Какие свойства строение и функции в клетке полисахаридов

Все сложные органические вещества делят на 4 группы: полинуклеотиды, жиры, белки, углеводы. К последнему классу относятся полисахариды. Сладость в названии полисахариды не предполагает у большинства из них кулинарное предназначение. Важно понять, какими свойствами – химическими и физическими – обладают эти полигликозы.
Химические свойства полисахаридов
Полисахариды – это сложные молекулярные углеводы, что образуются из остатков моносахаридов, объединенных гликозидной связью. Полисахариды, или гликаны (полигликозаны) продуцируются животными, растениями, человеком. Полигликозиды, или полиацеталии бывают линейными и разветвленными.
Классификация полисахаридов предусматривает подразделение на олигосахариды и полиозиды. Под воздействием высоких температур в кислотной среде осуществляется гидролиз полисахаридов. Появляются олигосахариды вместе с дисахаридами при неполном процессе. При полном – исходные моносахариды, а также их производные. Среди химических свойств этого класса углеводов отмечают:
- слабые восстановительные свойства полисахаридов;
- устойчивые свойства к действию щелочей;
- возможность получать сложные эфиры.
По химической природе среди полисахаридов отмечают гомополисахариды и гетерополисахариды. К широко распространенным представителям гомополисахаридов, состоящих из моновеществ одного вида, относят клетчатку (целлюлозу), крахмал, гликоген. У общей формулы полисахаридов следующий вид: (С6Н10О5)n.
К гетерополисахаридам, или гликозаминогликанам, включающим моносахариды различного типа, относятся хондроитин сульфаты, гепарин, инулин, пектины, камеди.
По функциональному назначению углеводы классифицируют на:
- структурные полисахариды: хитин, целлюлоза;
- резервные: животный гликоген, растительный крахмал.
По кислотности среди полиозов отмечают:
- Кислые сахара: кислоты – галактуроновая, глюкуроновая, маннуроновая. К представителям относятся пектины, ксантан, альгинаты.
- Нейтральные полигликозы: ксиланы, β-глюканы, маннаны.
Какова роль полиголозидов? Функции полисахаридов разнообразны:
Роль | Примеры полисахаридов | Предназначение |
---|---|---|
Запасная | Крахмал, слизи, гликоген | Аккумулирование гликанов в тканях |
Энергетическая | Инулин, гликоген, альгиновые кислоты, крахмал | Снабжение человеческого организма биоэнергией |
Опорная | Хондроитинсульфат, целлюлоза | Основа костных тканей, целлюлоза необходима при стеблеобразовании |
Структурная | Хитин, клетчатка, гиалуроновая кислота | В составе межклеточной субстанции, цементирующие свойства |
Конфакторная | Гепарин, искусственные аналоги | Уменьшение свертываемости крови |
Защитная | Гепарин, камеди, гиалуроновая кислота | Формирование смазки на клеточной поверхности: желудка, пищевода, трахеи, суставов. Защитные свойства от механических микроповреждений при трении либо вибрации извне, а также проникновения патогенных микроорганизмов. |
Гидроосматическая | Кислые гетерополимеры, в том числе мукополисахариды | Свойство удержания катионов и жидкости в клетке, создание барьера при влагонакоплении в пространстве между клетками |
Частично выработка гликана осуществляется в эпидермисе человека, что замедляет возрастные изменения. Отсюда активное применение в косметологической промышленности полисахаридов.
Физические свойства полисахаридов
Вид полиголосахаридов обуславливает физические свойства. Большинство веществ отличается:
- белой окраской;
- формой порошка;
- большой молекулярной массой;
- нерастворимостью в спиртах.
Растворимость в воде гликанов видоизменяется. Хитин и клетчатка – полиозиды, которые не растворимы в воде, но разбухают. Вещества агар-агар, пектины, альгиновые кислоты при реакции с водой образуют гели. Получают коллоидные растворы, если активные компоненты – слизи, арабин, амилоза, пектовые кислоты.
Отличие и применение наиболее популярных видов
Полезно понять, какие вещества в составе полисахаридов.
Крахмал
Включает смесь амилопектина (80 %) и амилозы (20 %). Форма молекул амилозы – спираль, в 1 витке насчитывается 6 остатков моносахарида. В структуре амилопектина – ответвления.
Этот многокомпонентный углевод синтезируется в растениях в ходе фотосинтеза и запасается в семенах, клубнях либо корешках, злаковых зернах, луковицах.
Характерные свойства биополимера:
- белый окрас вещества;
- порошковидная форма;
- мягкая структура;
- скрипение при растирании;
- отсутствие вкуса и запаха.
При разведении вещества холодной водой выпадает осадок. Если нагревают раствор и равномерно помешивают, осуществляется набухание массы, превращение вещества в киселеобразное состояние.
Источники вещества:
- корнеплоды: картофель;
- бобовые: горох, фасоль, чечевица;
- зерновые: рис, кукуруза, овес, пшеница, ячмень.
Чтобы определить присутствие крахмала в продуктах, пользуются йодом: придает этому полисахариду синий оттенок.
Пищевой продукт ценится благодаря усвояемости и насыщению организма энергией. Вещество применяется в быту для подкрахмаливания одежды, наклеивания обоев, в качестве детской присыпки. В пищевой индустрии из него получают патоку, глюкозу, этиловый спирт. Производство колбасных изделий, кетчупа, майонеза не обходится без крахмала. Он востребован в текстильной и бумажно-целлюлозной промышленности, фармакологии.
Гликоген
В составе полисахаридов — это крахмал животного происхождения. Вещество обладает ветвистой структурой, походит на амилопектин, однако в цепи гликогена насчитывается до 12 звеньев. Молекулярная масса вещества достигает 100 млн у. е. Запасной углевод встречается у человека, животных, отдельных бактерий, грибов, дрожжей. Печень и мышцы содержат до 5 и 2 % соответственно. Основное свойство гликогена — поставлять в кровь глюкозу.
Клетчатка растительная целлюлоза
Для представителя гликанов характерна прочность и эластичность. Составляющая полисахариды — нерастворимая клетчатка формирует скелет растений. Растительные волокна представляют собой пучок удлиненных нитей из фрагментов глюкозы, которые соединяются водородными связями. Особенность этого инертного вещества, не обладающего цветом и запахом, – волокнистое образование, нерастворимость в нейтральной среде. Вещество растворяется в реактиве Швейцера – аммиачном растворе Cu(ОН)2.
Полисахарид целлюлоза в организме человека впитывает воду и облегчает продвижение отходов по толстому кишечнику. В продуктах питания – это капуста (белокочанная, брюссельская, брокколи). Сюда входят отруби, яблоки, огуречная кожура, морковь. Целлюлоза используется для домашнего скота – коров, коней – как питательный ингредиент.
Растворимая клетчатка – содержимое растительных клеток в виде студня, что входит в овес, фруктовые, бобовые культуры. Свойство вещества — при контакте с жидкостью становится гелеобразным элементом. Перевариваемая клетчатка не насыщает энергией, но придает ощущение сытости, предохраняет от перепадов глюкозы в крови. Проникая в толстый кишечник, это вещество расщепляется полезными микроорганизмами, вырабатывает кислоты – масляную, уксусную. Полисахарид служит натуральным пребиотиком, его свойства отвечают за поддержку кислотного равновесия пищеварения.
Среди растворимой клетчатки отмечают вещества инулин, пектины, камеди, слизи, гиалуроновую кислоту. У каждого компонента свои характеристики и свойства.
Гепарин
Вещество относится к структурным элементам внутренней оболочки кровеносных сосудов. Накапливается в печени, легких, мышцах. Предохраняет от гемокоагуляции (свертывания крови) человека и животного. У аморфного порошка белый окрас. Состоит из фрагментов идуроновой и глюкуроновой кислоты, глюкозамина, что соединяются в цепочку при помощи α-гликозидной связи. Вес молекулы гепарина равняется 20 000 у.е. Она насчитывает не одну полисахаридную цепь, которая связывается с ядром белка. Длина цепей варьируется в диапазоне 3000–40000 Da. В лекарствах составляет 12000–16000 Да.
Химические свойства гетерополисахарида:
- синтезируется в тучных клетках (базофилах) человека и животных;
- растворяется в воде;
- сохраняется при нагревании.
Требуется в организме человека для снижения холестерина в крови, уменьшения АД. Локализуется в печени (на 1 кг веса – 1000 мг). Форма выпуска средства – раствор для инъекций и мазь для наружного применения. Ему присущи антикоагулянтные свойства.
В лечении применяется:
- для профилактики и терапии тромбоэмболии;
- при оперативном вмешательстве на сосудах и сердце для предотвращения образования кровяных сгустков в оборудовании для гемодиализа и искусственного кровотока;
- при анализе крови в медицинских лабораториях;
- в гематологии при гемотрансфузии (переливании крови).
Пектины
Открытие датируется 1825 годом. В переводе с греческого pectos означает скрутившийся, застывший. К важнейшим мономерам пектинов относят α-галактуроновую кислоту.
Желирующие и клейкие свойства вещества используются в кулинарии. Высоко их содержание в растительном сырье, фруктах. Выпускается в жидкой и порошкообразной форме. Е440 – так маркируют пектин в продуктах.
Для получения этого средства необходим фруктовый либо свекольный жмых. Добавка для консервирования в ответе за срок хранения заготовки.
Отличают пектиновые вещества с различными степенями этерификации:
- высокой – больше 50 %;
- низкой – меньше 50 %.
В человеческий организм пектиновые соединения проникают с продуктами питания растительного происхождения.
Пектин вырабатывается в большем количестве во фруктах и овощах при засухе и жаре.
Биологическая роль полисахарида:
- очистка организма;
- сохранение бактериального паритета;
- омолаживающие свойства;
- нормализация обменных процессов;
- улучшение гемодинамики и полезной микрофлоры ЖКТ.
Медики полагают: пектиновые медпрепараты помогают оздоровить человека. 15 г ежедневно – норма потребления. Их свойства ценятся в диетпитании: сжигают жир. Поглощение 25 г этого гетерополисахарида из цельных яблок приводит к потере в сутки 300 г жира.
Кондитерские изделия не обходятся без загустителя. Желирующая добавка – составляющая большинства кремов в косметологии. Ценность вещества заключается в следующих свойствах:
- разглаживание морщинок;
- повышение впитываемости компонентов в кожный покров;
- отбеливающее свойство — воздействие на эпидермис;
- защита от УФ-излучения.
Хитин
Структурные полисахариды представляет хитин. Вещество участвует в формировании скелета членистоногих, насекомых. Входит в состав клеток пивных дрожжей, различных грибов. Полисахарид походит на целлюлозу: у него неразветвленная цепочка фрагментов глюкозы, однако с дополнительными группами.
Свойства хитина используются, чтобы усилить аромат и вкус пищевых продуктов. Востребован в качестве консерванта, улучшает вид еды.
Терапевтические свойства полисахарида:
- защита от радиации;
- усиливают свойства медпрепаратов, которые снижают свертываемость и разжижают кровь;
- блокировка развития новообразований;
- повышение иммунитета;
- профилактика сердечно-сосудистых патологий – инсультов, инфарктов;
- стимуляция роста бифидобактерий;
- восстановление тканей и органов.
Области применения полисахаридов
Со средины прошлого столетия полигликозаны выпускают для пищевой отрасли и фармакологии. Но ценные свойства полисахаридов нашли применение в других сферах производства:
- на химзаводах;
- на текстильных фабриках при изготовлении искусственных материалов;
- в гидрометаллургической и микробиологической промышленности;
- при добыче нефти и газа;
- в ядерной энергетике.
Индустрию красоты трудно представить без полисахаридов — гиалуроновой кислоты и инъекционных методов: мизотерапии, биоревитализации, контурной пластики, редермализации, биоармирования.
Использование в области здравоохранения
Ценятся природные соединения полисахаридов за полезные свойства:
- повышают устойчивость организма к инфекциям;
- борются с опухолями.
Полисахариды быстрее заживляют травмы, регенерируют ткани. К тому же уменьшают вред от побочных эффектов лекарственных средств.
Во врачебной практике использование полисахаридов помогает диагностировать сальмонеллез и кандидоз. Декстраны, что вырабатываются отдельными видами микроорганизмов, относятся к заменителям плазмы. Сульфат декстрана применяется для замены гепарина в качестве антикоагулянта. Хондроитинсульфаты входят в состав хондропротекторов, укрепляют хрящи и связки, усиливают подвижность больных суставов.
Востребованы разработки медикаментов, которые содержат хитин – соединение из группы полисахаридов, как наполнитель и действующий компонент. Выпускаются ферментативные средства пролонгированного действия, содержащие декстраны с пониженной аллергичностью. Гликаны – основа при производстве зубных паст.
Полисахариды отвечают за очищение организма от радионуклидов, токсинов. Активизируют работу ЖКТ. Инулин сокращает содержание глюкозы в крови. Показан при диабете и излишнем весе. В хирургии не обойтись без крахмала. Делают специальные повязки, присыпки, обволакивающие лекарственные препараты.
Применение в пищевой промышленности
Популярны гликаны, что добывают из бактерий. Выпуск пищевых пленок предохраняет продукцию от загрязнения, плесени, усыхания, поражения патогенными микроорганизмами. Производятся как стабилизаторы:
- желе;
- мороженого;
- джема;
- сока;
- заправок для салатов;
- сиропа.
Экзополисахариды улучшают качество и свойство пищевых изделий. Добавка в хлеб обеспечивает объем, предохраняет от быстрого зачерствения. Ксантан незаменим в изготовлении молочной продукции.
Полисахариды принадлежат классу органических соединений, применяемых в разных промышленных областях. Многообразие химической природы полисахаридов обуславливает широкий перечень фармакологических свойств и востребованность в косметологии.
Источник
Молекулы полисахаридов включают десятки, сотни и даже тысячи моносахаридных остатков, соединенных такими же гликозидными связями, как и в составе олигосахаридов. Большинство из них образуют линейные полимеры, формирующие определённую пространственную структуру, однако некоторые полисахариды имеют разветвлённые молекулы. Моносахаридные остатки в составе полисахаридов находятся в циклической форме в виде α- или b-стереоизомеров.
Большинство полисахаридов представляют собой сложные углеводы, построенные из многократно повторяющихся остатков одного моносахарида. Однако известны полисахариды, молекулы которых состоят из остатков разных моносахаридов.
По выполняемым функциям различают запасные и структурные полисахариды. Запасные – откладываются в клетках листьев или запасающих тканей в виде упорядоченных структур – гранул. Структурные – участвуют в построении клеточных стенок растений.
Крахмал. Крахмал – основное запасное вещество растений, представляющее собой смесь двух полисахаридов – амилозы и амилопектuна, различающихся по строению молекулы и физико-химическим свойствам. Однако молекулы этих полисахаридов построены из одного моносахарида – α-D-глюкозы, находящейся в пиранозной форме.
В молекулах амилозы остатки a-D-глюкозы соединены а(1®4)-связями, образуя спиралевидно закрученные цепочечные структуры, включающие от 100 до 1-2 тыс. глюкозных остатков (рис. 1). Молекулярная масса амилозы обычно составляет от 20 до 500 тыс. Спиралевидное закручивание молекулы происходит вследствие образования водородных связей между остатками глюкозы, находящимися в соседних витках. В каждом витке амилозы содержится шесть пиранозных cтpyктyp, соединённых в цепочку гликозидными связями.
Амилоза растворяется в теплой воде и при добавлении водного раствора йода в йодистом калии окрашивается в синий цвет вследствие того, что йод образует комплeксы с остатками глюкозы. Водные растворы амилозы не отличаются высокой вязкостью и при стоянии довольно быстро образуют кристаллический осадок.
Амилопектин имеет разветвлённые молекулы, построенные из α-D-глюкозы. В точках ветвления гликозидные связи образуются между первым и шестым углеродными атомами глюкозных остатков (α(I®6)-связи). Между точками ветвления глюкозные остатки так же, как в амилозе, соединеныα(I®4)-связями.
Точки ветвления в молекулах амилопектина имеются через каждые 12-15 остатков глюкозы. Молекулярная масса амилопектина значительно больше, чем у амилозы, и может достигать 1 млн. Схема строения молекулы амилопектина показана на рисунке 2.
Амилопектин в тёплой воде не растворяется, а при более сильном нагревании с водой образует очень вязкий коллоидный раствор – клейстер. Температура клейстеризации картофельного и ржаного крахмала 55-65°С, пшеничного и кукурузного – 60-70°С, крахмала риса – 70-80°C. Йодом амилопектин окрашивается в красно-фиолетовый цвет. В амилопектине в небольшом количестве содержатся остатки фосфорной кислоты, соединённые эфирной связью с остатками глюкозы.
Соотношение амилозы и амилопектина в различных растительных продуктах изменяется в очень широких пределах. В картофельном крахмале на долю амилозы приходится около 20%, пшеничном и кукурузном – около 25%, рисовом – 15-20%, в крахмале гороха и некоторых сортов кукурузы – 50-80%. Крахмал яблок почти полностью состоит из амилозы, а крахмал восковидных сортов кукурузы – только из амилопектина.
У одного и того же вида растений содержание амилозы и амилопектина в крахмале может изменяться в зависимости от фазы развития и условий внешней среды. В разных органах растений синтезируется крахмал совершенно определенного состава. Так, например, в крахмале клубней картофеля обычно содержится 19-22% амилозы, а в молодых побегах в два раза больше.
В растениях крахмал образуется в листьях как продукт фотосинтеза, а также в зерновках и семенах, клубнях, корневищах, утолщенных частях стеблей как запасное вещество. Фотосинтетический крахмал откладывается в хлоропластах в виде гранул, называемых крахмальными зёрнами, и довольно быстро используется в процессе дыхания и для синтеза других веществ. Значительная его часть превращается в транспортную форму углеводов – сахарозу, которая по флоемной системе поступает в нефотосинтезирующие органы, распадается там до глюкозы и фруктозы и в виде моносахаридов включается в различные биосинтетические процессы.
Запасной крахмал также откладывается в виде зёрен и у целого ряда растений накапливается в значительном количестве в запасающих тканях и органах. В зерне злаковых его содержание обычно составляет 50-70%, в рисе -75-80%, в зерне зернобобовых культур – 30-50%, в клубнях картофеля – 12-20%, в клубнях батата, ямса и маниока – 20-30%, в листьях растений – до 1-2%.
Крахмальные зёрна чаще всего имеют вид овальных или сферических частиц (рис. 3), имеющих разную форму и размеры (2-170 мкм). Под микроскопом можно различить их слоистое строение. Размеры и строение крахмальных зёрен у разных видов и даже сортов растений имеют характерную специфику и могут использоваться для идентификации генотипов, а также обнаружения примесей одного растительного продукта в другом.
Запасной крахмал вначале откладывается в пластидах, называемых амилопластами. По мере наполнения происходит постепенная деградация их мембранной структуры и они превращаются в крахмальные зерна.
Крахмалоносные растения представляют легковозобновляемое сырье для перерабатывающей промышленности, которое используется для получения продовольственного и технического крахмала, глюкозы, этилового спирта и даже пластмасс, обладающих высокой прочностью и экологической безопасностью (при сгорании не дают ядовитых выделений).
Полифруктозиды. В растениях семейств лилейные, мятликовые, астровые, колокольчиковые синтезируются запасные углеводы, построенные из 4-40 остатков b-D-фруктозы, в связи с чем их называют полифруктозидами, или фруктанами. Остатки фруктозы в их молекулах соединены гликозидными связями, образующимися между вторым и первым углеродными атомами (b (1®2)-связи).
Полифрутозиды содержатся в листьях, корнях, семенах указанных выше растений, накапливаются в значительном количестве в нижней утолщённой части стеблей мятликовых трав (до 6-8% сухой массы) и в созревающих зерновках злаковых культур (рожь, пшеница, ячмень, овёс). В листьях они являются основными продуктами фотосинтеза, тогда как фотосинтетический крахмал у этих растений не образуется.
Из полифруктозидов наиболее хорошо изучен инулин, содержащий в молекуле 37-44 фруктозных остатка. К одному из концов молекулы инулина присоединён остаток α-D-глюкозы. Молекулярная масса инулина 5-6 тыс. Он хорошо растворяется в горячей воде, не обладает восстановительными свойствами, хорошо усваивается организмами человека и животных, в связи с чем растения, способные накапливать инулин, используются как кормовые культуры и как сырьё для промышленного получения фруктозы. Фруктозу получают из инулина путём его кислотного гидролиза.
Большое количество инулина содержится в клубнях георгина и артишока (до 50%), топинамбура (10-12%), корнях цикория (свыше 10%). В чесноке общее содержание полифруктозидов достигает 20-30% и половину из них составляет инулин.
Целлюлоза. Целлюлоза, или клетчатка – довольно устойчивое вещество волокнистого строения, не растворяется в воде и органических растворителях, однако хорошо растворимо в аммиачном растворе гидроксида меди (реактив Швейцера). Молекулы целлюлозы состоят из остатков b–D-глюкозы,соединенных b(1®4)-связями. В каждой молекуле целлюлозы может содержаться 1500-10000 пиранозных остатков b–D-глюкозы, образующих неразветвлённый полимер.
Между линейно вытянутыми молекулами целлюлозы, имеющими свободные гидроксильные группы, возникают водородные связи, с помощью которых нитевидные полимеры, построенные из остатков глюкозы, объединяются в пучки, включающие несколько десятков молекул. Такие целлюлозные пучки, или фибриллы, обладают очень высокой прочностью и служат структурной основой клеточных стенок растений. Как видно на электронной микрофотографии клеточной оболочки (рис. 4), целлюлозные фибриллы размещаются слоями, образуя сетчатую структуру, сквозь которую свободно проникает вода с растворенными в ней веществами.
Целлюлоза в том или ином количестве содержится во всех растительных тканях. Особенно много целлюлозы в растительных волокнах (хлопковом, льняном) – 80-95%, древесине и соломе – 40-50%. В других растительных продуктах её значительно меньше: зерно злаковых и зернобобовых культур – 2-6%, зерно пленчатых злаков – 7-14%, семена масличных – 5-25%, клубни картофеля – около 1 %, корнеплоды – 0,5-1,5%, овощи 0,5-1,2% (томаты – 0,2%), плоды и ягоды – 0,5-2%, вегетативная масса кормовых трав – 20-30% (последний показатель – в расчёте на сухую массу).
Целлюлоза практически не усваивается организмами человека и нежвачных животных, тогда как жвачные животные способны её усваивать с помощью ферментов микроорганизмов, обитающих в преджелудках этих животных и участвующих в процессах пищеварения.
При нагревании с раствором кислоты целлюлоза подвергается гидролизу, превращаясь в глюкозу, которая используется как источник углерода для культивирования дрожжевых клеток с целью промышленного получения этилового спирта и кормовых дрожжей с повышенным содержанием белков и витаминов. При этом в качестве источника целлюлозы служат отходы древесины и целлюлозосодержащие растительные остатки – солома, корзинки подсолнечника, льняная костра, стержни кукурузных початков, свекловичная меласса, картофельная мезга, хлопковая шелуха и др. Большое количество целлюлозы расходуется для химической переработки.
В построении клеточных стенок растений наряду с целлюлозой участвуют также другие структурные полисахариды – гемицеллюлозы и пектиновые вещества, которые связаны с молекулами целлюлозы водородными связями.
Гемицеллюлозы. Гемицеллюлозы – это смесь полисахаридов, образу-ющих при гидролизе маннозу, галактозу, ксилозу, арабинозу и уроновые кислоты – глюкуроновую и галактуроновую. Они нерастворимы в воде, но растворяются в щелочных растворах. В клеточных стенках растений содержание гемицеллюлоз составляет около 30%. Много их накапливается в древесине и соломе (10-30%), оболочках семян, кукурузных початках, отрубях, вегетативной массе растений. Разные виды растений заметно различаются по составу гемицеллюлоз.
ГАЛАКТАНЫ. Их молекулы построены из остатков b-D-галактозы, соединённых b(1®4)-связями. В каждой молекуле объединяются более 100 остатков галактозы.
Галактаны содержатся в составе клеточных стенок многих растений, особенно много их в семенах люпина.
МАННАНЫ. Остатки маннозы в маннанах соединены b(1®4)-связями. В каждой молекуле насчитывается от 200 до 400 моносахаридных единиц. Много маннанов содержится в древесине хвойных деревьев и в клеточных стенках водорослей.
КСИЛАНЫ. Их молекулы построены из остатков b-D-ксилозы в пиранозной форме, соединённых b(1®4)-связями. В составе полимера могут находиться до 200 ксилозных остатков. В соломе и древесине содержание ксиланов достигает 25-28%.
В молекулах ксиланов обычно имеются ответвления в виде остатков арабинозы, а также глюкуроновой и галактуроновой кислот. Ответвления чаще всего образуются за счёт этерификации третьего углеродного атома ксилозы. Карбоксильные группы остатков уроновых кислот образуют эфиры с метиловым спиртом. Ксиланы разных растений отличаются частотой и моносахаридным набором ответвлений в молекуле.
АРАБАНЫ. Это полисахариды клеточной стенки растений, которые состоят из остатков a-L-арабинозы, соединённых гликозидной связью между первым и пятым углеродными атомами. Приэтом к каждому второму остатку арабинозы в линейной структуре присоединён в виде ответвления еще один остаток арабинозы. В ответвлениях связь образуется между третьим углеродным атомом арабинозы, находящейся в цепочке, и первым углеродным атомом бокового остатка арабинозы.
Как и целлюлоза, гемицеллюлозы не усваиваются организмом человека, но могут усваиваться жвачными животными с помощью ферментов микроорганизмов, находящихся в преджелудках.
ГЛЮКАНЫ. К глюканам относятся полисахариды, образуемые из b-D-глюкозы,но в их молекулах остатки глюкозы соединяются не только b(1®4) -связями, как в целлюлозе, но также и b(1®3)-связями или только b(1®3)- связями. К таким полисахаридам относятся каллоза и лихенин. Каллоза – полисахарид, включающий до 100 остатков b-D-глюкозыв молекуле, соединённых b(1®3)-связями. Она содержится в ситовидных трубках флоэмной системы растений. В молекулах лихенина остатки b-D-глюкозы соединены как b(1®4)-связями, так и b(1®3)-связями (встречаются с частотой около 30%). Лихенин входит в состав клеточных стенок растений, особенно много его в лишайниках.
Пектиновые вещества. Пектиновые вещества в растениях представлены двумя группами соединений – пектинами и протопектинами, которые различаются строением и физико-химическими свойствами.
Пектины – водорастворимые полисахариды, построенные из остатковα-D-галактуроновой кислоты, которые соединены α(1®4)-связями. Большая часть карбоксильных групп остатков галактуроновой кислоты связана эфирными связями с остатками метилового спирта, а к другим карбоксильным группам присоединены катионы кальция или магния. В каждой молекуле пектина содержится более 100 остатков галактуроновой кислоты.
Основная масса пектиновых веществ растений представлена протопектином, который находится в структуре клеточных стенок. Протопектин образуется в результате связывания эфирными связями пектина с галактанами и арабанами, входящими в состав клеточной стенки растения. Эфирные связи возникают между карбоксильными группами пектина и гидроксильными группами гемицеллюлоз.
Полисахариды протопектина нерастворимы в воде и имеют более высокую молекулярную массу по сравнению с пектинами. Много протопектина накапливается в формирующихся плодах rpуши, яблони, цитрусовых, айвы, что обусловливает их жёсткую консистенцию. При созревании плодов происходит превращение протопектинов в пектины, вследствие чего их консистенция становится мягкой.
Общее содержание пектиновых веществ в плодах и ягодах составляет 0,3-1,5%, в корнеплодах – 1,5-2,5%, клубнях картофеля 0,1-0,5%, в томатах – 0,1-0,2%, в капусте – 0,3-2,0%, в кожуре апельсина и лимона – 4-7%.
Характерная особенность пектиновых веществ плодов и ягод – способность образовывать желе, или студни, в насыщенном растворе сахара (65-70%) и кислой среде (рН 3,1-3,5). Лучшей желирующей способностью обладают более высокомолекулярные полисахариды пектиновых веществ.
В стеблях льна пектиновые вещества скрепляют между собой волокна. Для отделения раcтитeльных волокон производится росяная или водяная мочка льносоломы, при которой происходит гидролиз пектиновых веществ под действием ферментов микроорганизмов.
Камеди и слизи. Это растворимые в воде полисахариды, образующие очень вязкие растворы вследствие их набухания.
Растительные камеди выделяются на стволах и ветвях некоторых деревьев (вишневых, сливовых, миндальных) в виде клейких наплывов при повреждениях. При гидролизе они дают галактозу, маннозу, рамнозу, арабинозу, ксилозу, а также уроновые кислоты.
Слизи, откладываясь между плазмалеммой и клеточной стенкой, способствуют удерживанию воды в клетках и полостях растения, защищают от проникновения инфекции. При их гидролизе в основном образуются пентозы (арабиноза и ксилоза), а также небольшое количество галактозы, глюкозы и фруктозы.
Много слизей содержится в семенах льна, клевера, люцерны, ржи и некоторых других растений. Повышенная вязкость ржи при размоле вызвана наличием именно слизей, вследствие чего зерно ржи размалывается значительно труднее, чем пшеница. Содержащиеся в ржаной муке слизи замедляют гидролитические процессы при формировании теста и тем самым улучшают его формоудерживающую способность.
Камеди и слизи из различных растительных источников существенно отличаются набором и удельным соотношением образующих их полисахаридов. Они состоят из молекул разной степени полимеризации, многие из которых имеют довольно высокую степень ветвления.
Вопросы для повторения.
1. Каковы структурные особенности стереоизомеров моносахаридов, относящихся к D-или L-ряду? 2. Как образуются циклические формы моносахаридов и в чём состоят различия а– и b-стереоизомеров? 3. Как записывается структура пиранозных и фуранозных форм моносахаридов с помощью формул Хеуорса? 4. Какие образуются конформации молекул у гексоз и пентоз? 5. Как образуются окисленные и восстановленные производные, а также фосфорнокислые эфиры моносахаридов? 6. В чём состоят особенности образования гликозидов, дезокси- и аминопроизводных моносахаридов? 7. Каковы структурные и биологические особенности важнейших альдоз и кетоз? 8. Как образуются молекулы сахарозы, мальтозы, целлобиозы, b-левулина и других олигосахаридов? 9. Из каких моносахаридов и по какому принципу строятся молекулы важнейших полисахаридов – крахмала, полифруктозидов, целлюлозы и гемицеллюлоз, пектиновых веществ, камедей и слизей? 10. Какие биологические функции выполняют указанные выше олигосахариды и полисахариды? 11. Каково содержание сахаров и различных полисахаридов в растительных продуктах? 12. Какие моносахариды и олигосахариды относятся к редуцирующим сахарам? 13. Какое значение имеют углеводы в формировании качества растительных продуктов? 14. Из каких основных компонентов состоит крахмал и каковы строение и свойства этих компонентов? 15. Какие известны разновидности гемицеллюлоз и пектиновых веществ?
Источник