Какие свойства у атомов

Какие свойства у атомов thumbnail

1.7 Свойства атомов и их периодичность

Такие характеристики атомов, как их радиус, энергия ионизации, сродство к электрону, электроотрицательность, степень окисления, связаны с электронным строением атома.

За радиус свободного атома принимают положение главного максимума плотности внешних электронных оболочек. Это так называемый орбитальный радиус.

Элементы одного и того же периода имеют одинаковое количество электронных слоев. Поэтому в одном периоде по мере увеличения заряда ядра увеличивается сила притяжения электронов к ядру, что вызывает уменьшение радиуса атома. Например, при переходе от лития к фтору заряд ядра атома растет от $$ 3$$ до $$ 9$$, а радиус атома постепенно уменьшается – от $$ mathrm{0,152}$$ до $$ mathrm{0,064}$$ нм. Согласно закону Кулона, притяжение электронов ядром в пределах периода слева направо увеличивается, а, следовательно, уменьшается способность атомов элементов отдавать электроны, то есть проявлять восстановительные (металлические) свойства. Окислительные (неметаллические) свойства, напротив, становятся все более выраженными и достигают максимального проявления у фтора.

Если атом лития легко теряет свой единственный $$ 2{s}^{1}$$-электрон, то у последующих элементов второго периода тенденция к потере электронов ослабевает по мере увеличения числа электронов. Так, у атома углерода $$( 1{s}^{2}2{s}^{2}2{р}^{2})$$ способность отдавать электроны или присоединять их до полного заполнения электронного слоя примерно одинакова. У атома кислорода прео-бладает стремление к присоединению электронов, а фтор вообще не проявляет восстановительных свойств и является единственным элементом, который в химических реакциях не проявляет положительных степеней окисления.

В главных подгруппах с увеличением заряда ядра атома элемента увеличи-вается радиус атома элемента, так как в этом направлении возрастает число электронных слоев в атоме элемента. Поэтому в главной подгруппе сверху вниз нарастают металлические (восстановительные) свойства элементов.

В побочных подгруппах при переходе от первого элемента ко второму происходит увеличение радиуса атома элемента за счет добавления еще одного электронного слоя, а при переходе от второго элемента к третьему – даже некоторое уменьшение. Это объясняется `f`-(лантаноидным) сжатием.

Поэтому в побочных подгруппах с увеличением заряда ядра уменьшаются металлические свойства (за исключение побочной подгруппы третьей группы).

Радиус катиона меньше радиуса соответствующего ему атома, причём с увеличением положительного заряда катиона его радиус уменьшается. Наоборот, радиус аниона всегда больше радиуса соответствующего ему атома. Изоэлектронными называют частицы (атомы и ионы), имеющие одинаковое число электронов. В ряду изоэлектронных ионов радиус снижается с уменьшением отрицательного и возрастанием положительного радиуса иона. Такое уменьшение имеет место, например в ряду: $$ {mathrm{O}}^{2–},{mathrm{F}}^{–},{mathrm{Na}}^{+},{mathrm{Mg}}^{2+},mathrm{Al}^{3+}.$$

энергия, необходимая для отрыва электрона от атома, находящегося в основном состоянии. Она характеризует восстановительные (металлические) свойства атомов и обычно выражается в электронвольтах ($$ 1$$ эВ = $$ mathrm{96,485}$$ кДж/моль). В периоде слева направо энергия ионизации возрастает с увеличением заряда ядра и уменьшением радиуса атомов. В главных подгруппах сверху вниз она уменьшается, т. к. увеличивается расстояние электрона до ядра и возрастает экранирующее действие внутренних электронных слоев.

Наименьшее значение энергии ионизации имеют щелочные металлы, поэтому они обладают ярко выраженными металлическими свойствами, наибольшая величина энергии ионизации у инертных газов.

энергия, выделяющаяся при присоединении электрона к нейтральному атому. Характеризует окислительные (неметаллические) свойства атомов. Как и энергия ионизации, обычно выражается в электронвольтах. Наибольшее сродство к электрону – у галогенов, наименьшее – у щелочных металлов.

Самый сильный окислитель из всех элементарных окислителей – фтор (он обладает и самым малым атомным радиусом из всех элементов $$ mathrm{VII}$$ группы).

Следует отметить, что в отличие от ионизации присоединение двух и более электронов к атому энергетически затруднено, и многозарядные одноатомные отрицательные ионы, такие как `”N”^(3-)` или `”O”^(2-)`, в свободном состоянии не существуют.

Окислительной способностью не обладают нейтральные атомы с устойчивыми конфигурациями $$ {s}^{2}$$ и $$ {s}^{2}{p}^{6}$$. У остальных элементов в таблице Менделеева окислительная способность нейтральных атомов повышается слева направо и снизу вверх.

понятие, позволяющее оценить способность атома оттягивать на себя электронную плотность при образовании химического соединения. Согласно одному из определений (Малликен), электро-отрицательность можно определить как полусумму энергии ионизации и сродства к электрону:

`”X”=(I+E)/2`.

Относительная ЭО (OЭO) фтора по Полингу принята равной четырем. Наименьшими ОЭО обладают элементы $$ mathrm{IА}$$ подгруппы ($$ mathrm{0,7}–mathrm{1,0}$$), большими азот и хлор `(3)`, кислород `(3,5)` и фтор. ОЭО `d` – элементов лежит в пределах $$ mathrm{1,2}–mathrm{2,2},$$ а `f` – элементов $$ mathrm{1,1}–mathrm{1,2}.$$

В периодах ЭО растёт, а в группах уменьшается с ростом $$ mathrm{Z}$$, то есть растет от $$ mathrm{Cs}$$ к $$ mathrm{F}$$ по диагонали периодической системы. Это обстоятельство до некоторой степени определяет диагональное сродство элементов.

Для характеристики состояния элементов в соединениях введено понятие степени окисления.

Под степенью окисления понимают условный заряд атома элемента в соединении, вычисленный из предположения, что соединение состоит из ионов и валентные электроны оттянуты к наиболее электроотрицательному атому. Иначе говоря, 

степень окисления показывает, сколько электронов атом либо отдал своих (положительная), либо притянул к себе чужих (отрицательная).

Напишите электронную конфигурацию атома фосфора и составьте орбитальную диаграмму его валентного уровня. Определите все его возможные степени окисления. Напишите электронные конфигурации всех его заряженных частиц. Расположите данные частицы в порядке увеличения радиуса.

Читайте также:  Какие свойства относятся к верховенству гос власти внутри страны

Фосфор находится в третьем периоде, пятой группе, главной подгруппе. Следовательно, его электронная оболочка состоит из трёх уровней. Валентный уровень состоит из внешних `s`- и `р`-подуровней (на это указывает главная группа). Всего валентных электронов у фосфора пять (номер группы $$ 5$$). Конфигурация атома $$ {}_{31}mathrm{P}$$ $$ 1{s}^{2}2{s}^{2}2{p}^{6}3{s}^{2}3{p}^{3}.$$

Орбитальная диаграмма валентного уровня:

Для того, чтобы принять конфигурацию благородного газа, фосфор может либо принять $$ 3$$ электрона (тогда он примет конфигурацию аргона), либо отдать все свои валентные пять электронов (тогда он примет конфигурацию неона). Таким образом, низшая степень окисления фосфора равна `(–3)`, а высшая – `(+5)`.

Для проявления степени окисления `(+5)` фосфор поглощает квант энергии и распаривает свои `3s`-электроны в пределах энергетического уровня на `3d`-подуровень:

Однако, кроме этих крайних степеней окисления фосфор может проявлять еще и промежуточную степень окисления `(+3)` за счёт отдачи своих непарных валентных электронов с `p`-подуровня.

Конфигурации заряженных частиц фосфора:

`”P”^(-3)`     $$ 1{s}^{2}2{s}^{2}2{p}^{6}3{s}^{2}3{p}^{6}$$ или $$ left[mathrm{Ar}right]$$;

`”P”^(+3)`     $$ 1{s}^{2}2{s}^{2}2{p}^{6}3{s}^{2}3{p}^{0}$$

`”P”^(+5)`     $$ 1{s}^{2}2{s}^{2}2{p}^{6}3{s}^{0}3{p}^{0}$$ или $$ left[mathrm{Ne}right]$$.

Расположим данные заряженные частицы в порядке возрастания радиуса. Следует помнить, что число протонов в ядре не изменилось, а значит, отрицательно заряженная частица, у которой электронов больше, чем протонов, будет иметь больший радиус, и чем ниже заряд частицы, тем больше её радиус. И наоборот, чем выше заряд частицы, тем меньше её радиус, так как силы притяжения электронов к ядру у такой частицы преобладают над силами межэлектронного отталкивания:

`R(“P”^(+5))<R(“P”^(+3))<R(“P”^(-3))`.

Источник

Атомы – мельчайшие частицы, из которых состоит все вокруг: все, что нас окружает, состоит из молекул, состоящих из атомов. Их невозможно увидеть с использованием каких бы то ни было увеличительных приборов в силу их невероятно маленьких размеров. Но ведь атомы тоже должны из чего-то состоять. Значит, должны существовать еще более маленькие частицы. Сразу говорю, это довольна непростая для понимания тема, поэтому текста много, да и читать нужно вдумчиво. Тем не менее, это крайне увлекательно – знать о настолько малых частицах, которые невозможно даже увидеть. Что ж, давайте разбираться!

Немного о самом атоме

Вообще, термин “атом” был изобретен очень давно: за 400 лет до н. э. греческий философ Демокрит выдвинул идею, что вещество можно делить до тех пор, пока не будут получены его наименьшие возможные частицы, названные атомами. Конечно, в гипотезе Демокрита атомы являются совсем не тем, чем их считают сейчас, но, тем не менее, идея атомизма очень древняя. В 1808 г. химик Джон Дальтон сформулировал атомистическую теорию: все вещества состоят из атомов, мельчайших неделимых частиц, которые нельзя ни создать, ни уничтожить. Также, Дальтон утверждал, что атомы одного и того же элемента абсолютно одинаковы. Так зародилась атомистическая теория, и было заложено начало к изучению самих атомов.

Теперь немного о характеристиках атома. Не для кого не секрет, что атом чрезвычайно мал. Но даже его можно измерить – а именно указать его массу и диаметр. Диаметры атомов в среднем – 0,2 нм (0,0000000002 м). Массы рознятся сильнее: от 10 в минус 27 степени (ноль с двадцатью шестью нолями и единицей после запятой) кг до 10 в минус 25 степени ( ноль с двадцатью четырьмя нолями и единицей после запятой) кг. Для избежания участия столь малых цифр в расчетах, массы атомов обычно выражают в атомных единицах массы (а. е. м.). 1 а. е. м. = 1,661 на 10 в минус 27 степени.

Какие частицы входят в состав атома?

Мы уже представляли себе атом таким, каким его рисуют в sci-fi фильмах: ядро, состоящее из протонов и нейтронов в центре, и электроны, вращающиеся вокруг ядра. Но что представляют из себя протоны, нейтроны и электроны?

Строение атома из фильмов, отражающее частицы, входящие в него

Нейтрон – это элементарная незаряженная частица. Электрический заряд равен 0 е, масса равна 1 а. е. м. Нейтрон был открыт в 1932 г. Чедвиком в ходе ядерной реакции между атомами бериллия и гелия. Нейтрон входит в состав атомного ядра

Протон – это элементарная положительная частица. Электрический заряд равен +1 е, масса равна 1 а. е. м. Открыт в 1919 г. Резерфордом. Входит в состав атомного ядра вместе с нейтроном, представляет собой ядро атома водорода.

Электрон – это элементарная отрицательная частица. Электрический заряд равен -1 е (равен по модулю заряду протона), масса равна 0,00054 а. е. м., поэтому для простоты расчетов считается, что электрон не имеет массы. Открыт в 1897 г. Томсоном при изучении поведения катодных лучей (электронов) в магнитном и электрическом поле. Электроны не входят в состав ядра, а находятся снаружи, двигаясь по специальным траекториям, но об этом позднее.

Как частицы располагаются в атоме?

Ученые Гейгер и Марсден в 1909 г. проводили бомбардировку золотой фольги альфа-частицами (ядрами гелия). Частицы проходили через фольгу, как и ожидалось, однако, малая их часть отражалась обратно. Примерно 1 из 8000 частиц отскакивали. Был сделан вывод, что частицы сталкиваются с положительными и тяжелыми центрами, которые должны располагаться в ничтожно малой части атома, раз так мало частиц отражается обратно. Так появилось представление об атомном ядре: отражались только те частицы, которые сталкивались с ядрами. Таким образом, атомное ядро имеет намного меньший размер, чем сам атом; остальное пространство в атоме занимают электроны. И если с ядром все понятно – лишь малая часть атома, состоящая из протонов и нейтронов, то с электронами все сложнее.

Читайте также:  Какие свойства имеет прокат

В 1925 г. Шредингер сформулировал свое уравнение, названное в его честь. Оно позволяло проследить поведение электрона в атоме. Однако, в силу принципа неопределенности Гейзенберга (электрон обладает частично-волновым дуализмом) нельзя определить точное положение электрона и его скорость. Можно лишь говорить об области пространства, где электрон находится чаще. Так появился термин атомная орбиталь – это место, где вероятность нахождения электрона составляет больше 90%. Вот и получаем первое различие с изображениями из фильмов: там электроны вращаются вокруг ядра, оставляя следы в виде полосок. На деле электроны как бы расплываются вокруг ядра. Физик Бор сформулировал постулат о том, что электроны могут обладать определенным количеством энергии, а не произвольным. Так были введены квантовые числа:

  • главное квантовое число (n, положительное целое число – 1, 2, 3…) характеризует энергетический уровень электрона и указывает число подуровней на уровне;
  • орбитальное квантовое число (l, неотрицательное целое число – 0, 1, 2…) характеризует форму атомной орбитали, на которой находится электрон;
  • магнитное квантовое число (ml, целое число от -l до +l) характеризует количество атомных орбиталей на энергетическом подуровне;
  • спиновое квантовое число (ms, значения – либо -1/2, либо +1/2) характеризует вращение электрона относительно собственной оси.

У каждого электрона в атоме свой набор квантовых чисел, на основании которых можно оценить его энергию, по которой можно судить о его местоположении в атоме. В заполнении электронами атомных орбиталей участвуют некоторые закономерности. Одна из них – это запрет Паули. Он гласит о том, что в атоме не может быть двух электронов с одинаковыми наборами всех квантовых чисел, т. е. обладающих одинаковыми энергиями.

Немного об атомных орбиталях

Другое отличие реального атома от киношного изображения – это изображение атомных орбиталей. На картинках электроны движутся по окружностям. В реальности электроны не только расплываются, но и делают это по определенной области – орбитали. На каждой атомной орбитали может находится только 2 электрона. Всего различают 5 видов орбиталей в зависимости от значения орбитального квантового числа l:

  • l = 0 – s-орбиталь;
  • l = 1 – p-орбиталь;
  • l = 2 – d-орбиталь;
  • l = 3 – f-орбиталь;
  • l = 4 – g-орбиталь.

s-орбиталь представляет собой симметричную относительно ядра сферу. Вероятность нахождения электрона на каждом участке орбитали одинакова. Всего на s-орбитали может располагаться два электрона.

s-орбиталь

p-орбиталь представляет собой форму гантели. Она направлена в трех разных направлениях – по координатным осям x, y и z и в совокупности они образуют энергетический подуровень.

p-орбитали, направленные по разным осям

d-, f- и g-орбитали имеют еще намного более сложные формы, чем p-орбиталь, поэтому их описание не представляется целесообразным.

Формы d-орбиталей, по-разному расположенных в пространстве

Каждое значение орбитального числа l является энергетическим подуровнем атома. Для каждого следующего энергетического уровня количество энергетических подуровней увеличивается и содержит в себе подуровни прошлых уровней. Звучит сложновато, да. Говоря проще, чем больше значение n, тем больше ему соответствует значений l. Попробуем на примере. Значение главного числа n задает основной энергетический уровень. Например: n=1, тогда l=0. Это значит, что на первом энергетическом уровне есть только один подуровень с одной s-орбиталью. Теперь пусть n=2. Это второй энергетический уровень. Для него l=0 и l=1. Это значит, что на нем два подуровня: на одном s-орбиталь, а на другом p-орбиталь. Для n=3 уже 3 подуровня и т. д. Такое заполнение электронами орбиталей является еще одной закономерностью, называемой правилом Клечковского. Правило Клечковского гласит о том, что электроны заполняют атомные орбитали так, чтобы их суммарная энергия была минимальна, т. е. начиная с меньших энергетических уровней.

Пример сопоставления энергетическим уровням (n) энергетических подуровней (l) и орбиталей

Теперь давайте поговорим о заполнении непосредственно орбиталей. Представим себе s-орбиталь: сфера вокруг ядра, на которой есть 2 электрона: спиновое число одного – 1/2, другого – -1/2. Теперь представим себе p-орбиталь в форме гантели. Три p-орбитали (направленные по координатным осям) образуют энергетический подуровень. Поскольку на каждой орбитали может быть по 2 электрона, то на таком подуровне может быть всего 6 электронов. Но как они его заполняют? Допустим, у нас есть 4 электрона. Заполняют ли они сначала одну орбиталь, затем другую, а третью оставляют нетронутой? Здесь на помощь приходит третья закономерность – правило Гунда. Оно гласит, что электроны при заполнении подуровней занимают максимальное число свободных орбиталей. Таким образом, сначала по один займет каждую орбиталь, а затем еще один займет полузаполненную орбиталь. Таким образом, две орбитали будут заполнены наполовину, а одна полностью.

Так устроен атом. Подведем итоги. В маленькой части атома, в центре, располагается атомное ядро, состоящее из протонов и нейтронов. Вокруг располагаются энергетические уровни с подуровнями, на которых находятся орбитали разной формы – места, где скорее всего находятся электроны в данный момент времени. Электроны заполняют орбитали в соответствии запретом Паули, правилом Клечковского и правилом Гунда.

Читайте также:  Какие лечебные свойства софоры

Если Вам понравилась статья, подписывайтесь на канал и ставьте лайки!

Источник

Какие свойства у атомов

А́том (от др.-греч. ἄτομος — неделимый) — частица вещества микроскопических размеров и массы, наименьшая часть химического элемента, являющаяся носителем его свойств.

Атом состоит из атомного ядра и электронов. Если число протонов в ядре совпадает с числом электронов, то атом в целом оказывается электрически нейтральным. В противном случае он обладает некоторым положительным или отрицательным зарядом и называется ионом.В некоторых случаях под атомами понимают только электронейтральные системы, в которых заряд ядра равен суммарному заряду электронов, тем самым противопоставляя их электрически заряженным ионам.

Ядро, несущее почти всю (более чем 99,9 %) массу атома, состоит из положительно заряженных протонов и незаряженных нейтронов, связанных между собой при помощи сильного взаимодействия. Атомы классифицируются по количеству протонов и нейтронов в ядре: число протонов Z соответствует порядковому номеру атома в периодической системе и определяет его принадлежность к некоторому химическому элементу, а число нейтронов N — определённому изотопу этого элемента. Число Z также определяет суммарный положительный электрический заряд (Ze) атомного ядра и число электронов в нейтральном атоме, задающее его размер.

Атомы различного вида в разных количествах, связанные межатомными связями, образуют молекулы.

Свойства атома

По определению, любые два атома с одним и тем же числом протонов в их ядрах относятся к одному химическому элементу. Атомы с одним и тем же количеством протонов, но разным количеством нейтронов называют изотопами данного элемента. Например, атомы водорода всегда содержат один протон, но существуют изотопы без нейтронов (водород-1, иногда также называемый протием — наиболее распространённая форма), с одним нейтроном (дейтерий) и двумя нейтронами (тритий). Известные элементы составляют непрерывный натуральный ряд по числу протонов в ядре, начиная с атома водорода с одним протоном и заканчивая атомом унуноктия, в ядре которого 118 протонов. Все изотопы элементов периодической системы, начиная с номера 83 (висмут), радиоактивны.

Масса

Поскольку наибольший вклад в массу атома вносят протоны и нейтроны, суммарное число этих частиц называют массовым числом. Массу покоя атома часто выражают в атомных единицах массы (а. е. м.), которая также называется дальтоном (Да). Эта единица определяется как 1⁄12 часть массы покоя нейтрального атома углерода-12, которая приблизительно равна 1,66·10−24 г. Водород-1 — наилегчайший изотоп водорода и атом с наименьшей массой, имеет атомный вес около 1,007825 а. е. м. Масса атома приблизительно равна произведению массового числа на атомную единицу массы Самый тяжёлый стабильный изотоп — свинец-208 с массой 207,9766521 а. е. м.

Так как массы даже самых тяжёлых атомов в обычных единицах (например, в граммах) очень малы, то в химии для измерения этих масс используют моли. В одном моле любого вещества по определению содержится одно и то же число атомов (примерно 6,022·1023). Это число (число Авогадро) выбрано таким образом, что если масса элемента равна 1 а. е. м., то моль атомов этого элемента будет иметь массу 1 г. Например, углерод имеет массу 12 а. е. м., поэтому 1 моль углерода весит 12 г.

Размер

Атомы не имеют отчётливо выраженной внешней границы, поэтому их размеры определяются по расстоянию между ядрами соседних атомов, которые образовали химическую связь (Ковалентный радиус) или по расстоянию до самой дальней из стабильных орбит электронов в электронной оболочке этого атома (Радиус атома). Радиус зависит от положения атома в периодической системе, вида химической связи, числа ближайших атомов (координационного числа) и квантово-механического свойства, известного как спин. В периодической системе элементов размер атома увеличивается при движении сверху вниз по столбцу и уменьшается при движении по строке слева направо. Соответственно, самый маленький атом — это атом гелия, имеющий радиус 32 пм, а самый большой — атом цезия (225 пм). Эти размеры в тысячи раз меньше длины волны видимого света (400—700 нм), поэтому атомы нельзя увидеть в оптический микроскоп. Однако отдельные атомы можно наблюдать с помощью сканирующего туннельного микроскопа.

Малость атомов демонстрируют следующие примеры. Человеческий волос по толщине в миллион раз больше атома углерода. Одна капля воды содержит 2 секстиллиона (2·1021) атомов кислорода, и в два раза больше атомов водорода. Один карат алмаза с массой 0,2 г состоит из 10 секстиллионов атомов углерода. Если бы яблоко можно было увеличить до размеров Земли, то атомы достигли бы исходных размеров яблока.

Учёные из Харьковского физико-технического института представили первые в истории науки снимки атома. Для получения снимков учёные использовали электронный микроскоп, фиксирующий излучения и поля (field-emission electron microscope, FEEM). Физики последовательно разместили десятки атомов углерода в вакуумной камере и пропустили через них электрический разряд в 425 вольт. Излучение последнего атома в цепочке на фосфорный экран позволило получить изображение облака электронов вокруг ядра.

Источник