Какие свойства трапеции являются существенными

Определение.

Трапеция — это четырехугольник, у которого две стороны параллельны, а две другие стороны не параллельны.

Параллельные стороны называются основами трапеции, а две другие боковыми сторонами

Так же, трапецией называется четырехугольник, у которого одна пара противоположных сторон параллельна, и стороны не равны между собой.

Элементы трапеции:

  • Основы трапеции – параллельные стороны
  • Боковые стороны – две другие стороны
  • Средняя линия – отрезок, соединяющий середины боковых сторон.

Виды трапеций:

  • Равнобедренная трапеция – трапеция, у которой боковые стороны равны
  • Прямоугольная трапеция – трапеция, у которой одна из боковых сторон перпендикулярна основам

Основные свойства трапеции

1. В трапецию можно вписать окружность, если сумма длин оснований равна сумме длин боковых сторон:

AB + CD = BC + AD

2. Средняя линия трапеции разделяет пополам любой отрезок, который соединяет основы, так же делит диагонали пополам:

AK = KB, AM = MC, BN = ND, CL = LD

3. Средняя линия трапеции параллельна основаниям и равна их полусумме:

4. Точка пересечения диагоналей трапеции и середины оснований лежат на одной прямой.

5. В трапеции её боковая сторона видна из центра вписанной окружности под углом 90°.

6. Каждая диагональ в точке пересечения делится на две части с таким соотношением длины, как соотношение между основаниями:

BC : AD = OC : AO = OB : DO

7. Диагонали трапеции d1 и d2 связаны со сторонами соотношением:

d12 + d22 = 2ab + c2 + d2

Сторона трапеции

Формулы определения длин сторон трапеции:

1. Формула длины оснований трапеции через среднюю линию и другую основу:

a = 2m – b

b = 2m – a

2. Формулы длины основ через высоту и углы при нижнем основании:

a = b + h · (ctg α + ctg β)

b = a – h · (ctg α + ctg β)

3. Формулы длины основ через боковые стороны и углы при нижнем основании:

a = b + c·cos α + d·cos β

b = a – c·cos α – d·cos β

4. Формулы боковых сторон через высоту и углы при нижнем основании:

с = h       d = h
sin αsin β

Средняя линия трапеции

Определение.

Средняя линия – отрезок, соединяющий середины боковых сторон трапеции.

Формулы определения длины средней линии трапеции:

1. Формула определения длины средней линии через длины оснований:

2. Формула определения длины средней линии через площадь и высоту:

Высота трапеции

Формулы определения длины высоты трапеции:

1. Формула высоты через сторону и прилегающий угол при основании:

h = c·sin α = d·sin β

2. Формула высоты через диагонали и углы между ними:

h = sin γ ·d1d2 = sin δ ·d1d2
a + ba + b

3. Формула высоты через диагонали, углы между ними и среднюю линию:

h = sin γ ·d1d2 = sin δ ·d1d2
2m2m

4. Формула высоты трапеции через площадь и длины оснований:

5. Формула высоты трапеции через площадь и длину средней линии:

Диагонали трапеции

Формулы определения длины диагоналей трапеции:

1. Формулы диагоналей по теореме косинусов:

d1 = √a2 + d2 – 2ad·cos β

d2 = √a2 + c2 – 2ac·cos β

2. Формулы диагоналей через четыре стороны:

d1 = d 2 + ab – a(d 2 – c2)
a – b
d2 = c2 + ab – a(c2 – d 2)
a – b

3. Формула длины диагоналей через высоту:

d1 = √h2 + (a – h · ctg β)2 = √h2 + (b + h · ctg α)2

d2 = √h2 + (a – h · ctg α)2 = √h2 + (b + h · ctg β)2

4. Формулы длины диагонали через сумму квадратов диагоналей:

d1 = √c2 + d 2 + 2ab – d22

d2 = √c2 + d 2 + 2ab – d12

Площадь трапеции

Формулы определения площади трапеции:

1. Формула площади через основания и высоту:

2. Формула площади через среднюю линию и высоту:

S = m · h

3. Формула площади через диагонали и угол между ними:

S = d1d2 · sin γ = d1d2 · sin δ
22

4. Формула площади через четыре стороны:

S = a + bc2 –((a – b)2 + c2 – d 2)2
22(a – b)

5. Формула Герона для трапеции

S = a + b√(p – a)(p – b)(p – a – c)(p – a – d)
|a – b|

где

p = a + b + c + d  – полупериметр трапеции.
2

Периметр трапеции

Формула определения периметра трапеции:

1. Формула периметра через основания:

P = a + b + c + d

Окружность описанная вокруг трапеции

Окружность можно описать только вокруг равнобедренной трапеции!!!

Формула определения радиуса описанной вокруг трапеции окружности:

1. Формула радиуса через стороны и диагональ:

R = a·c·d1
4√p(p – a)(p – c)(p – d1)

где

a – большее основание

Окружность вписанная в трапецию

В трапецию можно вписать окружность, если сумма длин оснований равна сумме длин боковых сторон:

a + b = c + d

Формула определения радиуса вписанной в трапецию окружности

1. Формула радиуса вписанной окружности через высоту:

Другие отрезки разносторонней трапеции

Формулы определения длин отрезков проходящих через трапецию:

1. Формула определения длин отрезков проходящих через трапецию:

KM = NL = b   KN = ML = a   TO = OQ = a · b
22a + b

Источник

Трапе́ция (от др.-греч. τραπέζιον — «столик» от τράπεζα — «стол») — выпуклый четырёхугольник, у которого две стороны параллельны. Часто в определение трапеции добавляют условие, что две другие стороны должны быть не параллельны[1]. Параллельные противоположные стороны называются основаниями трапеции, а две другие — боковыми сторонами. Средняя линия — отрезок, соединяющий середины боковых сторон.

Читайте также:  Какие свойства проявляет оксид железа

Варианты определения[править | править код]

Существует и другое определение трапеции.

Трапеция — это выпуклый четырёхугольник, у которого две стороны параллельны[2][3]. Согласно этому определению, параллелограмм и прямоугольник — частные случаи трапеции. Однако при использовании такого определения большинство признаков и свойств равнобедренной трапеции перестают быть верными (так как параллелограмм становится её частным случаем). Приведённые в разделе Общие свойства формулы верны для обоих определений трапеции.

Связанные определения[править | править код]

Элементы трапеции[править | править код]

Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой

  • Параллельные противоположные стороны называются основаниями трапеции.
  • Две другие стороны называются боковыми сторонами.
  • Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции.
  • Углом при основании трапеции называется ее внутренний угол, образованный основанием с боковой стороной.

Виды трапеций[править | править код]

  • Трапеция, у которой боковые стороны равны, называется равнобедренной трапецией (реже равнобокой[4] или равнобочной[5] трапецией).
  • Трапеция, имеющая прямые углы при боковой стороне, называется прямоугольной.
  • Равнобедренная трапеция

  • Прямоугольная трапеция

Свойства[править | править код]

Основной источник: [6]

  • Средняя линия трапеции параллельна основаниям и равна их полусумме.[7]
  • Отрезок, соединяющий середины диагоналей трапеции, равен половине разности оснований и лежит на средней линии.
  • Отрезок, параллельный основаниям и проходящий через точку пересечения диагоналей, делится последней пополам и равен среднему гармоническому длин оснований трапеции.
  • В трапецию можно вписать окружность, если сумма длин оснований трапеции равна сумме длин её боковых сторон.
  • Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой.
  • Если сумма углов при одном из оснований трапеции равна 90°, то продолжения боковых сторон пересекаются под прямым углом, а отрезок, соединяющий середины оснований, равен полуразности оснований.
  • Диагонали трапеции делят ее на 4 треугольника. Два из них, прилежащие к основаниям, подобны. Два других, прилежащие к боковым сторонам, имеют одинаковую площадь.
  • Если отношение оснований равно , то отношение площадей треугольников, прилежащих к основаниям, равно .
  • Высота трапеции определяется формулой:

где  — большее основание,  — меньшее основание, и  — боковые стороны.
Их можно выразить в явном виде:

Если, наоборот, известны боковые стороны и диагонали, то основания выражаются формулами:

а при известных основаниях и диагоналях боковые стороны следующие:

Если же известна высота , то

  • Прямая Ньютона для трапеции совпадает с её средней линией.

Равнобедренная трапеция[править | править код]

Трапеция является равнобедренной тогда и только тогда, когда выполнено любое из следующих эквивалентных условий:

  • прямая, которая проходит через середины оснований, перпендикулярна основаниям (то есть является осью симметрии трапеции);
  • высота, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, другой — полуразности оснований;
  • углы при любом основании равны;
  • сумма противоположных углов равна 180°;
  • длины диагоналей равны;
  • вокруг этой трапеции можно описать окружность;
  • вершинами этой трапеции также являются вершины некоторого антипараллелограмма.

Кроме того

  • если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.

Вписанная и описанная окружность[править | править код]

  • Если сумма оснований трапеции равна сумме боковых сторон, то в неё можно вписать окружность. Средняя линия в этом случае равна сумме боковых сторон, делённой на 2 (так как средняя линия трапеции равна полусумме оснований).
  • В трапеции её боковая сторона видна из центра вписанной окружности под углом 90°.
  • Если трапецию можно вписать в окружность – то она равнобедренная.
  • Радиус описанной окружности равнобедренной трапеции:[источник не указан 1988 дней]

где  — боковая сторона,  — бо́льшее основание,  — меньшее основание,  — диагонали равнобедренной трапеции.

  • Если , то в равнобедренную трапецию можно вписать окружность радиуса

Площадь[править | править код]

Здесь приведены формулы, свойственные именно трапеции. См. также формулы для площади произвольных четырёхугольников.

Примечание: Приведённые выше две формулы эквивалентны, так как полусумма оснований равняется средней линии трапеции:

или

  • Средняя линия разбивает фигуру на две трапеции, площади которых соотносятся как[8]
  • Площадь равнобедренной трапеции:

где  — боковая сторона,  — бо́льшее основание,  — меньшее основание,  — угол между бо́льшим основанием и боковой стороной[9].

  • Площадь равнобедренной трапеции через её стороны

История[править | править код]

Слово “трапеция” происходит от греческого слова др.-греч. τραπέζιον «столик» (уменьш. от τράπεζα «стол»), означающего стол. В русском языке от этого слова происходит слово “трапеза” (еда).

Примечания[править | править код]

Источник

Беседа 5. Математические понятия и их определения

Всякий математический объект обладает какими-то свойствами. Так, например, треугольник обладает такими свойствами: имеет три стороны; 2) три внутренних угла; 3) шесть попарно равных внешних углов и т. д. Подобные утверждения о наличии или отсутствии у данного объекта какого-либо свойства называются суждениями. Вот еще примеры суждений: 1) четырехугольник имеет две диагонали; 2) за каждым натуральным числом непосредственно следует в натуральном ряду другое натуральное число; 3) четное число делится на два и т. д.

Суждениями являются также предложения, указывающие на отношения или связи объектов, например: “5 больше 3”, “АВ является стороной треугольника ABC“, “Угол А не является смежным с углом В” и т. д. А вот вопросы или требования не являются суждениями.?

Читайте также:  Каким свойством должен обладать алгоритм

Среди свойств какого-либо объекта имеются существенные и несущественные для его определения. Свойство является существенным, если оно присуще этому объекту и без него оно не может существовать. Несущественные свойства – это обычно случайные, их отсутствие, как правило, не влияет на существование объекта. Заметим, что при решении конкретных задач несущественные вообще свойства объектов могут иметь и существенное значение для решения данной задачи.

Рис. 3
Рис. 3

Рассмотрим, например, равнобедренный треугольник, изображенный на рис. 3. Его свойства: 1) стороны треугольника АВ и ВС равны; 2) медиана BD перпендикулярна основанию АС и делит угол В пополам – это существенные свойства этого треугольника. А вот свойства: 3) основание АС равнобедренного треугольника ABC горизонтально или 4) вершина равнобедренного треугольника обозначена буквой В – являются несущественными. Если мы как-то повернем этот треугольник и его основание при этом окажется расположено не горизонтально или обозначим вершину какой-то другой буквой, то ведь треугольник не перестанет быть равнобедренным.

Поэтому, чтобы понимать, что это за объект, достаточно знать его существенные свойства. В этом случае говорят, что имеется понятие об этом объекте. Следовательно, понятие – это целостная совокупность суждений о существенных свойствах соответствующего объекта. Эта совокупность взаимосвязанных свойств объекта (поэтому она называется целостной) называется содержанием понятия об этом объекте.

Заметим, что когда говорят о математическом объекте, то обычно имеют в виду все множество объектов, обозначаемых одним термином (названием). Так, когда говорят о математическом объекте – треугольнике, то имеют в виду все геометрические фигуры, являющиеся треугольниками. Множество всех треугольников составляет объем понятия о треугольнике. Точно так же множество всех натуральных чисел составляет объем понятий о натуральном числе. Следовательно, объем понятия – это множество всех объектов, обозначаемых одним и тем же термином.

Итак, всякое понятие имеет определенный объем и содержание. Они взаимосвязаны: чем больше объем понятия, тем меньше его содержание, и наоборот: чем меньше объем, тем больше содержание понятия. Так, например, объем понятия “равнобедренный треугольник” меньше объема понятия “треугольник”, ибо в объем первого понятия входят не все треугольники, а лишь равнобедренные. А вот содержание первого понятия, очевидно, больше содержания второго, ибо равнобедренный треугольник обладает не только всеми свойствами треугольника, но и особыми свойствами, присущими только равнобедренным треугольникам.

В содержание понятия о каком-либо математическом объекте входят много различных существенных свойств этого объекта. Однако, для того чтобы распознать объект, установить, принадлежит ли он к данному понятию или нет, достаточно проверить наличие у него лишь некоторых существенных свойств. Указание этих существенных свойств объекта понятия, которые достаточны для распознавания этого объекта, называется определением понятия.

Всякое определение математического понятия строится обычно так: сначала указывается название объекта этого понятия, затем перечисляются такие его существенные свойства, которые позволяют установить, является ли тот или иной предмет объектом данного понятия или нет.

Например, определение параллелограмма: “Параллелограммом называется четырехугольник, противоположные стороны которого параллельны”. Как видим, это определение построено так: сначала указано название объекта определяемого понятия – параллелограмм, затем указаны такие его свойства: 1) параллелограмм – это четырехугольник; 2) противоположные его стороны параллельны. Первое свойство – это указание того более общего понятия, к которому принадлежит определяемое понятие. Это более общее понятие называется родовым по отношению к определяемому понятию. В данном случае родовым понятием для параллелограмма является четырехугольник. Второе свойство – это указание видового свойства, которое отличает параллелограмм от других видов четырехугольника. Вот еще пример определения: “Четными числами называются такие натуральные числа, которые кратны числу 2”. Это определение, так же как и предыдущее, построено по такой схеме:

В данном случае мы имеем: название определяемого понятия – четные числа, родовое понятие – натуральные числа, видовые отличия – кратны числу 2.

Определение понятий по этой схеме называется определением через род и видовые отличия.

Иногда в математике встречаются и другие способы определения понятий. Рассмотрим, например, определение треугольника: “Треугольником называется фигура, которая состоит из трех точек, не лежащих на одной прямой, и трех попарно соединяющих их отрезков”. В этом определении указано родовое понятие для треугольника – фигура, а в качестве видового отличия указан способ построения такой фигуры, которая является треугольником: нужно взять три точки, не лежащие на одной прямой, и соединить каждую их пару отрезком. Такое определение называется генетическим (от слова генезис – происхождение). Вот еще пример генетического определения: “Симметрией относительно точки называется такое преобразование фигуры F в фигуру F’ при котором каждая точка X фигуры F переходит в точку X’ фигуры F’, построенной следующим образом: на продолжении отрезка ОХ за точку О откладывается отрезок ОХ’, равный ОХ“. Здесь в качестве видовых отличий преобразования симметрии относительно точки от других видов преобразований указан способ построения точек фигуры F’, симметричной фигуре F относительно точки О.

Читайте также:  Какие свойства есть в фотоаппарате

Встречаются в математике и такие определения, в которых указывается, как можно получить объекты определяемого понятия один за другим по порядку. Например, определение арифметической прогрессии дается таким образом: “Числовая последовательность, каждый член которой, начиная со второго, равен предшествующему члену, сложенному с одним и тем же числом, называется арифметической прогрессией”. Здесь определяемое понятие – арифметическая прогрессия, родовое понятие – числовая последовательность, в качестве видового отличия указан способ получения всех членов прогрессии, начиная со второго, состоящий в том, что для получения какого-либо члена надо к предшествующему члену прибавить одно и то же число. Это определение можно записать в виде следующей формулы:

Такое определение называется индуктивным (от слова индукция – наведение на умозаключение от частного к общему) или рекуррентным (от слова рекурсия – возвращение).

Однако не все математические понятия могут быть логически определены указанными выше способами. Действительно, каждое определение математического понятия сводит определяемое понятие к более широкому (более общему, т. е. имеющему больший объем) родовому понятию, определение родового понятия сводит его к еще более широкому понятию и т. д. Очевидно, что этот процесс сведения одних понятий к более широким, более общим понятиям должен иметь конец, он не может быть бесконечным. Иными словами, в конечном итоге определения понятий мы должны прийти к таким понятиям, которые уже не сводимы к другим, т. е. они логически не определяемы. Такие понятия в математике называются первичными или основными.

Например, определяя параллелограмм, мы сводим его к понятию четырехугольника, определяя четырехугольник, мы сводим его к понятию многоугольника, затем к понятию геометрической фигуры, которая сводится при определении к понятию точки. Понятие точки уже является не определяемым, т. е. первичным. Первичными понятиями в математике, кроме точки, являются понятия прямой, плоскости, принадлежать, числа, множества (совокупность) и некоторые другие.

Итак, второе, чему нужно научиться в математике, – это умению строить определения математических понятий каким-либо способом. Это умение довольно сложное, и мы о нем поговорим еще в следующей беседе. А пока выполните следующее задание, чтобы закрепить те сведения, которые вы получили в данной беседе.

Задание 3

3.1. Какие из приведенных ниже свойств трапеции являются существенными, а какие несущественными:

а) Две стороны трапеции параллельны.

б) Оба угла при большем основании острые.

в) Сумма углов трапеции, принадлежащих к одной боковой стороне, равна 180°.

г) Основания трапеции горизонтальны.

д) Оба угла при меньшем основании трапеции тупые.

3.2. Как связаны между собой математические объекты и математические понятия?

3.3.Укажите, какие из приведенных ниже предложений являются суждениями, а какие ими не являются:

а) В треугольнике проведены три медианы.

б) Медианы треугольника пересекаются в одной точке.

в) Чему равно произведение степеней с одинаковыми основаниями?

г) Логарифм произведения положительных чисел равен сумме логарифмов множителей.

3.4. В приведенных ниже определениях выделите название объектов определяемых понятий, родовое понятие и видовые отличия:

а) Числа, которые можно записать в виде обыкновенных дробей, называются рациональными.

б) Арифметическим квадратным корнем из числа а называется неотрицательное число, квадрат которого равен а.

в) Две прямые на плоскости называются параллельными, если они не пересекаются.

г) Если точка О является серединой отрезка АВ, то точки A и В называются симметричными точками относительно точки О.

3.5. Сформулируйте генетическое определение окружности, зная, что она образуется в результате вращения отрезка на плоскости вокруг одного из его концов, второй конец этого отрезка в этом случае описывает окружность.

3.6. Члены последовательности Фибоначчи (ок. 1170-1250) задаются с помощью следующей формулы: аn+2=аn+1+an. Сформулируйте определение этой последовательности. Какое это определение?

3.7. Приводим следующее описание построения перпендикулярных прямых: “Пусть а и b – две пересекающиеся прямые. При их пересечении образуются четыре угла. Пусть α – один из этих углов. Тогда любой из остальных трех углов будет либо смежным с углом α, либо вертикальным с углом α. Отсюда следует, что если один из углов прямой, то остальные углы тоже прямые. В этом случае мы говорим, что прямые пересекаются под прямым углом, и называем их перпендикулярными“.

На основе этого описания сформулируйте определение перпендикулярных прямых.

3.8. Модуль числа определяется следующей формулой:

Сформулируйте словесное определение модуля числа.

3.9. Последовательность называется возрастающей, если каждый ее член больше предыдущего члена. Запишите это определение с помощью формулы.

3.10.Как вы знаете, равнобедренный треугольник – это такой треугольник, у которого две стороны равны, а правильный треугольник – это такой, у которого все стороны равны. Является ли правильный треугольник равнобедренным?

3.11. Укажите ближайшие родовые понятия для следующих понятий: а) квадрат; б) степень с натуральным показателем; в) вертикальные углы; г) простое число; д)хорда.

3.12. Укажите несколько родовых понятий для понятия ромб.

3.13. Нужно ли (и можно ли) доказывать определения?

Источник