Какие углы называются перпендикулярными каким свойством обладают

Какие углы называются перпендикулярными каким свойством обладают thumbnail

Какие прямые называются перпендикулярными

Определение

Если пара пересекающихся прямых составляют угол в 90 градусов, то такие линии имеют название перпендикулярные.

Схематично перпендикулярные линии АС и ВD будут выглядеть таким образом:

Перпендикуляр

 

Обозначение перпендикулярных прямых в геометрии имеет такой вид:

(ACperp BD)

Признак перпендикулярности, какие условия необходимы, чему равен угол

Угол между парой пересекающихся линий в пространстве может быть прямым. В таком случае рассматриваемые прямые будут перпендикулярными.

Если угол, который образовали две скрещивающиеся прямые, будет прямым, то такие линии также будут перпендикулярными. Исходя из данного утверждения, можно заключить, что перпендикуляры на плоскости являются пересекающимися, а перпендикулярные линии в пространстве могут быть пересекающимися и скрещивающимися. Таким образом, выражения «прямые а и b перпендикулярны» и «прямые b и а перпендикулярны» можно считать равноправными. Согласно этому определению, сформулировано понятие взаимно перпендикулярных прямых.

При определении перпендикулярности линий необходимо учитывать их характеристики, которые имеют большое значение в решении задач. Основные признаки:

  1. Через какую-то точку А возможно начертить единственную перпендикулярную линию основному отрезку, остальные линии будут являться наклонными и могут скрещиваться.
  2. Несколько перпендикуляров ни при каких условиях не будут между собой пересекаться.

К примеру, можно изобразить на рисунке прямую PQ и пару линий, которые перпендикулярны ей: АА и ВВ. Необходимо доказать, что заданные прямые не имеют точек пересечения.

График

 

Подтверждение целесообразно строить с помощью метода «от обратного». Предположив, что прямые будут пересекаться в точке М1, получим какую-то точку М в другой полуплоскости, относительно прямой PQ. Таким образом, две точки пересекают две прямые, что не соответствует аксиоме. Поэтому предположение является неверным, а линии АА и ВВ не имеют точек пересечения:

Формулы

 

Можно сделать вывод о том, что пара прямых, перпендикулярных третьей, не обладают общими точками пересечения.                          

Теорема о перпендикулярных прямых, как доказать

Задачи на перпендикулярные прямые, как правило, решают с учетом свойств этих линий. Доказательством перпендикулярности прямых является прямой угол, который они составляют. В том случае, когда требуется определить их перпендикулярность при известных уравнениях прямоугольной системы координат, следует применить необходимое и достаточное условие перпендикулярности линий.

Теорема 1

Теорема 1

Для того чтобы прямые a и b являлись перпендикулярными, необходимо и достаточно, чтобы направляющий вектор прямой обладал перпендикулярностью относительно направляющего вектора заданной прямой b.

Подтверждением  данной теоремы является определение направляющего вектора прямой и перпендикулярности линий.

Допустим, что имеется прямоугольная декартовая система координат Оху, на которой заданы уравнения для прямой на плоскости, определяющие линии а и b. Направляющие векторы, характерные для данных прямых а и b, можно обозначить, как:

(vec{a}) и (vec{b})

Согласно формуле прямых а и b, необходимым и достаточным условием является перпендикулярность векторов (vec{a}) и (vec{b}.)

Данное утверждение справедливо в том случае, когда скалярное произведение векторов:

(vec{a}=(a_{x};a_{y})) и (vec{b}=(b_{x};b_{y})) не равно нулю, а запись обладает таким видом:

((vec{a};vec{b})=a_{x}*b_{x}+a_{y}*b_{y}=0)

Таким образом, необходимое и достаточное условие перпендикулярности линий а и b, которые расположены в прямоугольной системе координат Оху на плоскости, представляет собой следующее выражение:

((vec{a};vec{b})=a_{x}*b_{x}+a_{y}*b_{y}=0)

где (vec{a}=(a_{x};a_{y})) и (vec{b}=(b_{x};b_{y})) являются направляющими векторами линий а и b.

Данную теорему целесообразно использовать в том случае, когда требуется определить координаты направляющих векторов, либо, когда известны канонические или параметрические уравнения прямых на плоскости заданных линий а и b.

Примечание

Необходимое и достаточное условие перпендикулярности прямых а и b можно применять в случае трехмерного пространства.

В данном отношении запись будет иметь такой вид:

((vec{a};vec{b})=a_{x}*b_{x}+a_{y}*b_{y}+ a_{z}*b_{z}=0)

где (vec{a}=(a_{x};a_{y}))

(vec{b}=(b_{x};b_{y}))

(vec{z}=(z_{x};z_{y}))

являются направляющими векторами прямых а и b.

Теорема 2

Теорема 2

Линии а и b на плоскости будут перпендикулярны, если нормальный вектор прямой а и вектор прямой b взаимно перпендикулярны. Данное условие считается необходимым и достаточным.

Доказательство этой теоремы заключается в применении рассматриваемого условия в том случае, когда уравнения прямых дают быстрое нахождение координат нормальных векторов заданных прямых. Таким образом, имея общее уравнение прямой вида:(
A_{x}+B_{y}+C=0)

а также уравнение прямой в отрезках вида:

(frac{x}{a}+frac{y}{b}=1)

и уравнение прямой с угловым коэффициентом вида y = kx + b, координаты векторов можно определить.

В том случае, когда линия а на плоскости определена с помощью уравнения с угловым коэффициентом:

(y=k_{1}x+b_{1})

и прямая b имеет вид:

(y=k_{2}x+b_{2})

тогда координаты нормальных векторов будут следующие:

((k_{1};-1)) и ((k_{2};-1))

Условие перпендикулярности соответствует выражению:

(k_{1}*k_{2}+(-1)*(-1)=0Leftrightarrow k_{1}*k_{2}=-1)

Теорема 3

Теорема 3

Прямые а и b перпендикулярны на плоскости при необходимом и достаточном условии, при котором один из направляющих векторов этих линий будет коллинеарным нормальному вектору второй прямой.

Данное условие действует при наличии возможности определения направляющего вектора одной прямой и координат нормального вектора другой. Одна прямая должна быть задана каноническим или параметрическим уравнением, а другая представлена в виде общего уравнения прямой, уравнением в отрезках или уравнением с угловым коэффициентом.

Источник

Перпендикулярные прямые в пространстве

Основные свойства

При рассмотрении того, какие прямые называют перпендикулярными, нужно уделить внимание свойствам. Они выглядят следующим образом:

  1. Через одну точку А можно провести только одну перпендикулярную линию основному отрезку, остальные линии будут наклонными и могут скрещиваться.
  2. Несколько перпендикуляров никогда не будут между собой пересекаться.

Для обозначения перпендикуляра применяется знак «⊥”. В подобном случае угол составляет 90°. На чертеже пересечение обозначается своеобразным квадратом, которые рисуется от двух пересекающихся линий.

Доказательство взаимного расположения

Рассматриваемый термин получил широкое распространение, он фигурирует практически в каждой геометрической задаче. В некоторых случаях о взаимном расположении известно, в других это нужно доказать. Задача доказательства заключается в определении прямого угла между двумя прямыми или плоскостями. Необходимое и достаточное условие перпендикулярности заключается в теореме:

  1. Прямые взаимно перпендикулярны в случае, если направляющие векторы прямых перпендикулярны.
  2. Доказательство связано с определением направления векторов, любой должен быть перпендикулярен.

Для определения расположения плоскостей или отрезков относительно друг друга следует провести геометрическое построение. Проходить отрезки должны в одной точке.

Определение перпендикулярности прямой и плоскости

Рассматривая определение перпендикулярных прямых следует учитывать, что подобное свойство применимо к плоскости. Основной признак заключается в перпендикулярности отрезка к любому другому, который находится в плоскости. Перпендикулярность прямых в пространстве указывается определенным знаком.

Доказать перпендикулярность можно проведя геометрические построения. Признаки расположения плоскости и прямой под углом 90° заключаются в следующем:

Определение перпендикулярных прямых

  1. Если прямая перпендикулярна плоскости, то в ней можно отложить другую прямую, лежащую под углом 90°.
  2. В одной точке под прямым углом может пересекаться только две линии, значит, будет лежать только одна плоскость.

Отрезки могут быть также параллельными. В этом случае нет точки, в которой будут они пересекаться.

Построение перпендикуляра

Выдержать угловой коэффициент можно различным образом. В большинстве случаев для этого нужно иметь при себе циркуль. Построить перпендикуляр можно следующим образом:

Построение перпендикуляра

  1. С помощью циркуля проводится построение полуокружности с центром в точке Х. На основном отрезке в результате этого получается две точки А и В. Для отображения полуокружности применяется другой цвет, полученная линия вспомогательная, поэтому не выделяется жирным.
  2. С точки А и В проводится откладывание двух полуокружностей, пересекающихся в двух местах по касательной. Данные точки (P и Q) используются для откладывания линии, которая может пересечь их и основной отрезок с ранее отложенными точками А и В.

Существенно упростить задачу можно путем применения специального чертежного инструмента, к примеру, любого прямоугольного треугольника. Он может называться угольником, основной его признак заключается в наличии двух перпендикулярных плоскостей. Построение проводится следующим образом:

  1. Одна из сторон, смежная с прямым углом, прикладывается к проведенному отрезку. На этом этапе главное — правильно совместить поверхность инструмента с ранее отложенной линией. Незначительное отклонение может привести к изменению угла.
  2. Проводится откладывание вертикального отрезка.

В геометрии чаще всего применяется именно второй способ. Однако первый урок позволяет начертить два взаимно перпендикулярных отрезка с высокой точностью. Недостаток применения циркуля заключается в наличии вспомогательных линий, которые стереть сложно. Написать о взаимном расположении линий можно в описательной записке.

Трехмерное пространство

В начертательной геометрии линии всегда находятся в двухмерном пространстве. В специальных программах можно начертить отрезки в трехмерном пространстве. Подобное взаимное расположение может выглядеть следующим образом:

Какие прямые называют перпендикулярными

  1. Два отрезка перпендикулярны относительно друг друга в случае, если они параллельны другим взаимно перпендикулярным линиям, лежащим в одной плоскости.
  2. Показать правильное взаимное расположение можно путем обозначения угла. Для этого применяются различные способы.
  3. Если две линии лежат в одной плоскости, то они взаимно перпендикулярны при образовании четырех прямых углов.

В жизни подобное расположение прямых встречается крайне часто. Проверить угол можно при применении специальных инструментов.

Четырехмерная система координат и лемма

Некоторые программы работают с четырехмерным пространством. Взаимное расположение плоскостей под прямым углом в этом случае имеет два смысла: они могут быть перпендикулярны в трехмерном смысле при образовании двугранного угла 90°.

Рассматриваться взаимное расположение плоскостей может и в 4-мерном смысле. Условия выглядят следующим образом:

  1. Они должны пересекаться в точке.
  2. Любые две линии, проведенные в плоскостях через точку пересечения также могут быть перпендикулярными.

Условия четырехмерного пространства определяют то, что через одну точку можно провести 6 взаимно перпендикулярных плоскостей. Определять их взаимное расположение можно несколькими различными способами.

Лемма, касающаяся перпендикулярности, связана с определением параллельности. Если одна из параллельных линий расположена под прямым углом относительно плоскости или отрезка, то вторая также перпендикулярна. Ответ на многие задачи связан с доказательством леммы:

Взаимно перпендикулярные прямые в пространстве

  1. Даны два параллельных отрезка а и b, а также с. Задача заключается в доказательстве b ⊥ c при условии, что a ⊥ c.
  2. Через произвольную точку М проводится третий и четвертый отрезок, которые параллельны прямой а и с. Образующийся угол АМС равен 90°.
  3. Параллельны b и a при условии, что третий дополнительный отрезок параллелен отрезку а. В этом случае он будет параллелен и b.

При соблюдении условий полученный угол будет являться прямым. С учетом проведенных построений можно сформулировать определение перпендикулярности параллельных отрезков.

Применение термина

Перпендикулярность прямых в пространстве

Как ранее было отмечено, встречается большое количество примеров применения рассматриваемого термина. На основе теоремы и доказательства были созданы различные формулы, позволяющие определить протяженность одного из сторон геометрической фигуры.

В средних и старших классах встречается большое количество задач, связанных с определением угла и протяженности сторон построенной фигуры. В некоторых случаях проводится построение диагонали, которая делит 90° на две равные части.

В жизни взаимное перпендикулярное расположение плоскостей встречается крайне часто. Примером служат несущие элементы различных сооружений. Подобное расположение позволяет правильно распределить оказываемую нагрузку. Править наклон можно путем применения специальных измерительных инструментов.

Многие геометрические фигуры построены на основе перпендикулярного расположения отрезков. Наиболее распространен параллелограмм или квадрат, треугольник. За счет выдерживания правильного угла обеспечивается также взаимное параллельное расположение сторон.

Приведенная выше информация указывает на то, что определение угла, под которым расположены плоскости, проводится в самых различных сферах. Инженеры и строители должны с высокой точностью контролировать этот показатель.

Источник

Перпендикуля́рность — бинарное отношение между различными объектами (векторами, прямыми, подпространствами и т. д.).

Для обозначения перпендикулярности имеется общепринятый символ:
, предложенный в 1634 году французским математиком Пьером Эригоном.
Например, перпендикулярность прямых и записывают как .

На плоскости[править | править код]

Перпендикулярные прямые на плоскости[править | править код]

Две прямые на плоскости называются перпендикулярными, если при пересечении образуют 4 прямых угла.

Про прямую перпендикулярную к прямой проведённую через точку вне прямой , говорят, что есть перпендикуляр опущенный из на .
Если же точка лежит на прямой , то говорят, что есть перпендикуляр к восстановленный из к (устаревший термин восставленный[1]).

В координатах[править | править код]

В аналитическом выражении прямые, заданные линейными функциями

и

будут перпендикулярны, если выполнено следующее условие на их угловые коэффициенты

Построение перпендикуляра[править | править код]

Построение перпендикуляра

Шаг 1: С помощью циркуля проведём полуокружность с центром в точке P, получив точки А и В.

Шаг 2: Не меняя радиуса, построим две полуокружности с центром в точках A и В соответственно, проходящими через точку P. Кроме точки P есть ещё одна точка пересечения этих полуокружностей, назовём её Q.

Шаг 3: Соединяем точки P и Q. PQ и есть перпендикуляр к прямой AB.

Координаты точки основания перпендикуляра к прямой[править | править код]

Пусть прямая задаётся точками и . На прямую опускается перпендикуляр из точки .
Тогда основание перпендикуляра  можно найти следующим образом.

Если (вертикаль), то и .
Если (горизонталь), то и .

Во всех остальных случаях:

;.

В трёхмерном пространстве[править | править код]

Перпендикулярные прямые[править | править код]

Две прямые в пространстве перпендикулярны друг другу, если они соответственно параллельны некоторым двум другим взаимно перпендикулярным прямым, лежащим в одной плоскости. Две прямые, лежащие в одной плоскости, называются перпендикулярными (или взаимно перпендикулярными), если они образуют четыре прямых угла.

Перпендикулярность прямой к плоскости[править | править код]

Определение: Прямая называется перпендикулярной к плоскости, если она перпендикулярна всем прямым, лежащим в этой плоскости.

Признак: Если прямая перпендикулярна двум пересекающимся прямым плоскости, то она перпендикулярна этой плоскости.

Плоскость, перпендикулярная одной из двух параллельных прямых, перпендикулярна и другой. Через любую точку пространства проходит прямая, перпендикулярная к данной плоскости, и притом только одна.

Перпендикулярные плоскости[править | править код]

Две плоскости называются перпендикулярными, если двугранный угол между ними равен 90°.

  • Если плоскость проходит через прямую, перпендикулярную другой плоскости, то эти плоскости перпендикулярны.
  • Если из точки, принадлежащей одной из двух перпендикулярных плоскостей, провести перпендикуляр к другой плоскости, то этот перпендикуляр полностью лежит в первой плоскости.
  • Если в одной из двух перпендикулярных плоскостей провести перпендикуляр к их линии пересечения, то этот перпендикуляр будет перпендикулярен второй плоскости.
  • Плоскость, перпендикулярная двум пересекающимся плоскостям, перпендикулярна их линии пересечения[2].

В многомерных пространствах[править | править код]

Перпендикулярность плоскостей в 4-мерном пространстве[править | править код]

Перпендикулярность плоскостей в четырёхмерном пространстве имеет два смысла: плоскости могут быть перпендикулярны в 3-мерном смысле, если они пересекаются по прямой (а следовательно, лежат в одной гиперплоскости), и двугранный угол между ними равен 90°.

Плоскости могут быть также перпендикулярны в 4-мерном смысле, если они пересекаются в точке (а следовательно, не лежат в одной гиперплоскости), и любые 2 прямые, проведённые в этих плоскостях через точку их пересечения (каждая прямая в своей плоскости), перпендикулярны.

В 4-мерном пространстве через данную точку можно провести ровно 2 взаимно перпендикулярные плоскости в 4-мерном смысле (поэтому 4-мерное евклидово пространство можно представить как декартово произведение двух плоскостей). Если же объединить оба вида перпендикулярности, то через данную точку можно провести 6 взаимно перпендикулярных плоскостей (перпендикулярных в любом из двух вышеупомянутых значений).

Существование шести взаимно перпендикулярных плоскостей можно пояснить таким примером. Пусть дана система декартовых координат x y z t. Для каждой пары координатных прямых существует плоскость, включающая эти две прямые. Количество таких пар равно : xy, xz, xt, yz, yt, zt, и им соответствуют 6 плоскостей. Те из этих плоскостей, которые включают одноимённую ось, перпендикулярны в 3-мерном смысле и пересекаются по прямой (например, xy и xz, yz и zt), а те, которые не включают одноимённых осей, перпендикулярны в 4-мерном смысле и пересекаются в точке (например, xy и zt, yz и xt).

Перпендикулярность прямой и гиперплоскости[править | править код]

Пусть задано n-мерное евклидово пространство (n>2) и ассоциированное с ним векторное пространство , а прямая l с направляющим векторным пространством и гиперплоскость с направляющим векторным пространством (где , ) принадлежат пространству .

Прямая l называется перпендикулярной гиперплоскости , если подпространство ортогонально подпространству , то есть

Вариации и обобщения[править | править код]

См. также[править | править код]

  • Нормаль
  • Параллельность
  • Ортогональность
  • Высота
  • Теорема о трёх перпендикулярах

Примечания[править | править код]

Источник