 6 952 + m
  5. (b + 457) + (143 + 872) = b + (457 + 143) + 872 = b + 600 + 872 = b + 1 472
  6. (2 235 + с) + (4 671 + 1 765) = (2 235 + 1 765) + c + 4 671 = (4 000 + 4 671) + c = 8 671 + c
  7. (1 696 + 3 593) + (р + 1 304) = (1 696 + 1 304) + 3 593 + p = (3 000 + 3 593) + p = 6 593 + p
  8. (5 432 + 8 951) + (4 568 + а + 1 049) = (5 432 + 4 568) + (8 951 + 1 049) + a = (10 000 + 10 000) + a = 20 000 + a

178. Упростите выражение:

  1. (56 + а) + 14 = (56 + 14) + a = 70 + a
  2. 342 + (b + 58) = (342 + 58) + b = 400 + b
  3. 805 + х + 195 = (805 + 195) + x = 1 000 + x
  4. m + 4 563 + 1 837 = m + (4 563 + 1 837) = m + 6 400

179. Дядя Фёдор выехал из города в Простоквашино в 15 ч 40 мин и потратил на дорогу 3 ч 50 мин. В котором часу дядя Фёдор приехал в Простоквашино?

1) 15 ч 40 мин + 3 ч 50 мин = (15 ч + 3 ч) + (40 мин + 50 мин) = 18 ч + 90 мин = 18 ч + (60 мин + 30 мин) = (18 ч + 1 ч) + 30 мин = 19 ч 30 мин

Ответ: дядя Фёдор приехал в Простоквашино в 19 часов 30 минут.

180. Поезд отправляется от станции А в 9 ч 57 мин и прибывает на станцию В через 2 ч 36 мин. В котором часу поезд прибывает на станцию В?

1) 9 ч 57 мин + 2 ч 36 мин = (9 ч + 2 ч) + ( 57 мин + 36 мин) = 11 ч + 93 мин = 11 ч + (60 мин + 33 мин) = (11 ч + 1 ч) + 33 мин = 12 ч 33 мин

Ответ: поезд прибывает на станцию В в 12 часов 33 минуты.

181. Найди:

  1. Как изменится сумма, если одно из слагаемых увеличить на 12? Сумма увеличится на 12.
  2. Как изменится сумма, если одно из слагаемых увеличить на 23, а второе — на 17? Сумма увеличится на 40 (23 + 17 = 40).
  3. Как изменится сумма, если одно из слагаемых уменьшить на 34? Сумма уменьшится на 34.
  4. Как изменится сумма, если одно из слагаемых уменьшить на 16, а второе — на 9? Сумма уменьшится на 25 (16 + 9 = 25).
  5. Как изменится сумма, если одно из слагаемых увеличить на 28, а второе уменьшить на 15? Сумма увеличится на 13 (28 — 15 = 13).
  6. Одно из слагаемых увеличили на 3. На сколько надо увеличить второе слагаемое, чтобы сумма увеличилась на 14? Второе слагаемое надо увеличить на 11 (14 — 3 = 11).
  7. Одно из слагаемых увеличили на 8. Как надо изменить второе слагаемое, чтобы сумма:

    • а) увеличилась на 3 — Надо второе слагаемое уменьшить на 5 (8 — 5 = 3).
    • б) уменьшилась на 5 — Надо второе слагаемое уменьшить на 13 (13 — 8 = 5)

182. Найдите сумму:

  1. 76 м 39 см + 41 м 58 см = (76 м + 41 м) + (39 см + 58 см) = 117 м + 97 см = 117 м 97 см
  2. 4 км 238 м + 3 км 474 м = (4 км + 3 км) + (238 м + 474 м) = 7 км + 712 м = 7 км 712 м
  3. 64 м 86 см + 27 м 45 см = (64 м + 27 м) + (86 см + 45 см) = 91 м + 131 см = 91 м + (100 см + 31 см) = (91 м + 1 м) + 31 см = 92 м 31 см
  4. 16 км 527 м + 37 км 783 м = (16 км + 37 км) + (6 527 м + 783 м) = 53 км + 1 310 м = 53 км + (1 000 м + 310 м) = (53 км + 1 км) + 310 м = 54 км 310 м
  5. 12 ч 24 мин + 9 ч 18 мин = (12 ч + 9 ч) + (24 мин + 18 мин) = 21 ч + 42 мин = 21 ч 42 мин
  6. 35 мин 17 с + 16 мин 35 с = (35 мин + 16 мин) + (17 с + 35 с) = 51 мин + 52 с = 51 мин 52 с
  7. 18 ч 42 мин + 14 ч 29 мин = (18 ч + 14 ч) + (42 мин + 29 мин) = 32 ч + 71 мин = 32 ч + (60 мин + 11 мин) = (32 ч + 1 ч) + 11 мин = 33 ч 11 мин
  8. 53 мин 32 с + 44 мин 56 с = (53 мин + 44 мин) + (32 с + 56 с) = 97 мин + 88 с = (60 мин + 37 мин) + (60 с + 28 с) = 1 ч + (37 мин + 1 мин) + 28 с = 1 ч 38 мин 28 с

183. Найдите сумму:

  1. 4 дм 6 см + 5 дм 8 см = (4 дм + 5 дм) + (6 см + 8 см) = 9 дм + 14 см = 9 дм + (10 см + 4 см) = (9 дм + 1 дм) + 4 см = 10 дм 4 см
  2. 8 м 5 см + 6 м 96 см = (8 м + 6 м) + (5 см + 96 см) = 14 м + 101 см = 14 м + (100 см + 1 см) = (14 м + 1 м) + 1 см = 15 м 1 см
  3. 12 км 29 м + 24 км 92 м = (12 км + 24 км) + (29 м + 92 м) = 36 км 121 м
  4. 2 т 4 ц 56 кг + 9 т 6 ц 48 кг = (2 т + 9 т) + (4 ц + 6 ц) + (56 кг + 48 кг) = 11 т + 10 ц +104 кг = (11 т + 1 т) + (100 кг + 4 кг) = 12 т + 1 ц + 4 кг = 12 т 1 ц 4 кг
  5. 3 ч 48 мин + 2 ч 26 мин = (3 ч + 2 ч) + (48 мин + 26 мин) = 5 ч + 74 мин = 5 ч + (60 мин + 14 мин) = (5 ч + 1 ч) + 14 мин = 6 ч 14 мин
  6. 25 мин 17 с + 7 мин 54 с = (25 мин + 7 мин) + (17 с + 54 с) =32 мин + 71 с = 32 мин + (60 с + 11 с) = (32 мин + 1 мин) + 11 с = 33 мин + 11 с

184. Вместо звёздочек поставьте цифры так, чтобы сложение было выполнено верно:

Мерзляк 5 класс - § 7. Сложение натуральных чисел. Свойства сложения

185. Вместо звёздочек поставьте цифры так, чтобы сложение было выполнено верно:

Мерзляк 5 класс - § 7. Сложение натуральных чисел. Свойства сложения

186. Не выполняя вычислений, расположите данные суммы в порядке возрастания:

  1. 129 + 288
  2. 288 + 659
  3. 782 + 659
  4. 782 + 943
  5. 943 + 1 105
  6. 1 105 + 2 563

187. Найдите сумму наиболее удобным способом:

1) 1 + 2 + 3 + … + 9 + 10

1 + 2 + 3 + … + 9 + 10 = (1 + 9) + (2 + 8) + (3 + 7) + (4 + 6) + 5 + 10 = 10 + 10 + 10 + 10 + 5 + 10 = 10 • 4 + 5 + 10 = 40 + 5 + 10 = 55

Комментарий: В данном примере надо сложить 11 чисел. из них:

  • есть один десяток
  • четыре пары образуют десяток
  • число 5

В результате получаем 5 десятков плюс 5, то есть число 55.

2) 1 + 2 + 3 + … + 99 + 100

1 + 2 + 3 + … + 99 + 100 = (1 + 99) + (2 + 98) + (3 + 97) + … + (49 + 51) + 50 + 100 = 100 • 49 + 50 + 100 = 4900 + 50 + 100 = 5 500.

188. Найди:

1) На сколько сумма 1 + 3 + 5 + … + 99 меньше, чем сумма 2 + 4 + 6 + … + 100?

1) 1 + 3 + 5 + … + 99 = (1 + 99) + (3 + 97) + (5 + 95) + … + (49 + 51) = 100 • 25 = 2 500 — слагаемыми являются только нечётные числа, а от 1 до 49 их 25 штук.

2) 2 + 4 + 6 + … + 100 = (2 + 98) + (4 + 96) + (6 + 94) + … + (48 + 52) + 50 + 100 = 100 • 24 + 50 + 100 = 2 400 + 50 + 100 = 2 550 — слагаемыми являются только нечётные числа, а их 24 пары по 100 плюс число 50 плюс число 100.

3) 2 550 — 2 500 = 50

Ответ: на 50.

2) Какая из сумм 1 + 3 + 5 + … + 2 001 и 2 + 4 + 6 + … + 2 000 больше и на сколько?

1) 1 + 3 + 5 + … + 2 001 = (1 + 1 999) + (3 + 1997) + (5 + 1995) + … + (999 + 1 001) + 2 001 = 2 000 • 500 + 2 001 = 1 000 000 + 2 001 = 1 002 001

2) 2 + 4+ 6 + … + 2 000 = (2 + 1998) + (4 + 1996) + (6 + 1994) + … + (998 + 1 002) + 1 000 + 2 000 = 2 000 • 490 + 1 000 + 2 000 = 2 000 + 500 + 1 000 = 1 000 000 + 1 000 = 1 001 000

3) 1 002 001 — 1 001 000 = 1 001

Ответ: сумма 1 + 3 + 5 + … + 2 001 больше суммы 2 + 4 + 6 + … + 2 000 на 1 001.

189. В записи 4 4 4 4 4 4 4 4 поставьте между некоторыми цифрами знак «+» так, чтобы получилось выражение, значение которого равно 500.

444 + 44 + 4 + 4 + 4 = (444 + 44) + (4 + 4 + 4) = 488 + 12 = 500

Ответ: 444 + 44 + 4 + 4 + 4

190. Замените звёздочки числами так, чтобы сумма любых трёх соседних чисел была равна 20:  7,  *,  *,  *,  *,  *,  *,  9.

7, 9 , 4, 7, 9, 4, 7, 9

7 + 9 + 5 = 20; 9 + 4 + 7 = 20; 4 + 7 + 9 = 20 и т.д.

Ответ: 7, 9 , 4, 7, 9, 4, 7, 9.

191. Слава разрезал проволоку на кусочки и составил фигуру, изображённую на рисунке 65. Мог ли Слава разрезать эту же проволоку так, чтобы составить фигуру, изображённую на рисунке 66?

Мерзляк 5 класс - § 7. Сложение натуральных чисел. Свойства сложения

Посчитаем, сколько проволоки Слава потратил на составление первой фигуры:

  • 15 кусочков по 1 см
  • 12 кусочков по 2 см

1) 15 • 1 + 12 • 2 = 15 + 24 = 39 (см) — проволоки использовано на первую фигуру.

Посчитаем, сколько проволоки Славе потребуется для составления второй фигуры:

  • 12 кусочков по 3 см
  • 12 кусочков по 1 см

2) 12 • 3 + 12 • 1 = 36 + 12 = 48 (см) — проволоки потребуется для второй фигуры.

3) 39 < 48, значит проволоки с первой фигуры не хватит для изготовления второй фигуры.

Ответ: нет, длины проволоки, использованной для первой фигуры, не хватит для изготовления второй фигуры.

Упражнения для повторения

192. Отметьте на координатном луче натуральные числа, которые больше 6, но меньше 12.

Мерзляк 5 класс - § 7. Сложение натуральных чисел. Свойства сложения

193. Запишите все шестизначные числа, которые больше 999 888 и оканчиваются цифрой 5.

  • 999 895
  • 999 905
  • 999 915
  • 999 925
  • 999 935
  • 999 945
  • 999 955
  • 999 965
  • 999 975
  • 999 985
  • 999 995

194. Скороход прошёл 24 км за 4 ч. На обратном пути он увеличил скорость на 2 км/ч. Сколько времени он потратил на обратный путь?

Мерзляк 5 класс - § 7. Сложение натуральных чисел. Свойства сложения

1) 24 : 4 = 6 (км/ч) — скорость движения скорохода по пути туда.

2) 6 + 2 = 8 (км/ч) — скорость движения скорохода по пути обратно.

3) 24 : 8 = 3 (часа) — скороход потратил на обратный путь.

Ответ: 3 часа.

195. Вася старше своей сестры Светы на 5 лет. На сколько лет он будет старше Светы через 7 лет?

И через 7 лет, и через 10, и через любое количество лет разница в возрасте между Васей и Светой останется одинаковой — 5 лет. Это происходит потому, что с количество лет прибавляется с каждым годом для всех с одинаковой скоростью.

Ответ: Вася будет старше своей сестры Светы на 5 лет.

Задача от мудрой совы

196. Можно ли таблицу из пяти строк и шести столбцов заполнить натуральными числами так, чтобы сумма чисел каждой строки была равна 30, а сумма чисел каждого столбца — 20?

Мерзляк 5 класс - § 7. Сложение натуральных чисел. Свойства сложения

Мы знаем, что строк в таблице должно быть 5 и сумма натуральных чисел в каждой строке должна равняться 30. Значит сумма натуральных числе во всех пяти строках таблицы должна равняться:

1) 30 • 5 = 150

Мы знаем, что столбцов с таблице должно быть 6 и сумма всех натуральных чисел в каждом столбце таблицы должна равняться 20. Значит сумма натуральных числе во всех шести столбцах таблицы должна равняться:

2) 20 • 6 = 120

Получается, что сумма натуральных чисел в таблице, если считать по строкам и если считать по столбцам, не совпадает:

3) 150 ≠ 120

Значит таблицу с указанными условиями невозможно заполнить натуральными числами.

Ответ: нет, такую таблицу заполнить невозможно.

  • Ответы к учебнику для 5 класса. А. Г. Мерзляк
  • Переход на главную страницу сайта

Источник

Тема: Свойства сложения.

Цель: познакомить со свойством сложения, основанным на группировке слагаемых.

 – стремятся развивать внимание, память, логическое мышление, навыки сотрудничества со сверстниками и со взрослыми;

– проявляют самостоятельность.

– иметь представление о понятиях “переместительное свойство”, “сочетательное свойство”;

– уметь решать задачи изученных видов.

– прогнозируют результат деятельности, контролируют и оценивают, собственную деятельность и деятельность партнеров образовательному процессу, при необходимости вносят корректировки.

– аргументируют свою точку зрения, при возникновении спорных ситуаций не создают конфликтов.

Методы и формы обучения : частично- поисковый; индивидуальная, фронтальная, групповая.

Образовательные ресурсы: Книгопечатная продукция : М.И. Моро  Математика. 2 класс. Часть 1.

Технические средства обучения:   Компьютер.  Медиапроектор.

Этапы урока

Деятельность учителя

Деятельность учащихся

Формирование УУД

1. Мотивация  к учебной деятельности.

Цель:  создание условий для возникновения у учеников внутренней потребности включения в учебную деятельность

Эмоциональный настрой на урок.

Дети, вам повезло? (Да!)

В классе светло? (Да!)

Прозвенел уже звонок? (Да!)

Уже закончился урок? (Нет!)

Только начался урок? (Да!)

Хотите учиться? (Да!)

Значит можно всем садиться!

Настраиваемся на урок.

– Будем учиться оценивать свою деятельность. Прочитайте.

– внимательно;

– правильно;

– дружно;

– быстро.

Правильно формулировать собственное мнение.

 (Р/УУД).

2. Актуализация знаний.

Цель:  обеспечение готовности учащихся к включению в продуктивную обучающую деятельность, повторение изученного материала, необходимого для «открытия нового знания».

На карточках задание.

–  Посмотрите.

– Будете работать в парах.

– 1 вариант решает первое выражение,

– 2 вариант – второе выражение, и т.д.

Задание: Решите  числовые выражения,  впишите буквы и расшифруйте слово:

6 + 9 =  15        в

11 – 3 = 8         й

8 + 4 = 12         с

16 – 6 = 10       о

9 + 2 = 11         т

13 – 8 = 5         с

4 + 8 = 12         о

14 – 7 = 7         в

На экране:

– Поднимите руки, кто закончил.

– Прочитайте слово, которое получилось.

– Как вы понимаете  слово «свойство»?

– Найдите два похожих выражения.

– Чем они похожи?

– Чем отличаются?

– Какое свойство  вспомнили?

– Это свойство поможет нам решать более сложные числовые выражения.

– А сейчас, те дети, у которых получилось слово «свойство» поставьте себе 4 балла (по количеству правильно решённых выражений).

Если вы допустили 1-2 ошибки – 2 балла.

– Оценим работу. Мы работали:  

– Дети решают числовые выражения, расшифровывают слово.

– Поясняют.

– от перестановки слагаемых сумма не изменится

– Внимательно, дружно, быстро, правильно.

Выделение и осознание того, что уже пройдено (Р/УУД).

Смыслообразование (Л/УУД).

Слушать и понимать речь других (К /УУД)

3. Самоопределение к деятельности.

Цель: обсуждение цели урока.

Практическая работа.

– Возьмите конверты.

– Выложите 4 круга, затем 3 треугольника и 7 квадратов.

– Сколько всего фигур выложили?

– Как их удобнее сосчитать?

4 + 3 + 7     записываю на доске

Вывод:  оказывается, эту сумму можно посчитать разными способами.

– Чему мы будем учиться?

– Складывать числа в любом порядке.

4. Постановка целей.

Цель:  проговаривание детьми цели и темы урока.

Стр. 44.

– Прочитайте цель урока.

– Формулируют цель урока.

Определять и формулировать цель деятельности на уроке (Р/УУД).

5.  Работа по теме урока.

Цель:  обеспечение восприятия, осмысления и первичного запоминания детьми изученной темы.

№ 1. Коллективное выполнение с комментированием.

– Прочитайте задание.

– Сформулируйте задание.

– Чем похожи все числовые выражения?

– Чем отличаются?

– Какое свойство применили?

Вывод: результат сложения не изменится, если поменять слагаемые местами.

– Это свойство называют переместительным.   (поменяли местами).    Экран

– Обратимся к геометрическим фигурам.

– Как удобно сосчитать их?

– Как показать, что это действие выполним первым?

– Что скажете о результатах сложения?

– Как складывали?

– Оказывается, это тоже свойство. В математике – это свойство называют сочетательным. Экран

– Прочитайте вывод: результат сложения не изменится, если соседние слагаемые заменить их суммой.

– Выполняют задание, проговаривая свойства сложения.

– Заключим в скобки.

– Одинаковые.

– Соседние слагаемые заменили их суммой.

Проводить анализ учебного материала (П /УУД)

Ориентироваться в учебнике (П /УУД)

Слушать и понимать речь других (К /УУД)

6. Первичное закрепление.

Цель: обеспечение усвоения новых знаний и способов действий на уровне применения в измененной ситуации.

На экране – числовое выражение:

6 + 7 + 8 + 9 + 3 + 4 + 1 + 2 =

– Объясните как вы будете вычислять,  используя оба свойства сложения. ( в любом порядке, как удобнее).

Итог на экране:

(6+4) +(7+3) + (8+2) + (9+1) =

– Почему так объединяли?

– На листочках записано выражение: 14 + 15+ 6 +5 вычислите, используя оба свойства.

– Вычислите, работая в парах.

– Начнут решение 1 вариант.

– Проверим.   Экран.

– Что помогло быстро найти значение выражения?

– Оцените свою работу, поставьте 1 балл, если всё правильно.

– Как работали?

-Устно комментируют.

– Чтобы получить круглое число.

Работают в парах.

(14+6) + (15+5)=40

– Перестановка слагаемых и замена слагаемых суммой.

– Быстро, дружно, правильно, внимательно

Слушать и понимать речь других (К /УУД)

Определять правила работы в паре (Л /УУД)

7. Решение задач.

Цель: совершенствовать умение решать задачи.

– А сейчас  будете  работать над задачей на стр.47 № 6.

– Прочитайте задачу.

– Прочитайте условие. Вопрос.

– О чём задача?

– Кто участвовал в турнире?

– Что известно?

– Что нужно узнать?

– Какая это задача?

– Попробуйте сами записать решение и ответ.

– Проверим. Поставь 2 балла, если решил сам и правильно.

– Как мы работали?

9. Рефлексия.

Цель:  выявление качества и уровня овладения знаниями.

– Ребята, какова тема урока?

– Какую цель вы поставили вначале урока?

– Как вы считаете, достигли ли цели?

 – Почему?

– Где нам это пригодится?

Осознание результатов своей учебной деятельности.

Самооценка  результатов своей работы и работы всего класса.

– Познакомились со свойствами, научились их применять.

– При работе с большими числами.

Устанавливать связь между целью деятельности и ее результатом (Л /УУД)

Совместно с учителем и одноклассниками давать оценку деятельности  на уроке (Р/УУД).

9. Подведение итогов.

Цель:  анализ и оценка успешности достижения цели;

Спасибо за сотрудничество! Урок окончен.

Источник

Учитель: Рябова Н.М.

Этапы урока

Деятельность учителя

Деятельность учеников

Формируемые УУД

I. Мотивация

к учебной деятельности

Цель:

– создание условий для возникновения у учеников внутренней потребности включения в учебную деятельность;

Эмоциональный настрой на урок.

-Долгожданный дан звонок.

Начинается урок.

-Улыбнулись друг другу-(слайд)

Давайте приступим к работе .

И пусть интересным будет урок.

А девиз нашего урока: «Будьте внимательны и у вас все получится» (слайд)

Нас на уроке ждут великие дела.(слайд)

Проговаривание правил сотрудничества

Определять и проявлять правила поведения при сотрудничестве.

(Л /УУД).

Правильно формулировать собственное мнение.

(Р/УУД).

II. Актуализация знаний

Цель:

– обеспечение готовности учащихся к включению в продуктивную обучающую деятельность, повторение изученного материала, необходимого для «открытия нового знания».

Организация живого диалога

– Какое сейчас время года ? (осень). -Кто любит осень?

-Какое сегодня число? (19)

– Что вы можете сказать о числе 19?  

( двузначное, состоит из 1 дес. и 9 ед.).

-Почему число 19-двузначное? (в его записи использовано 2 цифры).

-Представьте число 19 в виде суммы разрядных слагаемых. (19=10+9)

распределите числа на 2группы(слайд)

4, 27, 83, 9, 16, 5, 72, 31, 94.

-по какому признаку вы это сделали?

-Какие числа мы называем однозначными?

-Почему числа называем двузначными?

– Укажите состав чисел.

-Прочитайте числа в порядке возрастания, (убывания).

-Прочитайте правильно числовые выражения и найдите их значения:

60+8=, 68-60=, 68-8= 30+(5+2)=, 90-(6+4). (слайд) -Правило: Действия, записанные в скобках, выполняются первыми. -Найдите периметр треугольника со сторонами 4см, 5см, 6см – Что такое периметр?(слайд)

Периметр-это сумма длин сторон многоугольника.

Ведение живого диалога: свободно говорят, высказывают свою точку зрения

Выделение и осознание того, что уже пройдено (Р/УУД).

Смыслообразовани (Л/УУД).

Слушать и понимать речь других (К /УУД)

III. Постановка целей, задач урока, мотивационная деятельность учащихся.

Цель:

– обсуждение затруднений, проговаривание цели урока, темы.

– Прочитайте слова: слагаемое, уменьшаемое, разность, слагаемое, вычитаемое, сумма. (слайд)

     – Кто мне поможет разделить эти слова на группы?   (I – компоненты действия сложения, II – компоненты действия вычитания) (слайд)

– Назовите их.(Компоненты при сложении называются: слагаемое, слагаемое, сумма.

Компоненты при вычитании называются: уменьшаемое, вычитаемое, разность)

-Как вы думаете, к какой группе можно отнести слово «свойство…» ? (к I группе)

– Кто догадался, какая у нас сегодня тема урока? (свойства сложения) (слайд)

– Чему мы будем учиться на уроке?

(познакомимся со свойствами сложения и будем их применять при нахождении значений числовых выражений).

-С каким свойством сложения вы уже знакомы? ( с переместительным)

-сравни: 30+8*8+30, 7+10*10+7 (слайд)

– Как читается переместительный закон сложения? (От перестановки слагаемых сумма не изменяется)

-Не вычисляя, составьте верные числовые равенства. ( 50 + 8 = * + 50,

5 + 40 = 40 + * (слайд)

* + 8= 8 + 2)

– Зачем нужно знать это свойство при вычислениях? ( Легче к большему числу прибавить меньшее).

Запись с помощью букв: а+в=в+а (слайд)

-Работа по учебнику с.44, №1. (взаимопроверка)

– А найдите значение этого числового выражения:

6 + 7 + 8 + 9 + 3 + 4 + 1 + 2 = (слайд)

-У кого это задание вызвало затруднение?

-Проблема. ( Не достаточно знаний, чтобы легко и быстро справиться с заданием.)

Вспоминают названия компонентов при сложении.

Анализируют слова, деля их на группы.

Формулируют цель урока.

Определять и формулировать цель деятельности на уроке (Р/УУД).

Высказывать свое предположение на основе учебного материала (Р/УУД).

Проводить классификацию, указывая на основание классификации (П /УУД)

Ориентироваться в своей системе знаний (определять границы знания/незнания) (П /УУД)

Уметь с достаточной полнотой и точностью выражать свои мысли (К /УУД)

IV. Первичное усвоение новых знаний

Цель:

– обеспечение восприятия, осмысления и первичного запоминания детьми изученной темы. Организация исследовательской деятельности, выведение алгоритма.

Давайте вместе добудем эти знания!

(рассмотреть с помощью кружков разного цвета еще одно свойство сложения) (слайд)

(5+3)+2=5+(3+2)

10 = 10

Вывод: Результат сложения не изменится, если два соседних слагаемых заменить их суммой. Это сочетательный закон сложения. (на доске).

– (а+в)+с=а+(в+с)

Эти два закона работать могут вместе.

Давайте вернемся к нашему числовому выражению и решим его.

– Какие у вас будут предложения?

(Можно применить переместительное свойство сложения, а затем сочетательное свойство сложения).

(6+4)+(7+3)+(8+2)+(9+1)=40 (слайд)

Вывод: Используя оба свойства сложения, можно складывать числа в любом порядке.

-С какими свойствами сложения мы с вами познакомились? (ответы детей)

Решают проблему, обсуждая и выдвигая гипотезы в совместной деятельности, сравнивают, анализируют, осуществляют поиск необходимой информации

Выполняют задание, проговаривая свойства сложения.

Составляют буквенную запись свойств сложения.

Работают с учебником в парах. Выполняют задания

Проводить анализ учебного материала (П /УУД)

Ориентироваться в учебнике, тетради (П /УУД)

Определять правила работы в паре (Л /УУД)

Слушать и понимать речь других (К /УУД)

Отличать верно выполненное задание от неверного (Р/УУД).

V.Первичное закрепление

Цель:

обеспечение усвоения новых знаний и способов действий на уровне применения в измененной ситуации. Выполнение заданий с проговаривание в громкой речи. Запись с помощью буквенных выражений.

(Работа в паре) Дополните формулировку свойств пропущенными словами.

От _________ слагаемых сумма ___________.

Результат _______________не изменится, если соседние _____________заменить их суммой.

Чтобы к сумме двух чисел прибавить ___________, можно к первому числу прибавить сумму __________ и третьего числа.

Игра «Помоги героям вспомнить свойства»

– В каком из примеров использовано сочетательное свойство? (переместительное)

3 + (2 + 1) = (3 + 2) + 1

21 – 17 = 17 – 21

15 + 18 = 18 + 15

4 + 9 = 13

46 + 0 = 46

А для чего нам нужно знать свойства сложения? (для быстрого, рационального вычисления выражений) —

Работа по учебнику: с.44, правило. с.45, № 3. (устно)

Найти значения числовых выражений:

( с проговариванием в громкой речи )

6+9+4+1=

17+8+3+2=

Участвуют в диалоге.

Выполняют задания в парах, ведут обсуждение, учатся принимать на себя ответственность за результат учебного труда.

Определять правила работы в паре (Л /УУД)

Владеть диалогической формой речи в соответствии с грамматическими и синтаксическими нормами родного языка. (К /УУД)

VI. Самостоятельная работа с самопроверкой.

Цель:

– умение применять правило в самостоятельной деятельности.

– Самостоятельно найдите рациональный способ вычисления суммы, пользуясь свойствами сложения.

-Какими свойствами вы будете пользоваться?

1)Работа по карточке(дифференцированные задания).

Карточка №1 15+6+7+5+4+3= 40+7+20+3= 82+6+8+4= 26+13+4+7 Карточка №2 7+9+5+1+3+5= 50+6+40+4= 32+7+8+3= Карточка № 3 7+8+3+2= 15+9+5+1=

САМОПРОВЕРКА. (слайд) №1. 40,70,100,50 №2. 30,100,50. №3. 20,30. –Кто выполнил без ошибок? -Кто допустил ошибки?

2)Найдите значения числовых выражений (на время): (слайд)

7+9+3+1=(7+3)+(9+1)=20

15 + 8 + 2= 15 + (8 + 2) = 25

1 + 39 + 20 = (1 + 39) + 20 = 60

63 + 14 + 6 = 63 + (14 + 6) = 83

12 + 8 + 10 = (12 + 8) + 10 = 30

6+5+4=(6+4)+5=15

ПРОВЕРКА: САМОПРОВЕРКА.

– Кто допустил ошибки при вычислении?

– У кого  ошибок нет?

– Оцените свою работу.(смайлик на полях)

2) Применение нового знания при решении задач.

1)Построить ломаную из трех звеньев: 6см, 2см, 4см.Найти ее длину?

2)Учебник.С.45, № 5. Задача.

( Решение: 30+30+20+20=

(30+20)+(30+20)=100(мм)-периметр четырехугольника.

100мм=10см

Ответ:10см .

Самостоятельное решение в тетради.

Осуществляют самоконтроль и самооценку своей работы.

Отличать верно выполненное задание от неверного (Р/УУД).

Осуществлять самоконтроль (Р/УУД).

Оценивать усваиваемое содержание (Л /УУД)

VII. Подведение итогов учебного занятия. Рефлексия деятельности

Цель:

– анализ и оценка успешности достижения цели; выявление качества и уровня овладения знаниями.

ВОПРОСЫ:

-Ребята, какова была тема урока?

-Какую цель вы ставили перед собой?

-Достигли ли поставленной цели?

– В чём ценность нового знания?

-Оцените свою работу на уроке.(смайлики)

Весело звенит звонок.

Вот и закончился наш урок.

Благодарю за внимание.

Осознание результатов своей учебной деятельности;

Самооценка результатов своей работы и работы всего класса.

Устанавливать связь между целью деятельности и ее результатом (Л /УУД)

Совместно с учителем и одноклассниками давать оценку деятельности на уроке (Р/УУД).

VIII Домашнеезадание.

Комментировать.

С. 44,правило, с.45, № 4, с. 46, №1.-применить изученные свойства сложения при нахождении значения числовых выражений.

  

Резер