Какие треугольники называются подобными каковы их свойства

Какие треугольники называются подобными каковы их свойства thumbnail

Подобные треугольники в евклидовой геометрии — треугольники, углы у которых соответственно равны, а стороны соответственно пропорциональны. Являются подобными фигурами.

В данной статье рассматриваются свойства подобных треугольников в евклидовой геометрии. Некоторые утверждения являются неверными для неевклидовых геометрий.

Признаки подобия треугольников[править | править код]

Признаки подобия треугольников — геометрические признаки, позволяющие установить, что два треугольника являются подобными без использования всех элементов определения.

Первый признак[править | править код]

Если два угла одного треугольника соответственно равны двум углам другого треугольника, то треугольники подобны.

то есть:

Дано: и

Доказать:

Следствия первого признака подобия[править | править код]

  • Если три разные стороны исходного треугольника попарно параллельны (дважды антипараллельны или перпендикулярны) трем разным сходственным сторонам другого треугольника, то указанные два треугольника подобны. Примеры применения этого следствия см. ниже в разделах: «Примеры подобных треугольников» и «Свойства параллельности (антипараллельности) сторон родственных треугольников».
  • Под дважды антипараллельными сторонами понимается следующее. Например, стороны данного остроугольного треугольника антипараллельны соответствующим сторонам ортотреугольника, против которых они лежат. В таком случае соответствующие стороны ортотреугольника ортотреугольника (дважды ортотреугольника) дважды антипараллельны соответствующим сторонам исходного треугольника, то есть просто параллельны. Следовательно, подобны, например, ортотреугольник ортотреугольника и исходный треугольник как треугольники с параллельными сторонами.

Второй признак[править | править код]

Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключённые между этими сторонами, равны, то такие треугольники подобны.

Дано: и

Доказать:

Третий признак[править | править код]

Если три стороны одного треугольника соответственно пропорциональны трем сторонам другого, то такие треугольники подобны.

Дано: и = = .

Доказать:

Признаки подобия прямоугольных треугольников[править | править код]

  1. По острому углу — см. первый признак;
  2. По двум катетам — см. второй признак;
  3. По катету и гипотенузе — см. третий признак.

Свойства подобных треугольников[править | править код]

  • Отношение площадей подобных треугольников равно квадрату коэффициента подобия
  • Отношение объёма подобных стереометрических фигур равно кубу коэффициента подобия
  • Отношение периметров и длин биссектрис, медиан, высот и серединных перпендикуляров равно коэффициенту подобия.

Примеры подобных треугольников[править | править код]

Подобны следующие виды треугольников:

  • Дополнительный треугольник и антидополнительный треугольник подобны; соответственные их стороны параллельны.
  • Треугольник ABC подобен своему дополнительному треугольнику; соответственные их стороны параллельны и относятся как 2:1.
  • Треугольник ABC подобен своему антидополнительному треугольнику; соответственные их стороны параллельны и относятся как 1:2.
  • Исходный треугольник по отношению к ортотреугольнику является треугольником трёх внешних биссектрис[1].
  • Ортотреугольник и тангенциальный треугольник подобны (Зетель, следствие 1, § 66, с. 81).
  • Ортотреугольник ортотреугольника и исходный треугольник подобны.
  • Треугольник трёх внешних биссектрис треугольника трех внешних биссектрис и исходный треугольник подобны.
  • Пусть точки касания вписанной в данный треугольник окружности соединены отрезками, тогда получится треугольник Жергонна, и в полученном треугольнике проведены высоты. В этом случае прямые, соединяющие основания этих высот, параллельны сторонам исходного треугольника. Следовательно ортотреугольник треугольника Жергонна и исходный треугольник подобны.
  • Выше указанные свойства подобия родственных треугольников являются следствием ниже перечисленных свойств параллельности сторон родственных треугольников.
  • Теорема: окружностно-чевианный треугольник подобен подерному[2]. Здесь использованы определения:

    • Треугольник с вершинами во вторых точках пересечения прямых, проведённых через вершины и данную точку, с описанной окружностью, называют окружностно-чевианным треугольником.
    • Треугольник с вершинами в проекциях данной точки на стороны называется подерным или педальным треугольником этой точки.

Свойства параллельности (антипараллельности) сторон родственных треугольников[править | править код]

  • Соответственные стороны дополнительного треугольника, антидополнительного треугольника и исходного треугольника попарно параллельны.
  • Стороны данного остроугольного треугольника антипараллельны соответствующим сторонам ортотреугольника, против которых они лежат.
  • Стороны тангенциального треугольника антипараллельны соответствующим противоположным сторонам данного треугольника (по свойству антипараллельности касательных к окружности).
  • Стороны тангенциального треугольника параллельны соответствующим сторонам ортотреугольника.
  • Пусть точки касания вписанной в данный треугольник окружности соединены отрезками, тогда получится треугольник Жергонна, и в полученном треугольнике проведены высоты. В этом случае прямые, соединяющие основания этих высот, параллельны сторонам исходного треугольника. Следовательно ортотреугольник треугольника Жергонна и исходный треугольник подобны.

Подобие в прямоугольном треугольнике[править | править код]

Треугольники, на которые высота, опущенная из прямого угла, делит прямоугольный треугольник, подобны всему треугольнику по первому признаку, а значит:

  • Высота прямоугольного треугольника, опущенная на гипотенузу, равна среднему геометрическому проекций катетов на гипотенузу,
  • Катет равен среднему геометрическому гипотенузы и проекции этого катета на гипотенузу.

Связанные определения[править | править код]

  • Коэффициент подобия — число k, равное отношению сходственных сторон подобных треугольников.
  • Сходственные стороны подобных треугольников — стороны, лежащие напротив равных углов.

См. также[править | править код]

  • Неравенство Пидо
  • Подобие
  • Признаки равенства треугольников
  • Решение треугольников
  • Среднее геометрическое
  • Треугольник

Примечания[править | править код]

  1. Стариков В. Н. Исследования по геометрии// Сборник публикаций научного журнала Globus по материалам V-й международной научно-практической конференции «Достижения и проблемы современной науки» г. Санкт-Петербург: сборник со статьями (уровень стандарта, академический уровень). С-П.: Научный журнал Globus, 2016. С. 99-100
  2. ↑ Система задач по геометрии Р. К. Гордина. Задача 6480

Литература[править | править код]

  • Геометрия 7-9/Л. С. Атанасян и др. — 12-е изд. — М.: Просвещение, 2002. — 384 c.:
  • Зетель С. И. Новая геометрия треугольника. Пособие для учителей. 2-е издание. М.:Учпедгиз, 1962. 153 с.

Ссылки[править | править код]

  • Видео. Подобные треугольники
  • Подобие треугольников
  • Признаки подобия из учебника за восьмой класс

Источник

Подобие геометрических фигур

Две фигуры называют подобными, если они переводятся друг в друга путем преобразования подобия (расстояния между точками фигур изменяются одно и то же число раз).

Читайте также:  Какими свойствами обладают только живые организмы

Обозначение подобия фигур: (sim), например (triangle ABCsimtriangle KLM) (треугольник (ABC) подобен треугольнику (KLM))

Признаки подобия треугольников

Для доказательства признаков подобия нам понадобится следующее утверждение:

Лемма

Прямая, параллельная какой-нибудь стороне треугольника и пересекающая две другие стороны, отсекает от него треугольник, подобный исходному.

Лемма

Источник: wiki.eduvdom.com

Первый признак: подобие по двум углам

Теорема. Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.

Докажем данное утверждение.

Дано: (triangle ABC, triangle A_1B_1C_1, angle A=angle A_1, angle B=angle B_1)

Доказать: (triangle ABCsimtriangle A_1B_1C_1)

Подобие по углам

Источник: wiki.eduvdom.com

Доказательство:

Отложим на (AB) отрезок (BA_2), равный отрезку (A_1B_1) и проведем (A_2C_2parallel AC). Рассмотрим (triangle A_1B_1C_1) и (triangle A_2BC_2: A_1B_1 = A_2B) по построению, (angle B=angle B_1) по условию и (angle A_1=angle A_2) как соответственные при параллельных прямых. Из леммы следует: (triangle A_2BC_2simtriangle ABC), значит,( triangle ABCsimtriangle A_1B_1C_1).

Второй признак: по двум пропорциональным сторонам и углу между ними

Теорема. Если две стороны одного треугольника соответственно пропорциональны двум сторонам другого треугольника и углы между этими сторонами равны, то такие треугольники подобны.

Третий признак: по трем пропорциональным сторонам

Теорема. Если три стороны одного треугольника пропорциональны трём сторонам другого, то такие треугольники подобны.

Подобие по трем пропорциональным сторонам

Источник: sites.google.com

Примеры задач

Задача 1

Через точки (М) и (N) на сторонах (АВ) и (ВС) треугольника (ABC) соответственно, проведена прямая (МN), параллельная стороне (АС), (ВС = 6), (МN = 4) и (АС = 9). Найдите длину (СN).

Задача 1

Источник: egemaximum.ru

Решение:

Рассмотрим (triangle MBN) и (triangle ABC):

  1. (angle B) — общий
  2. (angle BMN = angle BAC) как соответственные при (MNparallel AC) и секущей (AB).

Следовательно (triangle MBNsimtriangle ABC)

Можем сделать вывод о пропорциональности соответствующих сторон: (frac{BN}{BC}=frac{MN}{AC}=frac{MB}{AB};)

Пусть (NC = x), тогда (BN = 6 – x). Значит справедливо равенство: 

(frac{6-x}6=frac49)

(9(6-x)=6times4)

(x=frac{10}3)

Ответ: (frac{10}3)

Задача 2

Прямая, параллельная основанию треугольника, отсекает от него треугольник и трапецию, площади которых относятся как 4:5 соответственно. Периметр маленького треугольника равен 20 см. Найти периметр данного треугольника.

Задача 2

Источник: egemaximum.ru

Решение:

Имеем соотношение: (frac{S_{DBE}}{S_{ADEC}}=frac45,) значит (frac{S_{DBE}}{S_{ABC}}=frac49) (т.к. всего треугольник условно делится на (4+5=9) частей)

Рассмотрим (triangle DBE) и (triangle ABC):

  1. (angle B) — общий
  2. (angle BDE = angle BAC) как соответственные при (DEparallel AC) и секущей (AB)

Следовательно, (triangle DBEsimtriangle AB)C по двум углам.

Площади соотносятся как (k^2) ((k) — коэффициент подобия), значит (k=frac23), то есть (frac{P_{DBE}}{P_{ABC}}=frac23), а так как (P_{DBE}=20), то выражаем (P_{ABC}=30.)

Ответ:30

Источник

План урока:

Пропорциональные отрезки

Определение подобных треугольников

Первый признак подобия треугольников

Второй и третий признаки подобия треугольников

Отношение площадей подобных треугольников

Пропорциональные отрезки

Если известна длина двух отрезков, то можно узнать, во сколько раз один из них больше другого. Например, если некоторый отрезок NM = 24 см, а другой отрезок KP = 4 см, то можно утверждать, что NM в 6 раз длиннее, так как

Величину NM/KP именуют отношением отрезков NM и KP. Надо заметить, что в ряде случаев отношение отрезков можно найти, не зная их длины. Пусть в ∆МКР проведена медиана МН. Очевидно, что отрезок КР будет вдвое длиннее КН, ведь Н – середина КР:

2 podobnye treugolniki

Другой пример – это отношение между диагональю квадрата и его стороной.

3 podobnye treugolniki

Используя теорему Пифагора, несложно показать, что в любом квадрате АВСD

4 podobnye treugolniki

Наконец, в прямоугольном треуг-ке, один из углов которого равен 30°, гипотенуза всегда вдвое длиннее меньшего из катетов:

5 podobnye treugolniki

Если отношение отрезка AB к А1В1 равно отношению отрезка СD к С1D1, то говорят, что отрезки AB и CD пропорциональны отрезкам А1В1 и С1D1. Например, пусть

6 podobnye treugolniki

Получается, AВ и CD пропорциональны А1В1 и С1D1. Важно отметить, что пропорциональны могут быть также сразу три и более отрезка.

Определение подобных треугольников

В жизни нередко можно наблюдать объекты, у которых совпадает форма, но отличаются размеры. В качестве примера можно привести мяч для настольного тенниса и баскетбольный мяч. Оба этих предмета имеют форму шара, на баскетбольный мяч значительно больше. Другой пример – настоящий танк и игрушка, изображающая его. Часто подобны друг другу матрешки, которые вкладываются друг в друга – все они выглядят одинаково, а отличаются только общим размером. Наконец, подобны и знаменитые египетские пирамиды:

7 podobnye treugolniki

Такие объекты в геометрии именуют подобными. Подобны друг другу любые две окружности и любые два квадрата. Но особо важную роль в геометрии играют подобные треугольники. Рассмотрим это понятие подробнее.

Пусть есть два треуг-ка, ∆AВС и ∆А1В1С1, у которых соответственно равны углы:

Стороны, которые лежат против одинаковых углов в таких треуг-ках, именуют сходственными. Ими являются стороны AВ и А1В1, ВС и В1С1, АС и А1С1.

9 podobnye treugolniki

Можно дать такое определение подобных треугольников:

10 podobnye treugolniki

Таким образом, подобие треугольников (оно обозначается символом ∾) обозначает выполнение сразу нескольких равенств:

11 podobnye treugolniki

Отношение между сходственными сторонами подобных треуг-ков именуется коэффициентом подобия и обозначается буквой k:

12 podobnye treugolniki

Грубо говоря, подобие треуг-ков означает, что их форма одинакова, но один из них в несколько раз больше или меньше другого. Чтобы получить, из одного треуг-ка другой, равный ему по размерам, его надо просто «масштабировать». Например, на этом рисунке все стороны исходного треуг-ка просто увеличили в три раза:

13 podobnye treugolniki

Это значит, что коэффициент подобия в данном случае равен 3. Однако важно понимать, что в различных геометрических задачах подобные треуг-ки также могут быть повернуты друг относительно друга:

Читайте также:  Какие высшие оксиды проявляют кислотные свойства

14 podobnye treugolniki

Задание. ∆AВС подобен DEF. Известно, что

Найдите длину ЕF.

16 podobnye treugolniki

Решение. Как только в задаче появляются подобные треуг-ки, стоит сразу же определить их коэффициент подобия, а для этого надо разобраться, какие стороны будут сходственными. Так как∠А = ∠Е, то лежащие против них стороны DF и ВС– сходственные. Их отношение и будет равно коэффициенту подобия:

Получили, что стороны ∆DEF вдвое длиннее сходственных им сторон ∆AВС. У подобных треуг-ков углы одинаковы, поэтому∠С = ∠D. Отсюда следует, что стороны AВ и ЕF сходственны, а потому ЕF вдвое больше:

Задание. ∆AВС иDEF – подобные. Известно, что

19 podobnye treugolniki

Найдите длину ЕF.

20 podobnye treugolniki

Решение. По сравнению с предыдущей задачей изменилось только одно условие, теперь∠А = ∠D. Однако это меняет сходственные стороны. Из подобия треуг-ков следует, что∠С = ∠Е. Тогда сходственными оказываются уже стороны AВ и DF. Найдем коэффициент подобия треугольников:

Сходственными являются также стороны ВС и ЕF (ведь∠А = ∠D), поэтому ЕF в 1,25 раза длиннее:

Эти две задачи показывают, как важно правильно определять сходственные стороны подобных треугольников.

Естественно, что все равные друг другу треуг-ки являются одновременно и подобными, причем их коэффициент подобия равен единице.

Задание. Докажите, что у подобных треуг-ков отношение их периметров равно коэффициенту подобия.

Решение. Пусть подобны ∆ AВС и ∆А1В1С1, причем

23 podobnye treugolniki

Периметр ∆AВС можно вычислить так:

24 podobnye treugolniki

Мы доказали утверждение, сформулированное в условии.

Первый признак подобия треугольников

Оказывается, для того, чтобы доказать подобие треуг-ков, не требуется сравнивать все их углы и находить соотношение всех сторон. Существуют три простых признака подобия треугольников.

Однако прежде, чем сформулировать их, нам придется доказать отдельное утверждение, которое известно как обобщенная теорема Фалеса («обычную», не обобщенную теорему мы уже изучали ранее).

25 podobnye treugolniki

Если прямые ВВ1 и СС1 (показаны красным цветом)параллельны, то отрезки AВ и АС пропорциональны отрезкам AВ1 и АС1, то есть справедливо соотношение:

Доказывать будем от противного. Пусть отрезки AВ и АС непропорциональны AВ1 и АС1. Тогда отметим наАС такую точку Н, которая разобьет АС на пропорциональные отрезки, то есть

Естественно, эта точка не будет совпадать с С1. Рассмотрим случай, когда она окажется правее, чем С1:

28 podobnye treugolniki

Теперь поступим следующим образом. Проведем через стороны угла большое число прямых, параллельных ВС, которые будут разбивать АС на одинаковые отрезки. По теореме Фалеса эти же прямые отсекут одинаковые отрезки и на AВ. При этом мы проведем настолько много параллельных прямых, что хотя бы одна из них пересечет отрезок С1Н:

29 podobnye treugolniki

Пусть эта прямая пересечет отрезок С1Н в некоторой точке С2, а сторону AВ в точке В2. Ясно, что отрезки AВ и АВ2 пропорциональны отрезкам АС и АС2, так как они состоят из одинакового количества одинаковых отрезков. Например, на построенном рисунке отношение AB2 к AB равно 5/8, так как AB2 состоит из 5 отрезков, отсеченных зелеными параллельными прямыми, а AB состоит из 8 таких отрезков. Аналогично и отношение АС2 к АС также равно 5 к 8. Таким образом, можно записать:

30 podobnye treugolniki

Здесь мы рассмотрели случай, когда точка Н лежит правее С1, то есть АН >C1. Случай, когда АН <АС1, рассматривается аналогично, и также получается противоречие. Эти противоречия означают, что на самом деле точка Н должна совпадать с С1, то есть справедливо равенство

ч.т. д.

Теперь, доказав обобщенную теорему Фалеса, мы можем перейти к первому признаку подобия треугольников.

32 podobnye treugolniki

Действительно, пусть есть ∆AВС и ∆А1В1С1, у которых

Так как сумма углов у любого треуг-ка постоянна и составляет 180°, то должны быть одинаковы и третьи углы:

34 podobnye treugolniki

При таком наложении прямые ВС и В1С1 окажутся параллельными, так как соответственные углы ∠В1С1А и ∠ВСА одинаковы. Но параллельные прямые должны отсекать на сторонах угла пропорциональные отрезки, то есть

35 podobnye treugolniki

У ∆AВС и ∆А1В1С1 углы одинаковы, а лежащие напротив них стороны пропорциональны, следовательно, это подобные треуг-ки.

Задание. Прямая, параллельная стороне AВ ∆AВС, пересекает стороны ВС и АС в точках Е и Р. Известно, что ЕС = 2, ВЕ = 3, ЕР = 3,2. Какова длина AВ?

36 podobnye treugolniki

Решение. В данной задаче есть только два треуг-ка, ∆AВС и ∆РЕС. Докажем их подобие. У них есть общий∠С, а ∠СЕР = ∠СВА, ведь это односторонние углы при параллельных прямых ЕР и AВ. Отсюда следует, что ∆AВС∾∆РЕС. Значит, ∠А = ∠СРЕ.

Далее надо найти коэффициент подобия. Стороны СЕ и ВС лежат против равных углов∠А и ∠СРЕ, поэтому они сходственные.

37 podobnye treugolniki

Задание. По данным рисунка найдите длину КЕ:

38 podobnye treugolniki

Решение. На рисунке показано, что ∠ВСА = ∠СКЕ, а∠А = ∠Е = 90°. То есть у ∆AВС и ∆СКЕ есть два одинаковых угла, и, следовательно, они подобны. Сходственными будут являться стороны AВ и ЕС, с их помощью найдем коэффициент подобия:

39 podobnye treugolniki

Задание. Основания трапеции имеют длины 5 и 8 см. Длины ее боковых сторон составляют 3,6 и 3,9 см. Продолжения боковых сторон пересекаются в точке М. Определите расстояние от М до вершин меньшего основания.

Решение. Для начала выполним построение:

40 podobnye treugolniki

Отрезки ВС и АD параллельны, так как они являются основаниями трапеции. Отсюда получаем равенство соответственных углов:

Читайте также:  Укажите какие свойства придают костям органические вещества

Теперь посмотрим на ∆АМD и ∆ВМС. МЫ только что выяснили, что у них есть одинаковые углы (∠МВС и ∠МАD), а ∠М является общим для них. Тогда получаем, что эти треуг-ки подобны. Стороны ВС и AD будут сходственными, так как лежат против одного и того же ∠М, поэтому по их длине можно найти коэффициент подобия:

Для нахождения МВ обозначим его длину как х. Тогда отрезок АМ будет иметь длину х + 3,9. Но из подобия треуг-ков следует такое соотношение:

Подставив сюда значение k и выраженные через х длины АМ и МВ, получим уравнение:

44 podobnye treugolniki

МС можно найти таким же путем, обозначив его длину как у. Тогда отрезок МD будет равен у + 3,6, и можно составить уравнение:

45 podobnye treugolniki

Второй и третий признаки подобия треугольников

Существует ещё два признака подобия треуг-ков, которые в решении задач используются значительно реже. Они выводятся непосредственно из первого признака.

46 podobnye treugolniki

Докажем второй признак подобия. Пусть есть ∆AВС и ∆А1В1С1, для которых выполняются соотношения:

Необходимо доказать, что они подобны. Для этого построим ещё один ∆AВС2, который будет иметь общую сторону с ∆AВС, причем точку С2 мы выберем так, что будут выполняться условия:

48 podobnye treugolniki

∆А1В1С1 и ∆AВС2 будут подобными, ведь у них одинаковы два угла. Значит, будет выполняться соотношение

49 podobnye treugolniki

Но тогда ∆AВС и ∆AВС2 будут равными, ведь у них одинаковы две стороны и угол, образованный этими сторонами:

50 podobnye treugolniki

В итоге у ∆AВС и ∆А1В1С1 оказываются два одинаковых угла, то есть они подобны друг другу

ч. т. д.

Задание. На стороне угла отмечены точки A и В так, что AВ = 5 см и АС = 16 см. На другой стороне этого же угла отмечены точки С и D так, что AD = 8 cм и AF = 10 см. Подобны ли ∆АСD и AFB? 

Решение.

51 podobnye treugolniki

У рассматриваемых треуг-ков есть общий угол ∠А. Найдем отношение сторон, прилегающих к этому углу.

Отношения одинаковы, значит, треуг-ки подобны.

Примечание. В данном случае важно понимать, какие стороны надо делить друг на друга. У ∆АСD известны стороны АС и АD, равные 16 и 8 см. У ∆AFB известны AF и AB, которые составляют 10 и 5 см. Делить надо большую сторону одного треуг-ка на большую сторону другого треуг-ка, то есть 16 на 10. Потом же делим меньшие стороны, то есть 8 на 5.Если получили одно и тоже число, то это значит, что рассмотренные треуг-ки подобны, причем полученное число как раз и является коэффициентом подобия.

Рассмотрим третий признак подобия треуг-ков.

53 podobnye treugolniki

Докажем его. Пусть у ∆AВС и ∆А1В1С1 пропорциональны их стороны:

54 podobnye treugolniki

55 podobnye treugolniki

Можно заметить, что ∆AВС2 и ∆А1В1С1 подобны, ведь у них совпадают два угла. Тогда верны соотношения:

56 podobnye treugolniki

Самая левая дробь в обоих случаях одинакова, а в других отличны лишь числители. Значит, эти числители одинаковы:

Но тогда у ∆AВС и ∆AВС2 совпадают все стороны, то есть эти треуг-ки равные. Следовательно. Так как ∆AВС2 подобен ∆А1В1С1, то и равный ему ∆AВС также подобен ∆А1В1С1

ч. т. д.

Задание. Подобны ли ∆AВС и DEF, если их стороны имеют длины:

58 podobnye treugolniki

Решение.

Для проверки достаточно просто поделить длины сторон друг на друга. При этом большую сторону одного треуг-ка будем делить на большую сторону другого, а меньшую – на меньшую. Если в результате отношение всех трех сторон будет одинаково, то можно утверждать, что треуг-ки подобны:

59 podobnye treugolniki

Все три раза мы получали число 2, именно оно и является коэффициентом подобия треуг-ков.

Отношение площадей подобных треугольников

Если треуг-ки подобны, то их стороны отличаются в k раз, где k– коэффициент подобия. А как соотносятся друг с другом длины их высот, медиан и других характерных отрезков. Несложно догадаться, что они также отличаются в k раз.

Докажем это на примере высот. Пусть есть подобные ∆AВС и ∆А1В1С1, причем их коэффициент подобия равен k:

Проведем в них высоты СН и С1Н1:

61 podobnye treugolniki

Теперь сравним ∆АСН и ∆А1С1Н1. Из подобия ∆AВС и ∆А1В1С1 следует, что

62 podobnye treugolniki

Аналогично можно доказать, что в k раз будут отличаться длины медиан и биссектрис.

63 podobnye treugolniki

А каким будет отношение площадей подобных треугольников?Оказывается, что они отличаются уже в k2 раз. Докажем это.

Пусть ∆AВС и ∆А1В1С1 подобны с коэффициентом подобия k. Снова проведем в них высоты СН и СН1:

64 podobnye treugolniki

Запишем очевидные равенства:

65 podobnye treugolniki

В итоге получили, что площади подобных треугольников отличаются в k2 раз.

66 podobnye treugolniki

Задание. Известно, у ∆AВС площадь составляет 10, а отрезок AВ имеет длину 5. DEF подобен ∆AВС, причем сторона DE, сходственная AВ, равна 15. Вычислите площадь DEF.

Решение. По условию задачи легко найти коэффициент подобия ∆AВС и ∆DEF, надо лишь поделить одну сходственную сторону на другую:

67 podobnye treugolniki

Задание. Площади двух подобных треуг-ков составляют 75 м2 и 300 м2. Одна из сторон второго треуг-ка равна 9 м. Вычислите сходственную ей сторону первого треуг-ка.

Решение. Зная площади треуг-ков, легко найдем коэффициент их подобия:

68 podobnye treugolniki

Если коэффициент равен 2, то стороны первого многоугольника вдвое меньше сторон второго, поэтому интересующая нас сторона равна

9:2 = 4,5 м

Ответ: 4,5 м.

Источник