Какие свойства у магмы

Какие свойства у магмы thumbnail

У этого термина существуют и другие значения, см. Магма (значения).

Ма́гма (др.-греч. μάγμα «месиво, густая мазь») — расплавленная масса под твердой земной корой.[1]

Природный, чаще всего силикатный, раскалённый, жидкий расплав, возникающий в земной коре или в верхней мантии, на больших глубинах, и при остывании формирующий магматические горные породы.[источник не указан 175 дней]

Излившаяся магма, потерявшая большую часть летучих компонентов (таких как вода, углекислый газ, фтор, хлор и др.) — называется лава.[источник не указан 175 дней]

Состав магмы[править | править код]

Озеро лавы в кратере вулкана

В магме содержатся практически все химические элементы, среди которых наиболее представлены Si, Al, Fe, Ca, Mg, К, Ti, Na, а также различные летучие компоненты (оксиды углерода, сероводород, водород, фтор, хлор, водяной пар и др.). Летучие компоненты при кристаллизации магмы на глубине частично входят в состав различных минералов (амфиболов, слюд и прочих). В редких случаях отмечаются магматические расплавы несиликатного состава, например, щёлочно-карбонатного (вулканы Восточной Африки) или сульфидного.[источник не указан 175 дней]

По мере продвижения магмы вверх количество летучих компонентов сокращается. Дегазированная магма, излившаяся на поверхность, называется лавой.[источник не указан 175 дней]

Разновидности магмы[править | править код]

Базальтовая магма[править | править код]

Базальтовая (основная; из «базальта») магма, по-видимому, имеет большее распространение. В ней содержится около 50 % кремнезёма, в значительном количестве присутствуют алюминий, кальций, железо и магний, в меньшем — натрий, калий, титан и фосфор.
По химическому составу базальтовые магмы подразделяются на толеитовую (перенасыщенна кремнезёмом) и щёлочно-базальтовую (оливин-базальтовую) магму (недонасыщенную кремнезёмом, но обогащённую щелочами).[источник не указан 175 дней]

Гранитная магма[править | править код]

Гранитная (риолитовая, кислая; из «гранита») магма содержит 60—65 % кремнезёма, она имеет меньшую плотность, более вязкая, менее подвижная, в большей степени, чем базальтовая магма, насыщена газами.[источник не указан 175 дней]

В зависимости от характера движения магмы и места её застывания, различают два типа магматизма: интрузивный и эффузивный. В первом случае магма остывает и кристаллизуется на глубине, в недрах Земли, во втором — на земной поверхности или в приповерхностных условиях (до 5 км).[источник не указан 175 дней]

Кристаллизация магмы[править | править код]

Любой магматический расплав состоит из жидкости, газа и твёрдых кристаллов, которые стремятся к равновесному состоянию. В зависимости от изменения температуры, давления, состава газов и т. п. меняются расплав и образовавшиеся в нём ранее кристаллы минералов — одни растворяются, другие возникают вновь, и весь объём магмы непрерывно эволюционирует.[источник не указан 175 дней]

См. также[править | править код]

  • Лава
  • Мантия Земли

Примечания[править | править код]

  1. ↑ Магма // Большой словарь иностранных слов русского языка / Редактор: Пигулевская И. С. М.: Центрполиграф, 2008.

Ссылки[править | править код]

  • Всё о Геологии
  • Результаты бурения в Исландии
  • Магма в энциклопедии GeoWiki

Источник

Магматические расплавы, которые при затвердевании превра­щаются в вулканические или интрузивные горные породы, зарож­даются в верхней мантии или континентальной земной коре, а за­тем перемещаются вверх и либо достигают поверхности Земли либо кристаллизуются на некоторой глубине. Поведение магм в процес­се зарождения, подъема и затвердевания в значительной мере оп­ределяется физическими свойствами расплавов, главными из кото­рых являются температура, плотность и вязкость.

Температура силикатных магм в момент зарождения варьиру­ет от 1800— 1600 до 600—500 °С в зависимости от глубины источни­ка и состава расплава. Наиболее высокие начальные температуры характерны для глубинных ультрамафических коматиитовых и пи-критовых магм, а самые низкие —- для кислых гранитных магм, об­разованных на меньшей глубине.

Температура, при которой магмы могут существовать в жид­ком состоянии, значительно понижается в тех случаях, когда сили­катные расплавы содержат растворенную в них воду, а также фтор, литий, бор. Растворимость воды в силикатных расплавах возраста­ет от долей мас. % при атмосферном давлении до десятков мас. % при давлениях, соответствующих глубинам свыше 30 км. Максимальные содержания воды в природных магмах, затвердевших в виде горных пород, достигают 5—10 мас.%, фтора 1 —2 мас.%, лития и бора — со­тых и десятых долей процента. Кроме воды, магмы могут содержать растворенную углекислоту. При низких давлениях растворимость С02 в магмах примерно на порядок ниже, чем Н20, однако при высоких давлениях, существующих в мантии Земли, растворимость С02 значительно возрастает, и растворение углекислоты понижа­ет температуру мантийных магм. При подъеме расплавов, содержа­щих Н20, С02 и другие летучие компоненты, растворимость кото­рых уменьшается по мере снижения давления, избыточная газовая фаза выделяется в виде пузырьков и удаляется из магмы.

О температуре магм судят по экспериментальным данным, пря­мым измерениям во время вулканических извержений, а также по результатам исследований с использованием геологических тер-

Читайте также:  Полезные свойства оливкового масла какие

Часть III.Магматические горные породы (петрология)

мометров. Последними служат минералы и их ассоциации, состав которых является функцией температуры.

Плотность жидких магм равна 2.2-3.0 г/см3, что примерно на 10% меньше плотности твердых магматических пород такого же химического состава и того твердого корового или мантийного ве­щества, из которого выплавляются магмы. Разница плотностей обусловлена расширением вещества при плавлении.

Плотность минералов, которые выделяются из расплава при кристаллизации, может быть больше или меньше плотности жидкой фазы. В зависимости от соотношения плотностей кристаллы могут погружаться на дно или всплывать к кровле магматической камеры.

Сжимаемость магм под действием внешних сил мала, но все же больше, чем для кристаллических пород, поэтому положительный объемный эффект плавления уменьшается с ростом давления. Вы­сказано предположение, что на глубине 250—500 км плотность жид­кой магмы становится равной плотности оливина и пироксена — главных минералов, слагающих мантию Земли. В отношении оли­вина эта гипотеза подтверждена прямыми опытами К.Эджи и Д.Уо-кера (1993 г.), которые установили, что при давлении около 8 ГПа (глубина -250 км) плотность оливина становится равной плотнос­ти коматиитового расплава. Однако при этом давлении устойчив бо­лее плотный гранат, так что магматическая жидкость, вероятно, в целом все же легче твердого материала мантии Земли. Вместе с тем возможность флотации оливина на больших глубинах может иметь важное петрологическое значение.

Плотность магм зависит от их состава и увеличивается от кислых расплавов к основным и ультраосновным-ультрамафическим (табл. 3.1). Плотность кислых магм меньше, чем средняя плотность

Таблица 3.1. Плотность и вязкость магматических расплавов

Состав расплава Плотность, г/см3 Вязкость, Па • с
Т> 1400 °С Т< 900 °С
Риолит
Риолит + 5% Н20
Андезит
Базальт
Пикрит
Карбонатит
2.2-2.3
2.4-2.6 2.6-2.8 2.8-3.0 2.6-2.7
104-105 101-102 102-103 100-102 10-1—100 108-1012 104-105
103—102

3. Физические свойства, зарождение и подъем магматических расплавов

Какие свойства у магмы

вещества континентальной земной коры (-2.7 г/см3), а ультрамафические магмы имеют более высокую плотность по сравнению с материалом земной коры. Плотность магм обычно определяют расчетным путем, суммируя парциаль­ные мольные объемы отдельных ком­понентов.

Вязкость — свойство, которое ха- Рис. 3.1. Распределение растеризует подвижность жидкости при скоростей в ламинарном

наличии градиента давления. Это свой- потокевязкойжидкости

Пояснения см. в тексте

ство обусловлено трением между стру-

ями жидкости, которые перемещаются

с разной скоростью. Если в ламинарном1потоке жидкости возника­ют градиенты скорости dV/dX под действием касательных напряже­ний dF/dS, вызванных внутренним трением (рис. 3.1), то во многих случаях сохраняется линейная зависимость, известная как уравне­ние Ньютона;

dF/dS = -η(dV/dX),

где η — коэффициент вязкости. Чем больше η, тем менее подвиж­на жидкая среда. Вязкость (η) измеряют в Па • с или пуазах (г/см • с = = дин • с/см2); Па • с = 10 пуаз.

Магматические расплавы, не содержащие большого количест­ва кристаллов или газовых пузырьков, обладают свойствами нью­тоновской жидкости2. Вязкость силикатных магм меняется от 10-1-0° до 108-1012 Па•с в зависимости от температуры и состава (см. табл. 3.1). Для сравнения заметим, что вязкость воды при комнат­ной температуре равна 10-4 Па • с, а эффективная3 вязкость твердо­го вещества земной коры и верхней мантии — 1018—1023 Па • с. За­висимость вязкости (η ) от температуры (Т) описывается уравнением: 1nη = 1nη 0+ E/RT,

1 Ламинарным называется поток, в котором струи жидкости перемещаются па­
раллельно друг другу. Если направления и скорости отдельных струй меняются в про­
странстве и времени, то такой поток называют турбулентным.

2 При наличии большого количества кристаллов магма превращается в суспен­
зию, которая имеет предел текучести (жидкость Бингема). До тех пор, пока касатель­
ные напряжения не превысят этого предела, магматическая суспензия остается не­
подвижной.

з Перемещение (деформацию) твердого вещества можно описать уравнениями, которые используются для характеристики течения вязкой жидкости. Значения ко­эффициентов вязкости, которые входят в эти уравнения, называют эффективными.

Часть III. Магматические горные породы (петрология)

где η 0 = const, E— энергия активации вязкого течения, R — газовая

постоянная.

Вязкость силикатных магм возрастает от ультраосновных рас­плавов к кислым. Если базальтовый расплав при 1200 °С имеет вяз­кость 101—102Па•с, то вязкость риолитового расплава при той же температуре возрастает до 105 Па • с, а при 800 °С достигает 108 Па • с. Рост вязкости вызван увеличением степени полимеризации рас­плава по мере возрастания содержания Si02. Чем больше кремне-кислоты содержится в магме, тем выше доля прочных ковалентных (мостиковых) связей между катионами кремния и анионами кисло­рода и тем менее подвижен расплав.

Читайте также:  Какое свойство плодов растения рдеста

Маловязкие базальтовые расплавы могут растекаться в виде ла­вовых потоков протяженностью в десятки и даже сотни километров, а более вязкие кислые магмы образуют короткие лавовые потоки или вообще не растекаются, выжимаясь на поверхность в виде экс­трузивных куполов.

Давление само по себе мало влияет на вязкость, однако если в обстановке высокого давления в расплаве растворяется значи­тельное количество воды, то его вязкость снижается. Например, водосодержащие кислые магмы имеют почти такую же вязкость, что и «сухие» базальтовые расплавы, нагретые до той же температуры (см. табл. 3.1).

Хотя вязкость безводных кислых магм очень велика, она при­мерно на десять порядков ниже эффективной вязкости твердых пород. Поэтому даже кислые магмы весьма подвижны по сравнению с твердым веществом земной коры.

Вязкость магм можно измерять непосредственно как в лабора­ториях, так и в природных лавовых потоках или озерах. Поскольку такие измерения сопряжены с техническими трудностями, вяз­кость обычно рассчитывают теоретически, учитывая состав и тем­пературу расплава. Результаты расчетов хорошо согласуются с экс­периментальными данными.

Источник

Магма (От греч. “магма” – “густая мазь”) смесь магматического расплава, кристаллов и/или их сростков и флюидной фазы, способная к перемещению в земной коре. Магма, изливающаяся на поверхность Земли, теряет растворенные летучие компоненты и превращается в лаву, которая застывая формирует эффузивные горные породы. При застывании магмы на глубине образуются интрузивные горные породы, которые образуют разнообразные по форме и размерам интрузивные тела — от мелких даек, представляющих собой выполненные магмой трещины, до огромных массивов, площадью во многие тысячи км2.

Классификации магм.

Магмы по химическому составу делятся на силикатные, карбонатные, фосфатные, сульфидные и т.д. Наиболее распространены в земных условиях силикатные магмы. Силикатные магмы состоят из соединений кислорода, Si, Al, Fe, Mg, Ca, Na,К, Ti, P и других элементов. При высоких давлениях в магмах может быть растворено значительное количество летучих компонентов, таких как вода, углекислый газ, фтор, хлор, соединения серы, углеводороды и др. Силикатные магмы по аналогии с магматическими горными породами подразделяются по содержанию SiO2 (масс.%) на ультраосновные (< 45%), основные (45-52%), средние (52-65%), кислые (>65%). По суммарному содержанию щелочей (Na2O и K2O) магмы подразделяются на магмы нормального ряда, субщелочные и щелочные. Среди этих групп преобладают магмы нормального ряда основного (базальтовые магмы) и кислого (риолитовые или гранитные магмы) состава.

Физические свойства магм.

Магма имеют различные физические свойства, которые зависят от их состава, температуры и содержания летучих компонентов. Температуры большинства магм в земной коре лежат в пределах 600-1300°С. Самые низкие температуры зафиксированы для натрокарбонатитовой магмы (~450°С), самые высокие – для коматиитовых и меймечитовых магм (1600-1650°С). Вязкость магматических расплавов варьирует от 1 до 108 Па*с. Наименьшей вязкостью обладают высокотемпературные магмы ультраосновного и основного составов, наибольшая вязкость характерна для риолитовых магм. Магма стремится подняться к поверхности вследствие своей подвижности и меньшей по сравнению с вмещающими породами плотностью. При подъеме она может накапливаться на различной глубине, формируя магматические очаги.

Законы кристаллизации магм.

При подъеме к поверхности или в магматическом очаге магма постепенно остывает и начинает кристаллизоваться. Сначала кристаллизуются высокотемпературные минералы, затем постепенно они сменяются более низкотемпературными. Немецкий петрограф К. Г. Розенбуш на основе природных наблюдений и американский петролог Н. Боуэн на основе экспериментов предложили общую последовательность кристаллизации, известную как ряд Боуэна: вначале кристаллизуются магнезиально-железистые безводные силикаты (оливин, ортопироксен, клинопироксен) и основные плагиоклазы, далее следуют роговая обманка и средние плагиоклазы, а в конце процесса образуются биотит, щелочные полевые шпаты и кварц. Такая последовательность характерна для пород нормального ряда, кристаллизующихся при небольших давлениях и умеренных содержаниях летучих. В субщелочных и щелочных породах и при больших давлениях порядок кристаллизации может существенно отличаться от последовательности ряда Боуэна.

Магма может эволюционировать, меняя свой состав. Это приводит к образованию разных по минеральному составу г. п. Дифференциация магмы может происходить до её кристаллизации (докристаллизационная дифференциация) или в процессе кристаллизации (кристаллизационная дифференциация), в промежуточном магматич. очаге (глубинная дифференциация) или на месте её застывания (внутрикамерная дифференциация). Среди факторов, обусловливающих дифференциацию магм, выделяют гравитацию, термодиффузию, ассимиляцию, ликвацию и др. Установление в расплавах гравитац. равновесия может привести к дифференциации их вещества по высоте. Общая тенденция такой дифференциации – обогащение SiO2, Al2O3, CaO и щелочами верх. частей поднимающейся магматич. колонны и накопление MgO и FeO в нижних её частях (гравитац. дифференциация).

Читайте также:  Какие свойства аминокислот аминокислоты

Кристаллизационная дифференциация, экспериментально и теоретически обоснована Боуэном для базальтовой магмы B процессе дифференциации под влиянием разл. факторов (напр., гравитац. осаждение или всплывание выделившихся из расплава кристаллов, перемещение их конвекционными потоками) должно происходить и пространственное обособление возникающих минеральных фаз (фракционирование). B результате в вертикальном разрезе магматич. камеры образуются горные породы различного состава.

Магмы могут менять свой состав за счет взаимодействия с вмещающими породами. При фильтрации по тонким трещинам и каналам магма насыщается минералами вмещающих пород. Кроме этого, магма может разрушать стенки магматических очагов и каналов, захватывая ксенолиты вмещающих пород, которые растворяются в магме полностью или частично (ассимиляция, контаминация). Этими процессами часто объясняют детали строения отдельных массивов магматических пород.

В долгоживущих вулканических центрах приповерхностные магматические очаги периодически подпитываются порциями магм, которые обеспечивают активность вулкана в течение многих тысяч лет. При этом формируется магматическая питающая система, состоящая из области магмогенерации, области миграции магм и приповерхностных магматических очагов. Области магмогенерации существуют за счет факторов (например высокого теплового потока и/или потока летучих компонентов) создающих условия для постоянного или периодического плавления горных пород. Порции магм могут отличаться по составу как от магмы в приповерхностном очаге, так и друг от друга. Попадая в магматические очаги, магмы смешиваются друг с другом и формируют гибридные породы (см. Смешение магм).

Механизмы образования магм.

До середины XX века предполагали, что под земной корой существует океан магмы. Сейсмологические исследования внутреннего строения Земли доказали, что несмотря на постоянное повышение температуры с глубиной, подстилающая земную кору мантия является твердой. Ранние исследователи исходя из существования единого океана магмы предполагали наличие единой родоначальной магмы, из которой образуются все другие. В качестве родоначальной рассматривалась либо базальтовая, либо ультраосновная пикритовая магма. Российский петрограф Ф. Ю. Левинсон-Лессинг предположил существование двух родоначальных магм: базальтовой и гранитной. Английский геолог А. Холмс предполагал существование трех родоначальных магм: базальтовой, гранитной и ультраосновной (перидотитовой). В настоящее время считается, что различные по составу магмы образуются за счет плавления пород мантии и земной коры в результате трех основных механизмов: привноса тепла и нагрева пород, уменьшения давления или привноса летучих компонентов, преимущественно воды. Их состав зависит от состава субстрата плавления и условий, в которых это плавление происходит. Причиной нагрева может быть поступление тепла из более глубоких слоев Земли, накопление радиогенного тепла и др. Генерация магмы за счет прогрева верхней мантии поднимающимися из нижней мантии плюмами характерна для магматизма океанических островов (горячие точки) и крупных магматических провинций. Плавление за счет уменьшения давления может происходить при подъеме отдельных крупных блоков мантии, которые при этом подъеме сохраняют тепло и высокие температуры. Такой механизм плавления реализуется под срединно-океаническими хребтами, с которыми связан интенсивный базальтовый вулканизм. Присутствие летучих компонентов, например водяного пара, существенно снижает температуру плавления горных пород. Образование магм за счет привноса летучих компонентов в мантию характерно для магматизма островных дуг. Этот магматизм вызван погружением океанической плиты в мантию (см. Субдукция). При погружении происходит прогрев океанической плиты, прогрессивный метаморфизм богатых водой пород плиты (спиллитов, серпентинитов и др.) и выделение огромного количества летучих, которые поступают в вышележащую мантию и вызывают ее частичное плавление.

Mагмы возникают при частичном плавлении ранее существовавших горных пород, при котором легкоплавкие жидкие фракции отделяются от нерасплавившегося твёрдого остатка (т.н. реститов). Степени плавления могут варьировать от первых процентов до 40-50% от объема первоначальной породы. Из земных магм наиболее высокие степени частичного плавления мантии зафиксированы для коматиитов, которые формировались преимущественно в архейскую эру (4.5-2.6 млрд. лет назад). Большая часть гранитных магм формируется за счет плавления пород земной коры, а базальтовые магмы преимущественно пород верхней мантии.

Условия образования магм, состав плавившихся пород, условия внедрения магм в земную кору, условия кристаллизации и фракционирования определяют набор компонентов, которые концентрируются при этих процессах и формируют месторождения полезных ископаемых. Рудные минералы (минералы Сr, Ti, Ni, Pt) обосабливаются в процессе кристаллизации базальтовых магм и образуют магматические месторождения в расслоённых комплексах (Норильск в России, Бушвельд в ЮАР, Садбери в Канаде). На последних стадиях формирования интрузивов (послемагматическая стадия) за счёт летучих компонентов, отделившихся от магм и теплового потока, поступающего от интрузивов во вмещающие породы формируются гидротермальные, грейзеновые, скарновые месторождения цветных, редких и драгоценных металлов, а также некоторые месторождения железа.

Источник