Какие свойства стали придает вольфрам

Подробности Категория: В Просмотров: 6393

ВОЛЬФРАМОВАЯ СТАЛЬ, железо-вольфрамовый сплав, содержащий некоторое количество С, Si и Мn; иногда в состав вольфрамовой стали входит и Сr. Признаком, по которому вольфрамовая сталь отличается от ферровольфрама, является способность ее обрабатываться в горячем состоянии. Максимальное содержание W в принятых на практике сортах вольфрамовой стали — 20%. Диаграмма равновесия системы железо-вольфрам была изучена японцами Хонда и Мураками и позднее американцем Сайксом (W. Р. Sykes). Согласно этим исследованиям, диаграмма равновесия Fe-W имеет вид, показанный на фиг. 1.

Как видно из этой диаграммы, температура плавления сплавов железо-вольфрам (линия АВС) в интервале химического состава от 0% W до 49% W остается почти постоянной и мало чем отличается от температуры плавления (линия АСЕ) чистого железа. При дальнейшем увеличении содержания W в стали температура плавления сплава резко возрастает. Сплавы железо-вольфрам, содержащие 33% W, при закалке обнаруживают под микроскопом только крупные полиэдры твердого раствора вольфрама в железе (рис. 1).

При медленном же охлаждении сплавов, содержащих ≤33% W, наблюдается вторая фаза (рис. 2). Эта вторая фаза отвечает составу Fe3W2; содержание W в ней равно 68,7%. Кривая равновесия Fe-W, приведенная на фиг. 1, показывает, что если сплав с содержанием 20% W закалить при температуре в 1400°, т. е. выше линии BG – кривой, определяющей предел насыщения α-Fe вольфрамом (твердый раствор W в кубической решетке α-Fe), то микроструктура такого сплава будет (аналогично рис. 1) состоять лишь из одних полиэдрических зерен твердого раствора; если же такой сплав (20% W; 80% Fe) выдержать достаточно долго при 1300—1350° и затем закалить при этой температуре, т. е. ниже линии BG, то на фоне крупных полиэдров твердого раствора должны быть видны частички выделившегося из раствора химических соединения Fe3W2. Сплав с 10% W, в случае закалки при температуре выше 950°, имеет полиэдрическую структуру твердого раствора вольфрама в железе; при закалке того же сплава при температуре 900° и ниже на фоне полиэдров твердого раствора д. б. видны частички выделившегося из раствора Fe3W2. Если сплав, содержащий 15% W, закалить при 1300° или сплав с содержанием 20% W закалить при температуре свыше 1400°, то структура таких сплавов будет состоять из одних крупных полиэдров; если же нагреть эти закаленные сплавы до температуры 700—800°, т. е. ниже линии BG, и при этих температурах выдержать закаленные сплавы достаточно долгое время, то из пересыщенного твердого раствора выделятся частицы Fe3W2 в виде небольших включений на фоне полиэдров; твердость сплавов при этом заметно возрастет. На помещаемых ниже кривых изменения твердости видно, как значительно увеличивается твердость вольфрамовых сплавов при последующем нагреве их после закалки при 1500°.

Явление старения (aging) вольфрамовых сплавов аналогично старению дюралюминия с той только разницей, что в дюралюминии повышение твердости наблюдается при вылеживании закаленного образца при температуре от 15 до 100°, повышение же твердости вольфрамовых сплавов требует выдержки их при более высокой температуре.

Табл. 1., показывающая изменения твердости железо-вольфрамовых сплавов, закаленных в воде при 1500° и выдержанных затем в течение длительного времени при 700° и 800°, отчетливо подтверждает это явление.

Изменение твердости сплавов находится в полном соответствии с микроструктурой. Микроструктура сплава (20% W и 80% Fe) после закалки в воде при 1500° представляет однородный твердый раствор – единую фазу без каких-либо следов второй фазы – химического соединения Fe3W2.

Микроструктура такого сплава состоит из светлых полиэдров твердого раствора W в железе. При выдержке такого сплава в течение двух часов при 700° (рис. 3), из сплава начинают выделяться частички Fe3W2 в чрезвычайно дисперсном состоянии; дисперсность столь велика, что даже при увеличении в 1000 раз эти частички почти незаметны для глаза. Как и для дюралюминия, такой структуре отвечает максимальная твердость.

При дальнейшей выдержке при той же температуре до 20 час. (рис. 4) размер выделившихся частичек Fe3W2 возрастает, в соответствии с чем твердость сплава несколько падает (с 330 до 312). При более высокой температуре процесс выделения частичек Fe3W2 из раствора идет с большей быстротой; выделившиеся частицы Fe3W2 имеют больший размер, в соответствии с чем твердость сплава понижается. Так, на микроструктуре сплава с 20% W, закаленного при 1500°, после выдержки при 800° в течение 20 час. (рис. 5), ясно видны отдельные частицы Fe3W2. В соответствии с этим сплав имеет твердость всего лишь 260.

При длительной выдержке после закалки при более высокой температуре (фиг. 1) твердость сплава д. б. ниже по двум причинам: 1) размер выделившихся частичек Fe3W2 возрастает, 2) абсолютное количество выделяющихся из раствора частиц Fe3W2 при более высоких температурах будет меньше, так как при более высоких температурах в твердом растворе удержится большее количество вольфрама (см. линию BG, фиг. 1). Рис. 6 представляет микроструктуру того же сплава, выдержанного после закалки в течение 1 ч. при 1000°, и ясно иллюстрирует вышеприведенные соображения.

Естественно, что такой сплав, где и количество выделившихся частиц Fe3W2 заметно меньше и размер отдельных частиц достаточно велик, должен обладать незначительной твердостью. Найденное при испытании этого сплава число твердости 180 хорошо согласуется с приведенной здесь микроструктурой.

На фиг. 2 представлено изменение твердости при нагреве сплавов с 15, 20 и 25% W в течение 1 ч. при разных температурах.

На фиг. 3 приведена диаграмма изменения твердости вольфрамовых сплавов при отпуске при 700° в течение разного времени.

Эти диаграммы, резко иллюстрирующие явление вторичной твердости, находятся в полном соответствии с основной диаграммой равновесия системы железо-вольфрам, разъясняющей природу этого явления. В присутствии углерода W вступает с ним в соединение WC. При нормальных условиях карбид вольфрама с цементитом образует двойной карбид, диссоциирующий при температуре выше AС1 (индексы: AC1, Ar1, Аr2, Аr3, Ar4 – см. Железо) на простые карбиды, которые вновь соединяются в двойные карбиды при нагреве, не слишком высоком. При высоких температурах карбид вольфрама, реагируя с железом, может дать Fe3W2 и цементит. Это образование и растворение Fe3W2 в аустените вызывает при охлаждении понижение критических точек вольфрамовой стали, на которое впервые обратил внимание Свинден (Th. Swinden). Он наблюдал, что для вольфрамовой стали, с разным содержанием углерода существует такая определенная температура Тk, что предварительный нагрев до температур ниже Tk не отражается на положении критической точки Аr1, тогда как нагрев вольфрамовой стали выше этой температуры вызывает заметное понижение точки Аr1, причем оно будет тем значительнее, чем больше содержание W в стали. Эта определенная температура Тk называется понижающей температурой. На приводимой диаграмме (фиг. 4) представлена кривая понижающей температуры (LT), полученная Свинденом для стали, содержащей 3% W.

Читайте также:  Какие свойства характерны для водной среды обитания 5 класс кратко

Марс (Mars) дает следующее объяснение явлению, изученному Свинденом. Он предполагает, что понижающая температура есть температура кристаллизации аустенита, при которой исчезают последние зародыши отдельных фаз, растворяющихся в аустените. Перекристаллизация аустенита, содержащего посторонние примеси, происходит значительно медленнее, и потому при охлаждении вольфрамовой стали, нагретой выше понижающей температуры, критическая точка Ar1 понижается. Чем больше будет содержание W в стали, тем выше надо будет нагреть сталь, чтобы перевести весь W в растворенное состояние, т. е. тем выше будет понижающая температура и тем значительнее понизится критическая точка Аr1.

Микроструктуру вольфрамовой стали изучали японцы Хонда и Мураками, а также Гилле (Guillet). Согласно этим исследованиям, вольфрамовую сталь можно разбить по структуре на две группы (фиг. 5): сталь перлитную и сталь с двойными карбидами.

К первой группе будет относиться сталь с невысоким содержанием W и С; при повышении содержания того или другого того вольфрамовая сталь принимает структуру второго типа. Излом вольфрамовой стали заметно мельче, чем излом углеродистой стали. Структура вольфрамовой стали становится тем мельче, чем больше содержание W и С в стали.

Значительный удельный вec W (19,3) должен отразиться на удельном весе вольфрамовой стали, как это видно из табл. 2.

Теплопроводность вольфрамовой стали крайне незначительна; поэтому нагревать ее перед ковкой следует осторожно: быстрый нагрев вольфрамовой стали может вызвать образование трещин. Теоретически температура ковки вольфрамовой стали не должна отличаться от температуры ковки углеродистой стали, однако, благодаря значительной твердости вольфрамовой стали в горячем состоянии, практически ковку вольфрамовой стали производят при температуре, которая значительно выше температуры ковки углеродистой стали.

Производство вольфрамовой стали. Вольфрамовая сталь производится главным обр. в электрических печах или в тиглях – в аппаратах, обеспечивающих, с одной стороны, придание стали лучших физических свойств, а с другой – меньший процент угара вольфрама при плавке. На некоторых заводах плавят вольфрамовую сталь и в кислых мартеновских печах небольшого тоннажа. Ферро-вольфрам представляет собой сплав, сравнительно мало угорающий; небольшой процент угара при плавке вольфрамовой стали обусловливается: а) незначительной склонностью вольфрама к окислению; б) большим удельным весом Fe-W, благодаря чему вольфрам не задерживается в шлаке. Техника приготовления вольфрамовой стали не представляет тех затруднений, с какими связано приготовление хромистых сталей. Fe-W вводят в печь небольшими порциями каждый раз после расплавления предыдущей порции: при поспешной даче Fe-W легко наварить на поде печи «козел» вольфрама, расплавление которого значительно затягивает продолжительность плавки. Чтобы по возможности излишне не удлинять плавку при приготовлении стали с высоким содержанием вольфрама, начинают присадку Fe-W (с 80% W) в не вполне раскисленную ванну, ведя параллельно с присадкой его и раскисление стали; незначительное увеличение угара вольфрама при таком методе плавки компенсируется экономией, связанной с сокращением продолжительности плавки. Если количество вводимого в печь Fe-W невелико, то в целях понижения процента угара вольфрама желательно вводить Fe-W после раскисления стали. С целью еще большего сокращения продолжительности плавки некоторые заводы пытались вводить Fe-W с самого начала плавки непосредственно в шихту. Такой метод работы применим лишь в случае загрузки в печь очень чистых шихтовых материалов с незначительным содержанием фосфора. Как правило, вводить Fe-W в печь вместе с шихтой не следует: уменьшение стоимости выплавки не компенсирует понижения качества ответственных вольфрамовых сталей. Вольфрам удобнее вводить в стали в виде ферро-вольфрама (в кусках): температура плавления его ниже  температуры плавления металлического вольфрама, имеющего вид порошка; в случае употребления последнего W вводится следующим способом (применявшимся автором на заводе «Электросталь»): металлический порошок вольфрама отвешивают в бракованные железные котелки и в упакованном виде бросают в печь; благодаря большому удельному весу вольфрама котелок успевает потонуть в стали раньше, чем железо котелка расплавится, и вольфрамовый порошок благодаря этому не теряется в шлаке.

Применение вольфрамовой стали.

I. Сталь с содержанием W от 1 до 2,5% применяется: а) в качестве специальной инструментальной стали для резцов и других инструментов, в которых важно сохранить режущую способность острия, б) для клапанов газомоторов, в) для волочильных досок. Сталь этого типа, содержащую около 1% С и от 1,25 до 2% W, рекомендуется подвергать следующей термической обработке: 1) медленный нагрев до 800°, 2) закалка в воде, 3) отпуск при 200—260°.

II. Сталь с содержанием 1,1—1,3% С и 3—6% W применяется в качестве инструмента для окончательной отделки твердых изделий, например, для нарезки резьбы в ружейных стволах. Для сообщения этой стали лучших режущих свойств иногда к ней прибавляют небольшое количество хрома. Булленс (D. Bullens) рекомендует для отделки твердых изделий сталь следующего состава (табл. 3):

Эти стали перед закалкой д. б. нагреты до 930°; нагрев д. б. постепенный, а затем при указанной температуре сталь должна быть выдержана, чтобы мог закончиться процесс растворения карбидов вольфрама; температура, рекомендуемая для закалки специальной стали, колеблется в пределах 840—900°. Если обработку вести в две стадии (растворение карбидов и закалка в собственном смысле слова), то для первой стадии нагрев может быть доведен до 930°, а для второй – до 840—875°.

III. Вольфрам увеличивает не только временное сопротивление, но и сопротивление выгоранию стали от действия пороховых газов; поэтому вольфрамовые стали находят применение как для ружейных стволов (0,5—0,55% С; 1,6—1,9% W), так и для труб гаубичных пушек (0,6—0,7% С; 1—3% W).

IV. Гадфильд отмечает, что сталь с низким содержанием вольфрама (0,75%) применяется для пружин (хотя для этого целесообразнее применять кремнистую сталь).

V. Большое распространение получила вольфрамовая сталь для изготовления постоянных магнитов. Нормальный состав магнитной стали: 0,6—0,75% С; 5—6% W. Марс, изучавший влияние W на магнитные свойства стали, получил следующий результат (табл. 4):

Читайте также:  Каким свойством обладает брусника

Булленс рекомендует вольфрамовую сталь с 0,7% Сu 5—6% W закаливать без отпуска в воде при 845—860°. Иногда к магнитной вольфрамовой стали прибавляют некоторое количество хрома; такую сталь приходится закаливать не в воде, а в масле. В настоящее время наряду с магнитной вольфрамовой стали применяют хромовую сталь для постоянных магнитов; лучшей же магнитной сталью является кобальтовая сталь.

VI. Высокоуглеродистая вольфрамовая сталь применяется для изготовления волочильных досок. Для волочения мягкой проволоки применяют доски с содержанием С 1,9—2,2% и W в пределах 1,5—3%. Термическая обработка досок сводится к закалке очков (дыр) в воде при 760—790°; отжигается эта сталь путем медленного охлаждения, начиная с 760—790°. Доски средней твердости для протяжки прутков диаметром более 3 мм обычно готовятся из хромовольфрамовой стали следующего состава: 1,9% С; 4% W; 2% Сr; 0,4% Мn. Для протяжки же проволоки очень тонкого сечения применяется хромовольфрамовая сталь с высоким содержанием W; обычный состав ее: 1,9% С; 11,5—12% W; 1,9% Сr; 1,9%—2,0% Мn. Такая сталь закаливается при 820° в масле с последующим отпуском при 160—220°. Обрабатывается она крайне трудно; для отжига ее охлаждают крайне медленно после выдержки при 580—600°.

VII. Значительное распространение получила вольфрамовая сталь для изготовления быстрорежущей стали.

VIII. Сталь для матриц – следующего состава: 0,6—0,65% С; 8,0—9,0% W.

Источник: Мартенс. Техническая энциклопедия. Том 4 – 1928 г.

Источник

Влияние химических элементов на свойства стали.

Условные обозначения химических элементов:

хром ( Cr ) — Х
никель ( Ni ) —
Н
молибден ( Mo ) —
М
титан ( Ti ) —
Т
медь ( Cu ) —
Д
ванадий ( V ) —
Ф
вольфрам ( W ) —
В
азот ( N ) — А
алюминий ( Аl ) —
Ю
бериллий ( Be ) —
Л
бор ( B ) —
Р
висмут ( Вi ) —
Ви
галлий ( Ga ) —
Гл
иридий ( Ir ) — И
кадмий ( Cd ) —
Кд
кобальт ( Co ) —
К
кремний ( Si ) —
C
магний ( Mg ) —
Ш
марганец ( Mn ) —
Г
свинец ( Pb ) — АС
ниобий ( Nb) —
Б
селен ( Se ) —
Е
углерод ( C ) —
У
фосфор ( P ) —
П
цирконий ( Zr ) —
Ц

ВЛИЯНИЕ ПРИМЕСЕЙ НА СТАЛЬ И ЕЕ СВОЙСТВА

Углерод — находится в стали обычно в виде химического соединения Fe3C, называемого цементитом. С увеличением содержания углерода до 1,2% твердость, прочность и упругость стали увеличиваются, но пластичность и сопротивление удару понижаются, а обрабатываемость ухудшается, ухудшается и свариваемость.

Кремний — если он содержится в стали в небольшом количестве, особого влияния на ее свойства не оказывает.(Полезная примесь; вводят в качестве активного раскислителя и остается в стали в кол-ве 0,4%)

Марганец — как и кремний, содержится в обыкновенной углеродистой стали в небольшом количестве и особого влияния на ее свойства также не оказывает. (Полезная примесь; вводят в сталь для раскисления и остается в ней в кол-ве 0,3-0,8%. Марганец уменьшает вредное влияние кислорода и серы.

Сера — является вредной примесью. Она находится в стали главным образом в виде FeS. Это соединение сообщает стали хрупкость при высоких температурах, например при ковке, — свойство, которое называется красноломкостью. Сера увеличивает истираемость стали, понижает сопротивление усталости и уменьшает коррозионную стойкость. В углеродистой стали допускается серы не более 0,06-0,07%. ( От красноломкости сталь предохраняет марганец, который связывает серу в сульфиды MnS).

Фосфор — также является вредной примесью. Снижает вязкость при пониженных температурах, то есть вызывает хладноломкость. Обрабатываемость стали фосфор несколько улучшает, так как способствует отделению стружки.

ЛЕГИРУЮЩИЕ ЭЛЕМЕНТЫ И ИХ ВЛИЯНИЕ НА СВОЙСТВА СТАЛИ

Хром (Х) — наиболее дешевый и распространенный элемент. Он повышает твердость и прочность, незначительно уменьшая пластичность, увеличивает коррозионную стойкость; содержание больших количеств хрома делает сталь нержавеющей и обеспечивает устойчивость магнитных сил

.

Никель (Н) — сообщает стали коррозионную стойкость

, высокую прочность и пластичность,
увеличивает прокаливаемость
, оказывает влияние на изменение коэффициента теплового расширения. Никель – дорогой металл, его стараются заменить более дешевым.

Вольфрам (В) — образует в стали очень твердые химические соединения – карбиды, резко увеличивающие твердость и красностойкость. Вольфрам препятствует росту зерен при нагреве, способствует устранению хрупкости при отпуске. Это дорогой и дефицитный металл.

Ванадий (Ф) — повышает твердость и прочность, измельчает зерно. Увеличивает плотность стали, так как является хорошим раскислителем, он дорог и дефицитен.

Кремний (С)- в количестве свыше 1% оказывает особое влияние на свойства стали: содержание 1-1,5% Si увеличивает прочность, при этом вязкость сохраняется. При большем содержании кремния увеличивается электросопротивление и магнитопроницаемость. Кремний увеличивает также упругость, кислостойкость, окалиностойкость.

Марганец (Г) — при содержании свыше 1% увеличивает твердость

, износоустойчивость, стойкость против ударных нагрузок, не уменьшая пластичности.

Кобальт (К) — повышает жаропрочность, магнитные свойства, увеличивает сопротивление удару.

Молибден (М) — увеличивает красностойкость, упругость, предел прочности на растяжение, антикоррозионные свойства и сопротивление окислению при высоких температурах

.

Титан (Т) — повышает прочность и плотность стали

, способствует измельчению зерна, является хорошим раскислителем, улучшает обрабатываемость и сопротивление коррозии.

Ниобий (Б) — улучшает кислостойкость и способствует уменьшению коррозии в сварных конструкциях.

Алюминий (Ю) — повышает жаростойкость и окалиностойкость.

Медь (Д) — увеличивает антикоррозионные свойства, она вводится главным образом в строительную сталь.

Церий — повышает прочность и особенно пластичность.

Цирконий (Ц) — оказывает особое влияние на величину и рост зерна в стали, измельчает зерно и позволяет получать сталь с заранее заданной зернистостью.

Лантан, цезий, неодим — уменьшают пористость, способствуют уменьшению содержания серы в стали, улучшают качество поверхности, измельчают зерно.

Влияние основных легирующих элементов на свойства стали.

Влияние отдельных компонентов на свойства стали

Легированной называется сталь, в которой, кроме обычных примесей, содержатся специально вводимые в определенных сочетаниях легирующие элементы (Cr, Ni, Mo, Wo, V, А1, В, Ti и др.), а также Мn и Si в количествах, превышающих их обычное содержание как технологических примесей (1% и выше). Как правило, лучшие свойства обеспечивает комплексное легирование.

Легирование сталей и сплавов используют для улучшения их технологических свойств. Легированием можно повысить предел текучести, ударную вязкость, относительное сужение и прокаливаемость, а также существенно снизить скорость закалки, порог хладноломкости, деформируемость изделий и возможность образования трещин. В изделиях крупных сечений (диаметром свыше 15. 20 мм) механические свойства легированных сталей значительно выше, чем механические свойства углеродистых сталей.

Читайте также:  Какими свойствами характеризуется молекула качественным составом

Влияние примесей

Постоянные (технологические) примеси являются обязательными компонентами сталей и сплавов, что объясняется трудностью их удаления как при выплавке (Р,S). Так и в процессе раскисления (Si, Mn) или из шихты – легированного металлического лома (Ni, Cr и др.).

К постоянным примесям относят углерод, марганец, кремний, серу, фосфор, а также кислород, водород и азот.

Углерод

При увеличении содержания углерода до 1,2% возрастают прочность, твердость, порог хладноломкости (0,1%С повышает температуру порога хладноломкости на 20С), предел текучести, величина электрического сопротивления и коэрцитивная сила. При этом снижаются плотность, теплопроводность, вязкость, пластичность, величины относительных удлинения и сужения, а также величина остаточной индукции.

Существенную роль играет то, что изменение физических свойств приводит к ухудшению целого ряда технологических характеристик – таких, как деформируемость при штамповке, свариваемость и др. Так, хорошей свариваемостью отличаются низкоуглеродистые стали. Сварка средне и особенно высокоуглеродистых сталей требует применения подогрева, замедляющего охлаждение, и других технологических операций, предупреждающих образование трещин.

Марганец

Марганец вводят в стали как технологическую добавку для повышения степени их раскисления и устранения вредного влияния серы. Марганец считается технологической примесью, если его содержание, не превышает 0,8%. Марганец как технологическая примесь существенного влияния на свойства стали не оказывает.

Кремний

Кремний также вводят в сталь для раскисления. Содержание кремния как технологической примеси обычно не превышает 0,37%. Кремний как технологическая примесь влияния на свойства стали не оказывает. В сталях, предназначенных для сварных конструкций, содержание кремния не должно превышать 0,12-0,25%.

Сера

Пределы содержания серы как технологической примеси составляют 0,035-0,06%. Повышение содержания серы существенно снижает механические и физико-химические свойства сталей, в частности, пластичность, ударную вязкость, сопротивление истиранию и коррозионную стойкость. При горячем деформировании сталей и сплавов большое содержание серы ведет к красноломкости. Кроме того, повышенное содержание серы снижает свариваемость готовых изделий.

Фосфор

Пределы содержания фосфора как технологической примеси составляют 0,025-0,045%. Фосфор, как и сера, относится наиболее вредным примесям в сталях и сплавах. Увеличение его содержания, даже на доли процента, повышая прочность, одновременно повышает текучесть, хрупкость и порог хладноломкости и снижает пластичность и вязкость. Вредное влияние фосфора особенно сильно сказывается при повышенном содержании углерода.

Кислород и азот

Кислород и азот растворяются в ничтожно малом количестве и загрязняют сталь неметаллическими включениями (оксидами, нитридами, газовой фазой). Они оказывают отрицательное воздействие на свойства, вызывая повышение хрупкости и порога хладноломкости, а также снижают вязкость и выносливость. При содержании кислорода более 0,03% происходит старение стали, а более 0,1% – красноломкости. Азот увеличивает прочность и твердость стали, но снижает пластичность. Повышенное количество азота вызывает деформационное старение. Старение медленно развивается при комнатной температуре и ускоряется при нагреве до 250oС.

Водород

Увеличение его содержания в сталях и сплавах приводит к увеличению хрупкости. Кроме того, в изделиях проката могут возникнуть флокены, которые развивает водород, выделяющийся в поры. Флокены инициируют процесс разрушения. Металл, имеющий флокены, нельзя использовать в промышленности.

Влияние легирующих элементов

Легирование сталей и сплавов используют для улучшения их технологических свойств. Легированием можно повысить предел текучести, ударную вязкость, относительное сужение и прокаливаемость, а также существенно снизить скорость закалки, порог хладноломкости, деформируемость изделий и возможность образования трещин. В изделиях крупных сечений (диаметром свыше 15-20 мм) механические свойства легированных сталей значительно выше, чем механические свойства углеродистых.

Все легирующие элементы, за исключением никеля, при содержании их в растворе выше определенного предела снижают ударную вязкость, трещиностойкость и повышают порог хладноломкости.

Классификация

По применимости для легирования можно выделить три группы элементов. Применимость для легирования различных элементов определяется не столько физическими, сколько, в основном, экономическими соображениями.

Легирующие элементы по механизму их воздействия на свойства сталей и сплавов можно разделить на три группы:

  • влияние на полиморфные (альфа-Fe -> гамма-Fe) превращения;
  • образование с углеродом карбидов (Сг,Fе)7С3; (Сг,Ре)23С6; Мо2С и др.;
  • образование интерметаллидов (интерметаллических соединений) с железом – Fе7Мо6; Fe3Nb и др.

По характеру влияния на полиморфные превращения легирующие элементы можно разделить на две группы:

  • элементы (Cr, W, Mo, V, Si, Al и др.), достаточное содержание которых обеспечивает существование в сталях при всех температурах легированного феррита (ферритные ставы);
  • элементы (Ni, Mn и др.), стабилизирующие при достаточной концентрации легированный аустенит при всех температурах (аустенитные сплавы). Сплавы, только частично претерпевающие превращение гамма->альфа, называются, соответственно, полуаустенитными или полуферритными.

Легирование феррита сопровождается его упрочнением. Наиболее значительно влияют на его прочность марганец и хром. Причем чем мельче зерно феррита, тем выше его прочность. Многие легирующие элементы способствуют измельчению зерен феррита и перлита в стали, что значительно увеличивает вязкость стали. Однако все легирующие элементы, за исключением никеля, при содержании их в растворе выше определенного предела снижают ударную вязкость, трещиностойкость и повышают порог хладноломкости. Никель понижает порог хладноломкости. Легированный аустенит парамагнитен, обладает большим коэффициентом теплового расширения. Легирующие элементы, в том числе азот и углерод, растворимость которого в аустените при нормальной температуре достигает 1%, повышают его прочность при нормальной и высокой температурах, уменьшают предел текучести. Легированный аустенит является основной составляющей многих коррозионностойких, жаропрочных и немагнитных сплавов. Он легко наклепывается, то есть быстро и сильно упрочняется под действием холодной деформации. Легирующие элементы (исключение кобальт), повышая устойчивость аустенита, снижают критическую скорость закалки и увеличивают прокаливаемость. Для многих аустенитных сплавов критическая скорость закалки снижается до 20°С/с и ниже, что имеет большое практическое значение. Карбидообразующие элементы: Fe – Mn – Cr – Mo – W – Nb – V – Zr – Ti (за исключением марганца) препятствуют росту зерна аустенита при нагреве. Сталь, легированная этими элементами, при одинаковой температуре сохраняет более высокую дисперсность карбидных частиц, и соответственно большую прочность. Интерметаллиды образуются при высоком содержании легирующих элементов между этими элементами или с железом. Примером таких соединений могут служить Fe7Mo6, Fe3Nb2 и др. Интерметаллиды, как правило, отличают повышенные твердость и хрупкость.

В следующей таблице показано влияние наиболее применяемых легирующих элементов на свойства стали.

Источник