Какие свойства зданий обеспечивают несущие конструкции

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 21 апреля 2019; проверки требуют 3 правки.
Несущие конструкции — совокупность конструкций здания или сооружения, которые, статически взаимодействуя, выдерживают нагрузки, обеспечивают прочность и устойчивость постройки. Остальные конструкции здания называют ограждающими (самонесущими).
Основные конструкции, принимающие нагрузки, возникающие в здании, составляют несущий остов, то есть совокупность горизонтальных (перекрытия) и вертикальных (стены, столбы, стойки, колонны и т. д.) (иногда наклонных) конструктивных элементов. Кроме остова, к несущим конструкциям причисляют фундаменты (принимают нагрузки несущего остова и распределяют их на основание здания, например, на несущий грунт), лестницы, крышу (плоскую крышу иногда относят к перекрытиям).
Классификация нагрузок[править | править код]
Нагрузки, которым должны противодействовать несущие конструкции, делятся на:
- постоянные — собственный вес конструкций зданий и сооружений, давление грунта на стены подвала, а также стационарных ограждающих конструкций, отделочных и др. материалов;
- временные (длительные, кратковременные и особые) — нагрузки от веса людей, мебели, стационарного оборудования, имущества, находящегося в здании стационарно (жидкости, сыпучие вещества, газы), длительные температурные, снеговые и ветровые воздействия, нагрузки от подвижного подъемно-транспортного оборудования (мостовых и подвесных кранов, тельферов, погрузчиков и т.п.) ;
- особые (подвид временных нагрузок) — нагрузки от взрывов, аварий, осадки и просадки грунтов, сейсмического воздействия, вибрации оборудования и др.
Расчёт[править | править код]
При расчете конструкций можно руководствоваться разными критериями и требованиями. До 1955 года в СССР применялись расчеты по допускаемым напряжениям. Выполнялось требование, чтобы спроектированная конструкция возможно меньшего сечения сохраняла свою прочность. Фактически, применялся единый коэффициент запаса для всех конструкций вне зависимости от способа их использования и условий работы[1].
С тех пор стал применяться метод расчета предельных состояний, учитывающий требования нормальной эксплуатации. Такой метод учитывает три предельных состояния (ПС) в зависимости от трёх требований к конструкциям[1].
- 1ПС — по несущей способности. Расчет должен был гарантировать прочность, устойчивость и выносливость конструкции.
- 2ПС — по деформации и перемещениям. Например перекрытие может прогнуться так, что не потеряет свою прочность, однако с эксплуатационной точки зрения вызовет ряд проблем, как например разрушение ограждающих конструкций, ненесущих стен, перегородок.
- 3ПС — по трещиностойкости. Ограничивается величина раскрытия трещин или не допускается их образование так, чтобы не было угрозы эксплуатации сооружения вследствие потери непроницаемости, коррозии элементов или местных разрушений.
Наибольшие нагрузки, возникновение которых не нарушит эксплуатации, называются нормативными. Произведение нормативных нагрузок на коэффициент перегрузок называется расчетными нагрузками[1].
Исходя из классификации нагрузок, все нагрузки могут действовать неодновременно. Поэтому при расчетах учитываются разные сочетания нагрузок (основные, дополнительные и особые). Основное сочетание включает все постоянные нагрузки, временные длительные и одну кратковременную, которая оказывает наибольшее влияние. Дополнительные сочетания содержат все длительные, временные длительные и все кратковременные нагрузки. В особых сочетаниях добавляется одна из особых нагрузок[1].
См. также[править | править код]
- Каркас (конструкция)
Примечания[править | править код]
- ↑ 1 2 3 4 С. И. Вайдман, Л. Ф. Теверовский, Д. В. Яковлев. Строительные конструкции. — Ленинград: Издательство литературы по строительству, 1970. — 344 с.
Литература[править | править код]
- Авторский коллектив д-р. арх. проф. М. С. Туполев, доц. А. Н. Шкинев, проф. А. Н. Попов, канд. арх. доц. А. А. Попов, канд. техн. наук доц. Ю. Л. Сопоцько, канд. арх. доц. Т. И. Кириллова, канд. арх. В. Н. Карцев, канд. арх. О. В. Коретко, инж. И. А. Браунсдорфер, канд. техн. наук В. В. Беспалов, инж. В. М. Кунин. Конструкции гражданских зданий / под редакцией М. С. Туполева, научный редактор – арх. Г. А. Довжик. — Москва: Издательство литературы по строительству, 1968. — 239 с.
- С. И. Вайдман, Л. Ф. Теверовский, Д. В. Яковлев. Строительные конструкции. — Ленинград: Издательство литературы по строительству, 1970. — 344 с.
Ссылки[править | править код]
- Несущие конструкции — статья из Большой советской энциклопедии.
- Электронный фонд правовой и нормативно-технической документации [1]
- ↑ СП 20.13330.2011 Нагрузки и воздействия. Актуализированная редакция СНиП 2.01.07-85.
Источник
НЕСУЩИЕ КОНСТРУКЦИИ ЗДАНИЙ И СООРУЖЕНИЙ
ПОНЯТИЕ О НЕСУЩИХ КОНСТРУКЦИЯХ
Продуктом любого строительства являются здания и сооружения.
Здание — это наземный строительный объект, предназначенный для проживания и деятельности людей, размещения производства, хранения продукции.
Сооружение — это наземный или подземный строительный объект, предназначенный для выполнения технических или эстетических функций. В зависимости от этого различают инженерные сооружения (мосты, трубы, тоннели, резервуары и т.д.) и архитектурные сооружения — обелиски, памятники, и т.д.).
Здания и сооружения состоят из различных элементов и конструкций: фундаментов, стен, колонн, перекрытий и покрытий, лестниц, окон, дверей и т.д. По функциональному назначению элементы здания можно разделить на две основные группы: несущие и ограждающие. Некоторые элементы сочетают эти две функции (например, перекрытия, внешние стены и др.).
Ограждающие конструкции — это элементы здания, защищающие внутренние помещения от негативного воздействия внешней среды и отделяющие одно помещение от другого. К ограждающим конструкциям относятся стены, перегородки, перекрытия, покрытия и фонари, заполнение оконных и дверных проемов и т. д.
Несущие — это конструкции, которые воспринимают силовые и несиловые воздействия (температурные, сейсмические, от неравномерных осадок основания и др.) и, взаимодействуя друг с другом, передают их через фундамент на грунт. К несущим конструкциям относятся фундаменты, колонны, несущие стены, плиты перекрытия, ригели, прогоны, связи каркаса, размещаемые в строго определенном порядке.
В зависимости от геометрических форм различают следующие виды несущих строительных конструкций:
линейные, или стержневые, — колонны, балки, балочные плиты и настилы, фермы, рамы, арки;
плоскостные — плиты, опертые по контуру, наружные и внутренние стены зданий, безбалочные перекрытия и др.; пространственные — тонкостенные купола, оболочки покрытий одиночной и двойной кривизны, висячие конструкции, стенки резервуаров и силосов, складки, шатры и т. п.
Несущие конструкции являются основой зданий и сооружений. Они воспринимают действующие вертикальные и горизонтальные нагрузки и обеспечивают безопасность эксплуатации объекта и людей. Кроме того, инженерное оборудование зданий (лифты, грузоподъемные краны, водоснабжение и водоотведение, электрические сети и др.) смонтированы на несущих конструкциях и не могут нормально функционировать, если несущие конструкции не отвечают предъявляемым к ним требованиям.
Комплекс несущих конструкций, соединенных между собой, образует пространственную несущую (конструктивную) систему здания и сооружения (рис. 1.16), которая обеспечивает прочность, устойчивость и геометрическую неизменяемость объекта на весь срок эксплуатации.
В зависимости от применяемых конструкционных материалов различают: металлические конструкции (стальные и алюминиевые); бетонные и железобетонные конструкции; каменные и армокаменные; конструкции из дерева и пластмасс.
Металлические конструкции. Металл — наиболее дорогой и ценный конструкционный материал, в котором на сегодня исполнены основные ценности человечества — машины, станки, механизмы, каркасы зданий и сооружений. В строительстве для несущих систем используется строительная сталь. Это наиболее прочный, но и дорогой материал. Стальные конструкции (рис. 1.1) при низкой собственной массе обладают высокой несущей способностью. Однако для металлических конструкций характерна низкая сопротивляемость высокотемпературным воздействиям при пожаре. Огнестойкость незащищенных металлических конструкций невелика: при пожаре они теряют несущую способность уже через 12—15 мин. Для повышения огнестойкости предусматривают огнезащиту конструкций, действие которой основано на замедлении прогрева металла. Кроме того, во влажной среде сталь подвергается коррозии, поэтому требуется защита от атмосферного и химического воздействия.
Рис. 1.1. Внешний вид здания (а) и его несущий металлический каркас (6)
Бетон и железобетон — это искусственные конструкционные материалы, обладают высокой прочностью и долговечностью. Исходные материалы (вода, песок, гравий) для их изготовления достаточно распространены в природе. Конструкции из железобетона (рис. 1.2) при высокой несущей способности без дополнительных мер защиты обладают стойкостью к коррозионным воздействиям и достаточной огнестойкостью. Основным недостатком железобетона является его большой собственный вес, который зачастую оказывается сопоставим с той нагрузкой, для восприятия которой предназначена конструкция. Тем не менее, конструкции из железобетона занимают доминирующее положение в строительстве и будут оставаться таковыми и в дальнейшем.
Каменные конструкции самые древние в мире. Это пирамиды и самая большая из них — пирамида Хеопса, сооруженная более 30 веков до н. э. Ее высота 147 м и сторона грани основания 229,5 м. Ее строили более 100 тысяч человек в течение 20 лет. Каменные элементы здания, армированные стальной арматурой, называются армокаменны- ми. Конструктивные системы из камня, кирпича являются наиболее тяжелыми и трудоемкими в изготовлении.
Деревянные конструкции изготавливаются из наиболее экологически чистого материала — дерева, восполняемого в природе, легко обрабатываемого. Наиболее прочными и менее дорогими являются конструкции из клееной древесины (рис. 1.3).
Преимущества и недостатки конструкций из конструкционных материалов в сравнении между ними представлены в табл. 1.1.
Рис. 1.2. Несущие и ограждающие конструкции из железобетона
Рис. 1.3. Несущие конструкции покрытия из клееной древесины
Преимущества и недостатки конструкций
Таблица 1.1
Показатели | Виды конструкций | |||
железо бетонные | металли ческие | деревянные | каменные | |
Легкость | Тяжелые | Легкие | Средние | Очень тяжелые |
Огнестойкость (без огнезащиты) | Высокая | Не огнестойкие | Огнестойкие, но возгораемы | Очень высокая |
Атмосферо- стойкость | Достаточная | Склонность к коррозии | Подверженность гниению | Достаточная |
Химическая стойкость | В ряде случаев недостаточная | Слабая | Весьма высокая | Достаточная |
Эксплуатаци онные расходы | Почти отсутствуют | Необходимость периодической окраски | Необходимость восстановления защитных покрытий против гниения и огня | Почти отсутствуют |
Ремонтопри годность | Т рудности в усилении | Высокая | Высокая | Трудности в усилении |
Важным фактором, определяющим применение соответствующего материала, является конструкционная легкость элементов. Легкость конструкций количественно характеризуется отношением расчетного сопротивления R к удельному весу у материала. Чем больше это отношение, тем легче конструкция.
Сравнительные результаты легкости конструкций (табл. 1.2) показывают, что наиболее легкими являются металлические конструкции; деревянные оказываются тяжелее примерно в 1,5—2 раза, железобетонные — в 4—10 раз; каменные — в 20—40 раз.
Таблица 1.2
Показатели легкости конструкций из различных материалов
Материал | Плотность, кг/м3 | Удельный вес у, кН/м3 | Расчетное сопротивление R, МПа | R/y х 103, м |
Сталь обычной прочности С245 | 7850 | 78,5 | 230 | 2,93 |
Сталь повышенной прочности С375 | 7850 | 78,5 | 325 | 4,14 |
Алюминиевый сплав упрочненный 1915Т | 2750 | 27,5 | 200 | 7,27 |
Бетон класса ВЗО | 2400 | 24 | 17 | 0,71 |
Древесина (сосна) 2-го сорта | 600 | 6 | 13 | 2,16 |
Кладка из кирпича М100 на растворе М25 | 1800 | 18 | 1,3 | 0,072 |
Источник
В таблице 21 Технического регламента о требованиях пожарной безопасности N 123-ФЗ от 22.07.2008 имеется два столбика с требуемыми пределами огнестойкости конструкций “перекрытия междуэтажные” и “несущие стены, колонны и другие несущие элементы”.
Согласно п.5.4.2 СП 2.13130.2012 “К несущим элементам зданий относятся несущие стены, колонны, связи, диафрагмы жесткости, фермы, элементы перекрытий и бесчердачных покрытий (балки, ригели, плиты, настилы), если они участвуют в обеспечении общей устойчивости и геометрической неизменяемости здания при пожаре. Сведения о несущих конструкциях, не участвующих в обеспечении общей устойчивости и геометрической неизменяемости здания, приводятся проектной организацией в технической документации на здание” .
В кирпичных зданиях междуэтажные перекрытия участвуют в обеспечении устойчивости здания. Руководствуясь вышеуказанным, требуемый предел огнестойкости междуэтажных плит перекрытия необходимо принимать по столбцу “несущие стены, колонны и другие несущие элементы”. Однако, учитывая особенности работы кирпичных здания, а также практику применения противопожарных требований к кирпичным зданиям “советских времен”, нам кажется допустимым при соответствующем обосновании принимать предел огнестойкости междуэтажных перекрытий по одноименному столбцу таблицы 21 Технического регламента о требованиях пожарной безопасности N 123-ФЗ от 22.07.2008 .
Соответствующее обоснование на примере конкретного здания:
Рассматривается кирпичное здание с жесткой конструктивной схемой согласно п. 9.7 СП 15.13330.2012 “Каменные и армокаменные конструкции” (расстояние между поперечными жесткими стенами не превышает указанных в табл.28 СП 15.13330.2012 ). Степень огнестойкрости здания – I.
Принимаем предел огнестойкости междуэтажных перекрытий REI60 (по столбцу “перекрытия”).
Расчетная схема работы кирпичного здания при пожаре: через 60 минут междуэтажное перекрытие над очагом пожара выключается из работы по обеспечению общей устойчивости и жесткости здания. Расчетная высота кирпичных стен здания станет равна удвоенной высоте этажа здания (или сумме высот двух смежных этажей). При высоте этажей здания 3,9 м это 3,9*2=7,8 м.
Анализируем и проверяем новую расчетную схему здания (расчетная схема с одним исключенным междуэтажным перекрытием):
1) Высота стен здания, принятая равной удвоенной высоте этажа здания не превышает предельно допустимой высоты согласно требованиям п.9.16 , 9.17 , табл.29 , 30 СП 15.13330.2012 (7,8 м < 0,38*25*0,9=8,55 м).
2) Обеспечение прочности кирпичных стен при расчетной высоте стен равной удвоенной высоте этажа здания подтверждается соответствующими конструктивными расчетами.
Выход из работы второго междуэтажного перекрытия наступит через 60+60=120 минут и означает наступление предельного состояния для несущих конструкций кирпичного здания, что не менее требуемого предела огнестойкости для несущих конструкций здания R120 по табл.21 Технического регламента о требованиях пожарной безопасности .
Таким образом, при новой расчетной схеме здания, принятой для ситуации с пожаром, общая устойчивость и жесткость кирпичного здания в нашем случае обеспечивается.
Допускается ли на ваш взгляд такое обоснование (в каждом конретном случае в зависимости от высоты этажей здания, толщин стен и др. параметров) или предел огнестойкости междуэтажных перекрытий в кирпичных зданиях следут принимать однозначно по столбцу “несущие стены, колонны и другие элементы” табл. 21 Технического регламента о требованиях пожарной безопасности N 123-ФЗ от 22.07.2008 (что в ряде случае достаточно проблематично и затратно).
Источник
вернуться на главную страницу
ГЛАВНОЕ МЕНЮ РАЗДЕЛА «НЕСУЩИЕ КОНСТРУКЦИИ»
Несущие строительные конструкции зданий и сооружений.
Несущими строительными конструкциями называют такие элементы или конструкции здания или сооружения, которые гарантированно воспринимают воздействующие на них нагрузки от других конструкций и внешних воздействий, а также собственной массы и далее распределяют силовые потоки на грунт или другие конструкции. Несущим конструкциям следует уделять первостепенное значение, т.к. их разрушение может привести к обрушению какой либо части или всего здания или сооружения. Несущие конструкции могут одновременно являться и ограждающими конструкциями, например, стены. Как правило, выбор конструкций уже определен ЗАДАНИЕМ НА ПРОЕКТИРОВАНИЕ, но частично такие решения приходится делать и проектировщику.
В разделе НЕСУЩИЕ КОНСТРУКЦИИ мы будем рассматривать:
1. ГРУНТЫ И ФУНДАМЕНТЫ
Фундаменты называют несущими конструкциями, которые передают нагрузку на грунт. Фундаменты всегда считались самой важной несущей конструкцией здания или сооружения, т.к. разрушение фундамента может стать причиной аварийного состояния всего здания или сооружения. В данном разделе мы рассмотрим различные виды фундаментов и поговорим о грунтах.
2. МЕТАЛЛИЧЕСКИЕ КОНСТРУКЦИИ
Металлические конструкции стали особо популярны в современном строительстве. Быстрота изготовления и возведения металлических конструкций является их неоспоримым преимуществом. В данном разделе мы рассмотрим самые разные элементы металлического каркаса (фермы, балки, фахверк и т.п.).
3. ЖЕЛЕЗОБЕТОННЫЕ КОНСТРУКЦИИ
Железобетонные конструкции обычно используются при строительстве больших объектов капитального строительства (Высотные дома, плотины), а также при устройстве фундаментов подавляющего большинства зданий и сооружений. Железобетонные конструкции обладают большой долговечностью, массивностью и пожаростойкостью. В этом разделе мы рассмотрим элементы сборного железобетонного каркаса.
4. КАМЕННЫЕ КОНСТРУКЦИИ
Каменные конструкции сочетают в себе экологичность, огнестойкость, надежность и долговечность. Выполняют каменные конструкции из кирпичей, блоков, природных камней и других материалов. Здесь мы будем рассматривать специфику каменных и кирпичных стен.
5. ДЕРЕВЯННЫЕ КОНСТРУКЦИИ
Деревянные конструкции являются самым экологически чистым материалом. Несмотря на существенные недостатки деревянных конструкций, такие как горючесть, подверженность гниению и т.п., современнее способы обработки дерева и современные антисептические, противопожарные и другие покрытия позволяют в значительной степени исключить недостатки деревянных конструкций.
Как правило, выбор конструкций уже определен ЗАДАНИЕМ НА ПРОЕКТИРОВАНИЕ, но частично такие решения приходится делать и проектировщику.
Сравнение типов строительных несущих конструкций.
Приведем сравнительную таблицу строительных конструкций (См. ниже) .
Таблица сравнения строительных конструкций
№ | Наименование | Стальные конструкции | Железобетонные конструкции | Кирпичные конструкции |
1 | Скорость монтажа | Высокая | Средняя | Низкая |
2 | Наличие «мокрых» процессов | Нет | Есть | Есть |
3 | Нагрузки на фундамент | Низкие | Высокие | Высокие |
4 | Необходимость в доступности строительных заводов | Не требуется | Высокая необходимость | Высокая необходимость |
5 | Возможность модернизации, реконструкции, демонтажа. | Высокая | Средняя | Низкая |
6 | Простота контроля материалов | Высокая | Средняя | Низкая |
7 | Возможность устройства больших пролетов | Высокая | Высокая | Низкая |
8 | Пожаростойкость | Низкая | Средняя | Высокая |
9 | Коррозионная стойкость | Низкая | Средняя | Высокая |
10 | Стоимость | Низкая | Средняя | Высокая |
12 | Звукоизоляция | Низкая | Средняя | Высокая |
13 | Экология | Низкая | Средняя | Высокая |
14 | Чувствительность к сейсмическим нагрузкам | Низкая | Средняя | Высокая |
Источник