Какие свойства у трапеции

Определение.
Трапеция — это четырехугольник, у которого две стороны параллельны, а две другие стороны не параллельны.
Параллельные стороны называются основами трапеции, а две другие боковыми сторонами
Так же, трапецией называется четырехугольник, у которого одна пара противоположных сторон параллельна, и стороны не равны между собой.
Элементы трапеции:
- Основы трапеции – параллельные стороны
- Боковые стороны – две другие стороны
- Средняя линия – отрезок, соединяющий середины боковых сторон.
Виды трапеций:
- Равнобедренная трапеция – трапеция, у которой боковые стороны равны
- Прямоугольная трапеция – трапеция, у которой одна из боковых сторон перпендикулярна основам
Основные свойства трапеции
1. В трапецию можно вписать окружность, если сумма длин оснований равна сумме длин боковых сторон:
AB + CD = BC + AD
2. Средняя линия трапеции разделяет пополам любой отрезок, который соединяет основы, так же делит диагонали пополам:
AK = KB, AM = MC, BN = ND, CL = LD
3. Средняя линия трапеции параллельна основаниям и равна их полусумме:
4. Точка пересечения диагоналей трапеции и середины оснований лежат на одной прямой.
5. В трапеции её боковая сторона видна из центра вписанной окружности под углом 90°.
6. Каждая диагональ в точке пересечения делится на две части с таким соотношением длины, как соотношение между основаниями:
BC : AD = OC : AO = OB : DO
7. Диагонали трапеции d1 и d2 связаны со сторонами соотношением:
d12 + d22 = 2ab + c2 + d2
Сторона трапеции
Формулы определения длин сторон трапеции:
1. Формула длины оснований трапеции через среднюю линию и другую основу:
a = 2m – b
b = 2m – a
2. Формулы длины основ через высоту и углы при нижнем основании:
a = b + h · (ctg α + ctg β)
b = a – h · (ctg α + ctg β)
3. Формулы длины основ через боковые стороны и углы при нижнем основании:
a = b + c·cos α + d·cos β
b = a – c·cos α – d·cos β
4. Формулы боковых сторон через высоту и углы при нижнем основании:
с = | h | d = | h |
sin α | sin β |
Средняя линия трапеции
Определение.
Средняя линия – отрезок, соединяющий середины боковых сторон трапеции.
Формулы определения длины средней линии трапеции:
1. Формула определения длины средней линии через длины оснований:
2. Формула определения длины средней линии через площадь и высоту:
Высота трапеции
Формулы определения длины высоты трапеции:
1. Формула высоты через сторону и прилегающий угол при основании:
h = c·sin α = d·sin β
2. Формула высоты через диагонали и углы между ними:
h = | sin γ · | d1d2 | = | sin δ · | d1d2 |
a + b | a + b |
3. Формула высоты через диагонали, углы между ними и среднюю линию:
h = | sin γ · | d1d2 | = | sin δ · | d1d2 |
2m | 2m |
4. Формула высоты трапеции через площадь и длины оснований:
5. Формула высоты трапеции через площадь и длину средней линии:
Диагонали трапеции
Формулы определения длины диагоналей трапеции:
1. Формулы диагоналей по теореме косинусов:
d1 = √a2 + d2 – 2ad·cos β
d2 = √a2 + c2 – 2ac·cos β
2. Формулы диагоналей через четыре стороны:
d1 = | √ | d 2 + ab – | a(d 2 – c2) |
a – b |
d2 = | √ | c2 + ab – | a(c2 – d 2) | a – b |
3. Формула длины диагоналей через высоту:
d1 = √h2 + (a – h · ctg β)2 = √h2 + (b + h · ctg α)2
d2 = √h2 + (a – h · ctg α)2 = √h2 + (b + h · ctg β)2
4. Формулы длины диагонали через сумму квадратов диагоналей:
d1 = √c2 + d 2 + 2ab – d22
d2 = √c2 + d 2 + 2ab – d12
Площадь трапеции
Формулы определения площади трапеции:
1. Формула площади через основания и высоту:
2. Формула площади через среднюю линию и высоту:
S = m · h
3. Формула площади через диагонали и угол между ними:
S = | d1d2 | · sin γ | = | d1d2 | · sin δ |
2 | 2 |
4. Формула площади через четыре стороны:
S = | a + b | √ | c2 – | ( | (a – b)2 + c2 – d 2 | ) | 2 |
2 | 2(a – b) |
5. Формула Герона для трапеции
S = | a + b | √(p – a)(p – b)(p – a – c)(p – a – d) |
|a – b| |
где
p = | a + b + c + d | – полупериметр трапеции. |
2 |
Периметр трапеции
Формула определения периметра трапеции:
1. Формула периметра через основания:
P = a + b + c + d
Окружность описанная вокруг трапеции
Окружность можно описать только вокруг равнобедренной трапеции!!!
Формула определения радиуса описанной вокруг трапеции окружности:
1. Формула радиуса через стороны и диагональ:
R = | a·c·d1 |
4√p(p – a)(p – c)(p – d1) |
где
a – большее основание
Окружность вписанная в трапецию
В трапецию можно вписать окружность, если сумма длин оснований равна сумме длин боковых сторон:
a + b = c + d
Формула определения радиуса вписанной в трапецию окружности
1. Формула радиуса вписанной окружности через высоту:
Другие отрезки разносторонней трапеции
Формулы определения длин отрезков проходящих через трапецию:
1. Формула определения длин отрезков проходящих через трапецию:
KM = NL = | b | KN = ML = | a | TO = OQ = | a · b |
2 | 2 | a + b |
Источник
Привет!
Перед тобой лучший гид по трапеции! Только то, что нужно. Без воды.
Основные определения, формулы и свойства.
Помни о своей цели!
Тебе нужно подготовиться к ЕГЭ по математике так, чтобы поступить в ВУЗ мечты! Будь уверен!
Приступим!
Трапеция – четырёхугольник, у которого две стороны параллельны (они называются основания), а две другие – нет (это боковые стороны).
- Сумма углов при каждой боковой стороне трапеции равна 180°
- ( displaystyle angle 1+angle 2=180{}^circ ) и ( displaystyle angle 3+angle 4=180{}^circ )
Средняя линия трапеции (( displaystyle MN)) – отрезок, соединяющий середины боковых сторон:
( displaystyle AM=MB, CN=ND).
- Средняя линия параллельна основаниям: ( displaystyle MNparallel BCparallel AD).
- Длина средней линии трапеции равна полусумме длин оснований: ( displaystyle MN=frac{BC+AD}{2}).
- Диагонали любой трапеции пересекаются в точке О.
- Треугольники, образованные основаниями трапеции и отрезками диагоналей
(( displaystyle BOC) и ( displaystyle AOD)) подобны по двум углам с коэффициентом подобия равным отношению оснований: ( displaystyle k=frac{BC}{AD}). - Площади треугольников, образованных боковыми сторонами и отрезками диагоналей трапеции, равны: ( displaystyle {{S}_{Delta AOB}}={{S}_{Delta COD}}).
Равнобедренная (равнобокая) трапеция – это трапеция, у которой боковые стороны равны:
( displaystyle AB=CD).
Свойства равнобедренной трапеции:
- диагонали равны: ( displaystyle AC=BD);
- углы при основании равны: ( displaystyle angle A=angle D,text{ }angle B=angle C);
- сумма противолежащих углов равна ( displaystyle 180{}^circ ): ( displaystyle angle A+angle C=angle B+angle D=180{}^circ ).
- Если трапецию можно вписать в окружность, то она – равнобокая.
- Стороны и диагональ равнобокой трапеции связаны соотношением: ( displaystyle A{{C}^{2}}=B{{D}^{2}}=ADcdot BC+A{{B}^{2}}).
Площадь трапеции равна полусумме оснований, умноженной на высоту: ( displaystyle {{S}_{ABCD}}=frac{BC+AD}{2}cdot h).
НАЧАЛЬНЫЙ УРОВЕНЬ
Что такое трапеция?
Трапеция – такой четырехугольник, у которого две стороны параллельны, а две другие – нет.
Параллельные стороны называются – основания, а непараллельные стороны называются боковые стороны.
Вот, смотри:
Оказывается, трапеция (как и треугольник) бывает равнобедренная.
Если боковые стороны трапеции равны, то она называется равнобедренной (или равнобокой).
И тут возникает вопрос: а могут ли у трапеции быть равными ОСНОВАНИЯ?
А вот и нет. Тогда это получится не трапеция, а параллелограмм, потому что две стороны окажутся параллельны и равны (вспоминаем признаки параллелограмма)
НЕ ПРОПУСТИ!
Автор этого учебника, Алексей Шевчук, проводит бесплатные вебинары по самым сложным задачам ЕГЭ по математике и информатике.
На вебинарах все будет еще понятнее. Шорткаты, лайфхаки, разбор “капканов” – все там.
Регистрируйся здесь и приходи!
Свойства трапеции
Итак, что ты должен знать о свойствах трапеции…
Сумма углов при каждой боковой стороне трапеции равна 180°.
(у нас на рисунке ( displaystyle angle 1+angle 2=180{}^circ ) и ( displaystyle angle 3+angle 4=180{}^circ ))
Почему так?
Ну, конечно, просто потому, что основания – параллельны, а боковая сторона – секущая. Вот и получается, что ( displaystyle angle 1) и ( displaystyle angle 2) – внутренние односторонние углы при параллельных ( displaystyle AD) и ( displaystyle BC) и секущей ( displaystyle AB).
Поэтому ( displaystyle angle 1+angle 2=180{}^circ ).
И точно так же ( displaystyle angle 3) и ( displaystyle angle 4) – внутренние односторонние углы при тех же параллельных ( displaystyle AD) и ( displaystyle BC), но секущая теперь – ( displaystyle CD).
Видишь: главное, что играет роль – это параллельность оснований. Давай разберем еще некоторые свойства трапеции.
Как у всякого четырехугольника, у трапеции есть диагонали. Их две – посмотри на рисунки:
Снова порассуждаем об углах:
Опять ( displaystyle AD) и ( displaystyle BC) – параллельные, а диагональ ( displaystyle AC) – секущая. Поэтому ( displaystyle angle 1=angle 2).
А теперь рассмотрим сразу 2 диагонали и 4 угла:
( displaystyle angle 1=angle 2)
( displaystyle angle 3=angle 4)
Что из этого может следовать?
Очень важный факт:
Треугольники ( displaystyle BOC) и ( displaystyle AOD) – подобны по двум углам.
Их коэффициент подобия равен отношению оснований: ( displaystyle K=frac{a}{b}).
Средняя линия трапеции
Для начала – что же такое средняя линия трапеции?
Средняя линия трапеции – это отрезок, который соединяет середины боковых сторон трапеции.
Оказывается, длину этой средней линии можно выразить через длины оснований трапеции. А именно, имеет место такая формула:
( displaystyle m=frac{a+b}{2}), то есть:
Длина средней линии трапеции равна полусумме (то есть половине суммы) длин оснований.
А ещё:
Средняя линия трапеции параллельна ее основаниям.
Трапеция, вписанная в окружность
Даже если ты ещё не изучал темы «Окружность. Вписанный угол» и «Вписанный четырехугольник», тебе будет полезно (и, надеюсь, интересно) узнать следующий удивительный факт:
Если трапецию можно вписать в окружность, то она – равнобокая.
Доказывать это мы не будем (здесь, во всяком случае), а вот запомнить хорошо бы – пригодится!
Подведём итог – он короткий.
Самое важное, что есть в трапеции – две параллельные стороны и BCE свойства трапеции именно этим и определяются.
Так что, если у тебя в задаче трапеция, – используй параллельность и всё получится!
НРАВИТСЯ УЧЕБНИК?
Его автор, Алексей Шевчук, ведет наши курсы подготовки к ЕГЭ по математике и информатике.
Приходи, научишься решать задачи любой сложности с самого нуля. Шаг за шагом.
От 2000 до 3990 руб / месяц, 3 раза в неделю по 2 часа.
Трапеция – такой четырехугольник, у которого две стороны параллельны, а две другие – нет.
Параллельные стороны называются основаниями, а непараллельные – боковыми сторонами.
Если боковые стороны трапеции равны, то она называется равнобедренной (или равнобокой).
Сумма углов при каждой боковой стороне трапеции равна 180°.
(у нас на рисунке ( displaystyle angle 1+angle 2=180{}^circ ) и ( displaystyle angle 3+angle 4=180{}^circ ))
Почему? ( displaystyle AD) и ( displaystyle BC) – параллельны, а ( displaystyle AB) и ( displaystyle CD) – секущие, поэтому:
- ( angle 1+angle 2=180{}^circ );
- ( angle 3+angle 4=180{}^circ ).
Треугольники ( displaystyle BOC) и ( displaystyle AOD) подобны по двум углам.
(( displaystyle angle 1=angle 2) и ( displaystyle angle 3=angle 4) – как накрест лежащие)
Коэффициент подобия треугольников ( displaystyle BOC) и ( displaystyle AOD) равен отношению оснований:
( K=frac{a}{b})
Зарегистрируйся один раз и ты откроешь все 100 статей учебника
А также получишь доступ к видеоурокам и другим бесплатным материалам курса “Подготовка к ЕГЭ с репетитором”
* Если не понравятся бесплатные материалы, ты сможешь отписаться в любой момент
Сначала сформулируем основное определение, которое тебе нужно знать для понимания этого свойства трапеции:
Средняя линия трапеции – отрезок, соединяющий середины боковых сторон.
А теперь формула:
А вот и само третье свойство трапеции:
Средняя линия трапеции равна полусумме оснований и параллельна им.
А это почему? Ту чуть – чуть сложнее – потребуется провести аж одну лишнюю линию!
Итак, проведём ( displaystyle CEparallel AB). Тогда четырехугольник ( displaystyle ABCE) – параллелограмм.
Возьмём середину ( displaystyle M) стороны ( displaystyle AB) и середину ( displaystyle K) стороны ( displaystyle CE).
Оба: ( displaystyle MBCK) и ( displaystyle AMKE) – снова параллелограммы (( displaystyle MBparallel CK) и ( displaystyle MB=CK); ( displaystyle AMparallel KE) и ( displaystyle AM=KE)).
Ну вот, значит ( displaystyle MKparallel AD), да ещё ( displaystyle MK=BC=a).
Поедем дальше.
Проведём ( displaystyle KN) – среднюю линию в ( displaystyle Delta ECD).
Знаем, что ( displaystyle KNparallel ED) и ( KN=frac{1}{2}ED)
Что же из всего этого следует?
- ( displaystyle MNparallel AD) (так как через точку ( displaystyle K) можно провести лишь одну прямую параллельную ( displaystyle AD), поэтому ( displaystyle MK) и ( displaystyle KN) – одна прямая ( displaystyle MN))
- ( displaystyle MN=MK+KN=a+frac{b-a}{2})
( displaystyle MN=frac{a+b}{2})
Вот и доказали!
Если трапеция вписана в окружность, то она равнобокая.
Почему?
Подробнее смотри в теме «Вписанный четырехугольник», а тут – двумя строчками:
( angle 1+angle 2=180{}^circ ) (трапеция же!)
( angle 3+angle 2=180{}^circ ) (вписанный четырехугольник)
( Rightarrow angle 1=angle 3). Ну, и так же ( angle 2=angle 4).
В любой трапеции следующие четыре точки лежат на одной прямой:
- ( displaystyle E) – точка пересечения продолжений боковых сторон;
- ( displaystyle F) и ( displaystyle H) – середины оснований;
- ( displaystyle G) – точка пересечения диагоналей.
Эту теорему доказывать не будем – не пугайся.
Заметим только, что ВЕРНО и ОБРАТНОЕ:
Если в каком-нибудь четырехугольнике какие-нибудь три из перечисленных четырёх точек окажутся на одной прямой, то четырёхугольник этот – ТРАПЕЦИЯ.
Биссектрисы углов при боковой стороне трапеции перпендикулярны.
( left{ begin{array}{l}angle 1+angle 2+angle 3+angle 4=180{}^circ -так, как, трапеция\angle 1=angle 2\angle 3=angle 4 -так, как, биссектрисаend{array} right.Rightarrow 2cdot angle 2+2cdot angle 3=180{}^circ Rightarrow )
( angle 2+angle 3=90{}^circ Rightarrow angle AEB =90{}^circ )
Здесь мы ещё раз увидим, как полезно в трапеции бывает провести линию, параллельную или боковой стороне, или диагонали – сразу появляется новый взгляд. Один раз мы уже так делали – в пункте про среднюю линию. А теперь ты узнал новый факт, который относительно часто встречается в задачах.
В трапеции с перпендикулярными диагоналями ( FH=frac{AD+BC}{2})
Давай докажем! Это уже целая задача, которая вполне может попасться прямо на ЕГЭ!
Ну вот, и ты теперь старайся с помощью новых знаний и методов решать задачки про трапецию – они обычно не слишком сложные. Главное, твёрдо помнить все свойства трапеции и не забывать о параллельности оснований и иногда (в задачах посложнее) бывает полезно провести что-то параллельное или соединить боковые стороны.
Проведём ( displaystyle BKparallel AC) и ( displaystyle BLparallel FH).
Обозначим ( displaystyle BC=text{ }a); ( displaystyle AD=b).
Тогда:
- ( displaystyle Delta KBD) – прямоугольный
- ( begin{array}{l}left{ begin{array}{l}LD=frac{b}{2}+frac{a}{2}=frac{a+b}{2}\LK=a+frac{b}{2}-frac{a}{2}=frac{a+b}{2}end{array} right.Rightarrow BL-медиана~в~ Delta KBD.\end{array})
Значит, ( BL=frac{KD}{2}) (медиана, проведенная к гипотенузе, равна её половине).
То есть ( BL=frac{a+b}{2}).
Но ведь ( displaystyle FH=BL) (так как ( displaystyle BFHL) – параллелограмм)( Rightarrow ) ( FH=frac{a+b}{2}).
P.S. Последний бесценный совет!
Ну вот, тема закончена. Если ты читаешь эти строки, значит, ты очень крут. Почему? Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, ты попал в эти 5%!
Теперь самое главное.
Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем большинство твоих сверстников. Проблема в том, что этого может не хватить…
Для чего?
Для успешной сдачи ЕГЭ и поступления в ВУЗ мечты на бюджет и, самое главное, для жизни. Я не буду тебя ни в чем убеждать, просто скажу одну вещь… Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил.
Это статистика. Но и это не главное.
Главное то, что они более счастливы (есть такие исследования). Возможно, потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю…
Но думай сам…
Что нужно, чтобы сдать наверняка ЕГЭ, поступить в ВУЗ мечты и быть в конечном итоге… более счастливым? Две вещи.
Первое, тебе нужно набить руку, решая задачи
На экзамене у тебя не будут спрашивать теорию. Тебе нужно будет решать задачи на время. И, если ты не решал их (много!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь. Это как в спорте: нужно много раз повторить, чтобы выиграть наверняка. “Понял” и “Умею решать” – это совершенно разные навыки. Тебе нужны оба.
Второе, заниматься по системе – иначе у тебя уйдет много времени и ты, что-нибудь пропустишь.
И сейчас будет честная реклама наших курсов подготовки к ЕГЭ, потому что они решают обе эти проблемы.
Тебе же понятен этот учебник? Так вот наши курсы такие же понятные как этот учебник.
Потому что их подготовил и ведет автор этого учебника Алексей Шевчук.
Он буквально разжевывает все на вебинарах. Вы решаете задачи. Много задач. У вас будет проверка домашки и марафон «Год за месяц» в мае, чтобы «упаковать» ваши знания и улучшить результат на 20-30%.
Курсы очень бюджетные: от 2000 до 3990 тыс/мес за 12 двухчасовых занятий с Алексеем.
Кликайте по этим кнопкам и читайте условия, там все очень подробно описано:
Источник
В этой статье мы постараемся насколько возможно полно отразить свойства трапеции. В частности, речь пойдет про общие признаки и свойства трапеции, а также про свойства вписанной трапеции и про окружность, вписанную в трапецию. Затронем мы и свойства равнобедренной и прямоугольной трапеции.
Пример решения задачи с использованием рассмотренных свойств поможет вам разложить по местам в голове и лучше запомнить материал.
Трапеция и все-все-все
Для начала коротко вспомним, что такое трапеция и какие еще понятия с ней связаны.
Итак, трапеция – фигура-четырехугольник, две из сторон которой параллельны друг другу (это основания). И две не параллельны – это боковые стороны.
В трапеции может быть опущена высота – перпендикуляр к основаниям. Проведены средняя линия и диагонали. А также из любого угла трапеции возможно провести биссектрису.
Про различные свойства, связанные со всеми эти элементами и их комбинациями, мы сейчас и поговорим.
Свойства диагоналей трапеции
Чтобы было понятнее, пока читаете, набросайте себе на листке трапецию АКМЕ и проведите в ней диагонали.
- Если вы найдете середины каждой из диагоналей (обозначим эти точки Х и Т) и соедините их, получится отрезок. Одно из свойств диагоналей трапеции заключается в том, что отрезок ХТ лежит на средней линии. А его длину можно получив, разделив разность оснований на два: ХТ = (a – b)/2.
- Перед нами все та же трапеция АКМЕ. Диагонали пересекаются в точке О. Давайте рассмотрим треугольники АОЕ и МОК, образованные отрезками диагоналей вместе с основаниями трапеции. Эти треугольники – подобные. Коэффициент подобия k треугольников выражается через отношение оснований трапеции: k = АЕ/КМ.
Отношение площадей треугольников АОЕ и МОК описывается коэффициентом k2. - Все та же трапеция, те же диагонали, пересекающиеся в точке О. Только в этот раз мы будем рассматривать треугольники, которые отрезки диагоналей образовали совместно с боковыми сторонами трапеции. Площади треугольников АКО и ЕМО являются равновеликими – их площади одинаковые.
- Еще одно свойство трапеции включает в себя построение диагоналей. Так, если продолжить боковые стороны АК и МЕ в направлении меньшего основания, то рано или поздно они пересекутся к некоторой точке. Дальше, через середины оснований трапеции проведем прямую. Она пересекает основания в точках Х и Т.
Если мы теперь продлим прямую ХТ, то она соединит вместе точку пересечения диагоналей трапеции О, точку, в которой пересекаются продолжения боковых сторон и середины оснований Х и Т. - Через точку пересечения диагоналей проведем отрезок, который соединит основания трапеции (Т лежит на меньшем основании КМ, Х – на большем АЕ). Точка пересечения диагоналей делит этот отрезок в следующем соотношении: ТО/ОХ = КМ/АЕ.
- А теперь через точку пересечения диагоналей проведем параллельный основаниям трапеции (a и b) отрезок. Точка пересечения разделит его на две равных части. Найти длину отрезка можно по формуле 2ab/(a + b).
Свойства средней линии трапеции
Среднюю линию проведите в трапеции параллельно ее основаниям.
- Длину средней линии трапеции можно вычислить, если сложить длины оснований и разделить их пополам: m = (a + b)/2.
- Если провести через оба основания трапецию любой отрезок (высоту, к примеру), средняя линия разделит его на две равных части.
Свойство биссектрисы трапеции
Выберите любой угол трапеции и проведите биссектрису. Возьмем, например, угол КАЕ нашей трапеции АКМЕ. Выполнив построение самостоятельно, вы легко убедитесь – биссектрисой отсекается от основания (или его продолжения на прямой за пределами самой фигуры) отрезок такой же длины, что и боковая сторона.
Свойства углов трапеции
- Какую бы из двух пар прилежащих к боковой стороне углов вы не выбрали, сумма углов в паре всегда составляет 1800: α + β = 1800 и γ + δ = 1800.
- Соединим середины оснований трапеции отрезком ТХ. Теперь посмотрим на углы при основаниях трапеции. Если сумма углов при любом из них составляет 900 , длину отрезка ТХ легко вычислить исходя из разности длин оснований, разделенной пополам: ТХ = (АЕ – КМ)/2.
- Если через стороны угла трапеции провести параллельные прямые, те разделят стороны угла на пропорциональные отрезки.
Свойства равнобедренной (равнобокой) трапеции
- В равнобедренной трапеции равны углы при любом из оснований.
- Теперь снова постройте трапецию, чтобы проще было представить, о чем речь. Посмотрите внимательно на основание АЕ – вершина противоположного основания М проецируется в некую точку на прямой, которая содержит АЕ. Расстояние от вершины А до точки проекции вершины М и средняя линия равнобедренной трапеции – равны.
- Пару слов о свойстве диагоналей равнобедренной трапеции – их длины равны. А также одинаковы углы наклона этих диагоналей к основанию трапеции.
- Только около равнобедренной трапеции можно описать окружность, поскольку сумма противолежащих углов четырехугольника 1800 – обязательное условие для этого.
- Из предыдущего пункта следует свойство равнобедренной трапеции – если возле трапеции можно описать окружность, она является равнобедренной.
- Из особенностей равнобедренной трапеции вытекает свойство высоты трапеции: если ее диагонали пересекаются под прямым углом, то длина высоты равна половине суммы оснований: h = (a + b)/2.
- Снова проведите отрезок ТХ через середины оснований трапеции – в равнобедренной трапеции он является перпендикуляром к основаниям. И одновременно ТХ – ось симметрии равнобедренной трапеции.
- На этот раз опустите на большее основание (обозначим его a) высоту из противолежащей вершины трапеции. Получится два отрезка. Длину одного можно найти, если длины оснований сложить и разделить пополам: (a + b)/2. Второй получим, когда из большего основания вычтем меньшее и полученную разность разделим на два: (a – b)/2.
Свойства трапеции, вписанной в окружность
Раз уже речь зашла о вписанной в окружность трапеции, остановимся на этом вопросе подробней. В частности на том, где находится центр окружности по отношению к трапеции. Тут тоже рекомендуется не полениться взять карандаш в руки и начертить то, о чем пойдет речь ниже. Так и поймете быстрее, и запомните лучше.
- Расположение центра окружности определяется углом наклона диагонали трапеции к ее боковой стороне. Например, диагональ может выходить из вершины трапеции под прямым углом к боковой стороне. В таком случае большее основание пересекает центр описанной окружности точно посередине (R = ½АЕ).
- Диагональ и боковая сторона могут встречаться и под острым углом – тогда центр окружности оказывается внутри трапеции.
- Центр описанной окружности может оказаться вне пределов трапеции, за большим ее основанием, если между диагональю трапеции и боковой стороной – тупой угол.
- Угол, образованный диагональю и большим основанием трапеции АКМЕ (вписанный угол) составляет половину того центрального угла, который ему соответствует:МАЕ = ½МОЕ.
- Коротко про два способа найти радиус описанной окружности. Способ первый: посмотрите внимательно на свой чертеж – что вы видите? Вы без труда заметите, что диагональ разбивает трапецию на два треугольника. Радиус можно найти через отношение стороны треугольника к синусу противолежащего угла, умноженному на два. Например, R = АЕ/2*sinАМЕ. Аналогичным образом формулу можно расписать для любой из сторон обоих треугольников.
- Способ второй: находим радиус описанной окружности через площадь треугольника, образованного диагональю, боковой стороной и основанием трапеции: R = АМ*МЕ*АЕ/4*SАМЕ.
Свойства трапеции, описанной около окружности
Вписать окружность в трапецию можно, если соблюдается одно условие. Подробней о нем ниже. И вместе эта комбинация фигур имеет ряд интересных свойств.
- Если в трапецию вписана окружность, длину ее средней линии можно без труда найти, сложив длины боковых сторон и разделив полученную сумму пополам: m = (c + d)/2.
- У трапеции АКМЕ, описанной около окружности, сумма длин оснований равна сумме длин боковых сторон: АК + МЕ = КМ + АЕ.
- Из этого свойства оснований трапеции вытекает обратное утверждение: окружность можно вписать в ту трапецию, сумма оснований которой равна сумме боковых сторон.
- Точка касания окружности с радиусом r, вписанной в трапецию, разбивает боковую сторону на два отрезка, назовем их a и b. Радиус окружности можно вычислить по формуле: r = √ab.
- И еще одно свойство. Чтобы не запутаться, этот пример тоже начертите сами. У нас есть старая-добрая трапеция АКМЕ, описанная около окружности. В ней проведены диагонали, пересекающиеся в точке О. Образованные отрезками диагоналей и боковыми сторонами треугольники АОК и ЕОМ – прямоугольные.
Высоты этих треугольников, опущенные на гипотенузы (т.е. боковые стороны трапеции), совпадают с радиусами вписанной окружности. А высота трапеции – совпадает с диаметром вписанной окружности.
Свойства прямоугольной трапеции
Прямоугольной называют трапецию, один из углов которой является прямым. И ее свойства проистекают из этого обстоятельства.
- У прямоугольной трапеции одна из боковых сторон перпендикулярна основаниям.
- Высота и боковая сторона трапеции, прилежащая к прямому углу, равны. Это позволяет вычислять площадь прямоугольной трапеции (общая формула S = (a + b) * h/2) не только через высоту, но и через боковую сторону, прилежащую к прямому углу.
- Для прямоугольной трапеции актуальны уже описанные выше общие свойства диагоналей трапеции.
Доказательства некоторых свойств трапеции
Равенство углов при основании равнобедренной трапеции:
- Вы уже наверное и сами догадались, что тут нам снова потребуется трапеция АКМЕ – начертите равнобедренную трапецию. Проведите из вершины М прямую МТ, параллельную боковой стороне АК (МТ || АК).
Полученный четырехугольник АКМТ – параллелограмм (АК || МТ, КМ || АТ). Поскольку МЕ = КА = МТ, ∆ МТЕ – равнобедренный и МЕТ = МТЕ.
АК || МТ, следовательно МТЕ = КАЕ, МЕТ = МТЕ = КАЕ.
Откуда АКМ = 1800 – МЕТ = 1800 – КАЕ = КМЕ.
Что и требовалось доказать.
Теперь на основании свойства равнобедренной трапеции (равенства диагоналей) докажем, что трапеция АКМЕ является равнобедренной:
- Д