Какие уравнения называют равносильными сформулируйте свойства уравнений

Какие уравнения называют равносильными сформулируйте свойства уравнений thumbnail

Некоторые преобразования позволяют нам перейти от решаемого уравнения к равносильным, а также к уравнениям-следствиям, благодаря чему упрощается решение первоначального уравнения. В данном материале мы расскажем, что из себя представляют эти уравнения, сформулируем основные определения, проиллюстрируем их наглядными примерами и поясним, как именно осуществляется вычисление корней исходного уравнения по корням уравнения-следствия или равносильного уравнения.

Понятие равносильных уравнений

Определение 1

Равносильными называются такие уравнения, имеющие одни и те же корни, или же те, в которых корней нет.

Определения такого типа часто встречаются в различных учебниках. Приведем несколько примеров.

Определение 2

Уравнение f(x)=g(x) считается равносильным уравнению r(x)=s(x), если у них одинаковые корни или у них обоих нет корней.

Определение 3

Уравнения с одинаковыми корнями считаются равносильными. Также ими считаются два уравнения, одинаково не имеющие корней.

Определение 4

Если уравнение f(x)=g(x) имеет то же множество корней, что и уравнение p(x)=h(x), то они считаются равносильными по отношению друг к другу.

Когда мы говорим о совпадающем множестве корней, то имеем в виду, что если определенное число будет корнем одного уравнения, то оно подойдет в качестве решения и другому уравнению. Ни одно из уравнений, являющихся равносильными, не может иметь такого корня, который не подходит для другого.

Приведем несколько примеров таких уравнений.

Пример 1

Например, равносильными будут 4·x=8, 2·x=4 и x=2, поскольку каждое из них имеет только один корень – двойку. Также равносильными будут x·0=0 и 2+x=x+2, поскольку их корнями могут быть любые числа, то есть множества их решений совпадают. Также равносильными будут уравнения x=x+5 и x4=−1, каждое из которых не имеет ни одного решения.

Для наглядности рассмотрим несколько примеров неравносильных уравнений.

Пример 2

К примеру, таковыми будут x=2 и x2=4, поскольку их корни отличаются. То же относится и к уравнениям xx=1 и x2+5×2+5, потому что во втором решением может быть любое число, а во втором корнем не может быть 0.

Определения, данные выше, подойдут и для уравнений с несколькими переменными, однако в том случае, когда мы говорим о двух, трех и более корнях, более уместно выражение «решение уравнения». Таким образом, подытожим: равносильные уравнения – это те уравнения, у которых одни и те же решения или их совсем нет.

Возьмем примеры уравнений, которые содержат несколько переменных и являются равносильными друг другу. Так, x2+y2+z2=0 и 5·x2+x2·y4·z8=0 включают в себя по три переменных и имеют только одно решение, равное 0, во всех трех случаях. А пара уравнений x+y=5 и x·y=1 равносильной по отношению друг к другу не будет, поскольку, например, значения 5 и 3 подойдут для первого, но не будут решением второго: при подстановке их в первое уравнение мы получим верное равенство, а во второе – неверное.

Понятие уравнений-следствий

Процитируем несколько примеров определений уравнений-следствий, взятых из учебных пособий.

Определение 5

Следствием уравнения f(x)=g(x) будет уравнение p(x)=h(x) при условии, что каждый корень первого уравнения будет в то же время корнем второго.

Определение 6

Если первое уравнение имеет те же корни, что и второе, то второе будет уравнением-следствием первого.

Возьмем несколько примеров таких уравнений.

Пример 3

Так, x·2=32 будет следствием x−3=0, поскольку в первом есть только один корень, равный трем, и он же будет корнем второго уравнения, поэтому в контексте данного определения одно уравнение будет следствием другого. Еще один пример: уравнение (x−2)·(x−3)·(x−4) =0 будет следствием x-2·x-3·x-42x-4, потому что второе уравнение имеет два корня, равные 2 и 3, которые в то же время будут корнями первого.

Из данного выше определения можно сделать вывод, что следствием любого уравнения, не имеющего корней, будет также любое уравнение. Приведем здесь некоторые другие следствия из всех сформулированных в данной статье правил:

Определение 7

  1. Если одно уравнение равносильно другому, то каждое из них будет следствием другого.
  2. Если из двух уравнений каждое будет следствием другого, то данные уравнения будут равносильны друг другу.
  3. Уравнения будут равносильны по отношению друг к другу только в том случае, если каждое из них будет следствием другого.

Как найти корни уравнения по корням уравнения-следствия или равносильного уравнения

Исходя из того, что мы написали в определениях, то в случае, когда мы знаем корни одного уравнения, то нам известны и корни равносильных ему, поскольку они будут совпадать.

Если мы знаем все корни уравнения-следствия, то можем определить корни второго уравнения, следствием которого оно является. Для этого нужно только отсеять посторонние корни. О том, как это делается, мы написали отдельную статью. Советуем вам ее прочитать.

Источник

Равносильными называют уравнения,  имеющие одни и те же корни. Равносильными считаются также уравнения, каждое из которых не имеет корней.

Примеры: 

  • Уравнения (x+2=7) и (2x+1=11) равносильны, так как каждое из них имеет единственный корень – число (5).
  •  Равносильны и уравнения (x^2+1=0) и (2x^2+3=1) – ни одно из них не имеет корней.
  •  А вот уравнения (x-6=0) и (x^2=36) неравносильны, поскольку первое имеет только один корень (6), второе имеет два корня: (6) и (-6).


Равносильные преобразования уравнений
– это такие преобразования, которые приводят нас к равносильным уравнениям.

Основные равносильные преобразования уравнений:

  1. Перенос слагаемых из одной части уравнения в другую со сменой  знака слагаемого на противоположный.

    (4x-1=7)
    (4x=7+1)

  2. Умножение или деление обеих частей уравнения на одно число или выражение не равное нулю.

    (4x=8)   (|:4)
    (x=2)          

    (x(x^2+1)=x^2+1)    (|:(x^2+1))
    (x=1)                        

  3. Применение всех формул и свойств, которые есть в математике.

    ((x+1)^2=4)
    (x^2+2x+1=4)

    (5^{x+1}=25)
    (5^{x+1}=5^2)

  4. Возведение в нечетную степень обеих частей уравнения.

    (sqrt[3]{12x^2-28x+8}=2)
    (12x^2-28x+8=8)

  5. Извлечение корня нечетной степени из обеих частей уравнения.

    ((x-5)^3=(2x+4)^3)
    (x-5=2x+4)

  6. Переход вида: (a^{f(x)}=a^{g(x)}) (⇔) (f(x)=g(x)), если (a>1) и (a≠1).

    (5^{x^2-2x}=5^{x-2})
    (x^2-2x=x-2)

Равносильные уравнения и уравнения следствия

Равносильные преобразования уравнений можно назвать «правильными» или «безошибочными» преобразованиями, потому что, сделав их, вы не нарушите математических законов. Почему тогда математики так их и не назвали: «правильные преобразования уравнений»? Потому что есть еще «полу-правильные» преобразования уравнений. В них уравнение при преобразовании приобретает дополнительные корни по ходу решения, но лишние корни мы при записи ответа не учитываем. Строгие математики их называют уравнениями следствиями:

Если каждый корень первого уравнения является корнем второго уравнения, но при этом у второго также есть корни не подходящие первому, то второе уравнение является следствием второго.

Пример (ОГЭ). Решите уравнение (x^2-2x+sqrt{2-x}=sqrt{2-x}+3)

(x^2-2x+sqrt{2-x}=sqrt{2-x}+3)

Запишем  ОДЗ.

ОДЗ: (2-x≥0)
(x≤2)

Перенесем оба слагаемых из правой части в левую.

(x^2-2x+sqrt{2-x}-sqrt{2-x}-3=0 )

Взаимно уничтожим подобные слагаемые. Это и есть «полу-правильное преобразование», так как после него у уравнения становится два корня вместо изначального одного.

(x^2-2x-3=0)

Это уравнение следствие из предыдущего. Найдем корни уравнения по теореме Виета. 

(x_1=3)       (x_2=-1)

Сверяем корни с ОДЗ и исключаем неподходящие.

(↑) не подходит под ОДЗ

Запишем ответ.

Ответ: (-1 ).

Переходить к уравнению следствию не запрещено, но при работе с ними нужно быть осторожным и не забывать про ОДЗ. 

Пример. В каких пунктах применялись равносильные преобразования, а в каких был переход к уравнению следствию? Укажите какие виды равносильных преобразований применялись.

a) (x+5=2x-3)
    (x-2x+5=-3)

b) (x^2+3x+sqrt{x}=sqrt{x}+4)
   (x^2+3x-4=0)

c) (frac{-x-1}{x^2-1}=0)
(-x-1=0)

d) (x^3=27)
(x=3)

e) (frac{1}{2}x^2+1=x^3-x)
(x^2+2=2x^3-2x)

f) ( 2^{x+2}=2)
(x+2=1)

Решение:

В пункте a) применялось равносильное преобразование 1.

В пункте b) перешли к уравнению следствию, так как (sqrt{x}) «ушло», то ОДЗ расширилось;

В пункте с) тоже перешли к уравнению следствию, из-за того что умножили на знаменатель;

В пункте d) применялось равносильное преобразование: «Извлечения корня нечетной степени из обеих частей уравнения»;

В пункте e) умножили обе части уравнения на (2) т.е. равносильно преобразовали;

В пункте f) перешли от вида (a^{f(x)}=a^{g(x)}) к виду (f(x) =g(x)), что тоже является равносильным преобразованием.

Смотри также:
Равносильное преобразование неравенств

Скачать статью

Источник

Алгебра и начала математического анализа, 10 класс

Урок №19. Равносильные уравнения и неравенства

Перечень вопросов, рассматриваемых в теме

1) понятие равносильного уравнения;

2) понятие равносильного неравенства;

3) понятие уравнения-следствия;

4) основные теоремы равносильности.

Глоссарий по теме

Два уравнения называют равносильными, если они имеют одинаковые корни или если оба уравнения не имеют корней.

Если при переходе от одного уравнения к другому потери корней не происходит, то второе уравнение называет следствием первого уравнения. Иначе, если все корни первого уравнения являются корнями второго уравнения, то второе уравнения называется следствием первого уравнения.

Неравенства, имеющие одно и то же множество решений, называют равносильными. Неравенства, не имеющие решений, также являются равносильными.

Основная литература:

Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл. – М.: Просвещение, 2014.

Дополнительная литература:

Шабунин М.И., Ткачева М.В., Федорова Н.Е. Дидактические материалы Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл. – М.: Просвещение, 2017.

Теоретический материал для самостоятельного изучения

Определение. Два уравнения с одной переменной

f(х) = g(х) и р(х) = h(х) называют равносильными, если множества их корней совпадают.

Иными словами, два уравнения называют равносильными, если они имеют одинаковые корни или если оба уравнения не имеют корней.

Примеры

1) Уравнения равносильны, т.к. каждое из них имеет только один корень х=3.

2) Уравнения также равносильны, т.к. у них одни и те же корни .

3) А вот уравнения не равносильны, потому что у первого уравнения корень х=2, а у второго уравнения два корня х=2 и х=-2.

Из определения равносильности следует, что два уравнения равносильны, если каждый корень первого уравнения является корнем второго уравнения, и наоборот.

Решение уравнения осуществляется в три этапа.

Первый этап — технический. На этом этапе осуществляют преобразования по схеме (1) → (2) → (3)→ (4) → … и находят корни последнего (самого простого) уравнения указанной цепочки.

Второй этап — анализ решения. На этом этапе, анализируя проведенные преобразования, отвечают на вопрос, все ли они были равносильными.

Третий этап — проверка. Если анализ, проведенный на втором этапе, показывает, что некоторые преобразования могли привести к уравнению-следствию, то обязательна проверка всех найденных корней их подстановкой в исходное уравнение.

Реализация этого плана связана с поисками ответов на четыре вопроса.

  • Как узнать, является ли переход от одного уравнения к другому равносильным преобразованием?
  • Какие преобразования могут перевести данное уравнение в уравнение-следствие?
  • Если мы в конечном итоге решили уравнение-следствие, то как сделать проверку в случае, когда она сопряжена со значительными вычислительными трудностями?
  • В каких случаях при переходе от одного уравнения к другому может произойти потеря корней и как этого не допустить?

Из курса средней школы мы знаем, что можно сделать следующие преобразования уравнений: любой член уравнения можно перенести из одной части в другую, изменив его знак на противоположный.

Обе части уравнения можно умножить или разделить на одной и то же число, не равное нулю.

Если при переходе от одного уравнения к другому потери корней не происходит, то второе уравнение называет следствием первого уравнения. Иначе, если все корни первого уравнения являются корнями второго уравнения, то второе уравнения называется следствием первого уравнения.

Из этого определения и определения равносильности уравнений следует, что:

  1. если ва уравнения равносильны, то каждое из них является следствием другого;
  2. если каждое из двух уравнений является следствием другого, то эти уравнения равносильны.

При решении уравнений главное- не потерять корни, а наличие посторонних корней можно установить проверкой. Поэтому важно следить за тем, чтобы при преобразовании уравнения каждое следующее уравнение было следствием предыдущего.

Стоит отметить, что посторонние корни могут получиться при умножении обеих частей уравнения на выражение, содержащее неизвестное; а вот потеря корней может произойти при делении обеих частей уравнения на выражение, содержащее неизвестное.

Итак, сформулируем основные теоремы, которые используются при решении равносильных уравнений:

Определение. Областью определения уравнения f(х) = g(х) или областью допустимых значений переменной (ОДЗ) называют множество тех значений переменной х, при которых одновременно имеют смысл выражения

f(х)и g(х).

Теорема 1. Если какой-либо член уравнения перенести из одной части уравнения в другую с противоположным знаком, то получится уравнение, равносильное данному.

Теорема 2. Если обе части уравнения возвести в одну и туже нечетную степень, то получится уравнение, равносильное данному.

Теорема 3. Показательное уравнение (где а > 0, a≠1)

равносильно уравнению f(x) = g(х).

Теорема 4. Если обе части уравнения f(x) = g(х) умножить на одно и то же выражение h(х), которое:

а) имеет смысл всюду в области определения (в области допустимых значений) уравнения f(x) = g(х)

б) нигде в этой области не обращается в 0, то получится уравнение f(x)h(x) = g(x)h(x), равносильное данному в его ОДЗ.

Следствием теоремы 4: если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.

Теорема 5. Если обе части уравнения f(x)=g(х) неотрицательны в ОДЗ уравнения, то после возведения обеих его частей в одну и ту же четную степень n получится уравнение равносильное данному в его ОДЗ.

Краткая запись теорем 4, 5.

4. f(x) = g(x) ⇔h(x)f(x) = h(x)g(x), где h(x) ≠0

и h(x) имеет смысл в ОДЗ данного уравнения.

5. f(x) = g(x) ⇔ , где f(x)≥0, g(x)≥0

и n=2k (чётное число).

Например, х – 1 = 3; х = 4

Умножим обе части на (х – 2):

(х – 2)(х – 1) = 3(х – 2); х = 4 и х = 2 – посторонний корень⇒ проверка!

Равносильность неравенств с неизвестным определяется аналогично.

Неравенства, имеющие одно и то же множество решений, называют равносильными. Неравенства, не имеющие решений, также являются равносильными.

Разбор решения заданий тренировочного модуля

Пример 1.

Решим уравнение:

Возведем в квадрат обе части уравнения, получим:

, которое не будет равносильно исходному уравнению, потому что у этого уравнения два корня , а у первоначального уравнения только один корень х=4.

Пример 2.

  1. Неравенства и x-3<0 равносильны, так как имеют одно и то же множество решений x<3.
  2. Неравенства и 2x>x-1 не равносильны, так как решениями первого являются числа x<-1 и x>1, а решениями второго- числа x>-1. При решении неравенств обычно данное неравенство преобразуется в ему равносильное.

Источник

Алгебра и начала математического анализа, 10 класс

Урок №19. Равносильные уравнения и неравенства

Перечень вопросов, рассматриваемых в теме

1) понятие равносильного уравнения;

2) понятие равносильного неравенства;

3) понятие уравнения-следствия;

4) основные теоремы равносильности.

Глоссарий по теме

Два уравнения называют равносильными, если они имеют одинаковые корни или если оба уравнения не имеют корней.

Если при переходе от одного уравнения к другому потери корней не происходит, то второе уравнение называет следствием первого уравнения. Иначе, если все корни первого уравнения являются корнями второго уравнения, то второе уравнения называется следствием первого уравнения.

Неравенства, имеющие одно и то же множество решений, называют равносильными. Неравенства, не имеющие решений, также являются равносильными.

Основная литература:

Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл. – М.: Просвещение, 2014.

Дополнительная литература:

Шабунин М.И., Ткачева М.В., Федорова Н.Е. Дидактические материалы Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл. – М.: Просвещение, 2017.

Теоретический материал для самостоятельного изучения

Определение. Два уравнения с одной переменной

f(х) = g(х) и р(х) = h(х) называют равносильными, если множества их корней совпадают.

Иными словами, два уравнения называют равносильными, если они имеют одинаковые корни или если оба уравнения не имеют корней.

Примеры

1) Уравнения равносильны, т.к. каждое из них имеет только один корень х=3.

2) Уравнения также равносильны, т.к. у них одни и те же корни .

3) А вот уравнения не равносильны, потому что у первого уравнения корень х=2, а у второго уравнения два корня х=2 и х=-2.

Из определения равносильности следует, что два уравнения равносильны, если каждый корень первого уравнения является корнем второго уравнения, и наоборот.

Решение уравнения осуществляется в три этапа.

Первый этап — технический. На этом этапе осуществляют преобразования по схеме (1) → (2) → (3)→ (4) → … и находят корни последнего (самого простого) уравнения указанной цепочки.

Второй этап — анализ решения. На этом этапе, анализируя проведенные преобразования, отвечают на вопрос, все ли они были равносильными.

Третий этап — проверка. Если анализ, проведенный на втором этапе, показывает, что некоторые преобразования могли привести к уравнению-следствию, то обязательна проверка всех найденных корней их подстановкой в исходное уравнение.

Реализация этого плана связана с поисками ответов на четыре вопроса.

  • Как узнать, является ли переход от одного уравнения к другому равносильным преобразованием?
  • Какие преобразования могут перевести данное уравнение в уравнение-следствие?
  • Если мы в конечном итоге решили уравнение-следствие, то как сделать проверку в случае, когда она сопряжена со значительными вычислительными трудностями?
  • В каких случаях при переходе от одного уравнения к другому может произойти потеря корней и как этого не допустить?

Из курса средней школы мы знаем, что можно сделать следующие преобразования уравнений: любой член уравнения можно перенести из одной части в другую, изменив его знак на противоположный.

Обе части уравнения можно умножить или разделить на одной и то же число, не равное нулю.

Если при переходе от одного уравнения к другому потери корней не происходит, то второе уравнение называет следствием первого уравнения. Иначе, если все корни первого уравнения являются корнями второго уравнения, то второе уравнения называется следствием первого уравнения.

Из этого определения и определения равносильности уравнений следует, что:

  1. если ва уравнения равносильны, то каждое из них является следствием другого;
  2. если каждое из двух уравнений является следствием другого, то эти уравнения равносильны.

При решении уравнений главное- не потерять корни, а наличие посторонних корней можно установить проверкой. Поэтому важно следить за тем, чтобы при преобразовании уравнения каждое следующее уравнение было следствием предыдущего.

Стоит отметить, что посторонние корни могут получиться при умножении обеих частей уравнения на выражение, содержащее неизвестное; а вот потеря корней может произойти при делении обеих частей уравнения на выражение, содержащее неизвестное.

Итак, сформулируем основные теоремы, которые используются при решении равносильных уравнений:

Определение. Областью определения уравнения f(х) = g(х) или областью допустимых значений переменной (ОДЗ) называют множество тех значений переменной х, при которых одновременно имеют смысл выражения

f(х)и g(х).

Теорема 1. Если какой-либо член уравнения перенести из одной части уравнения в другую с противоположным знаком, то получится уравнение, равносильное данному.

Теорема 2. Если обе части уравнения возвести в одну и туже нечетную степень, то получится уравнение, равносильное данному.

Теорема 3. Показательное уравнение (где а > 0, a≠1)

равносильно уравнению f(x) = g(х).

Теорема 4. Если обе части уравнения f(x) = g(х) умножить на одно и то же выражение h(х), которое:

а) имеет смысл всюду в области определения (в области допустимых значений) уравнения f(x) = g(х)

б) нигде в этой области не обращается в 0, то получится уравнение f(x)h(x) = g(x)h(x), равносильное данному в его ОДЗ.

Следствием теоремы 4: если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.

Теорема 5. Если обе части уравнения f(x)=g(х) неотрицательны в ОДЗ уравнения, то после возведения обеих его частей в одну и ту же четную степень n получится уравнение равносильное данному в его ОДЗ.

Краткая запись теорем 4, 5.

4. f(x) = g(x) ⇔h(x)f(x) = h(x)g(x), где h(x) ≠0

и h(x) имеет смысл в ОДЗ данного уравнения.

5. f(x) = g(x) ⇔ , где f(x)≥0, g(x)≥0

и n=2k (чётное число).

Например, х – 1 = 3; х = 4

Умножим обе части на (х – 2):

(х – 2)(х – 1) = 3(х – 2); х = 4 и х = 2 – посторонний корень⇒ проверка!

Равносильность неравенств с неизвестным определяется аналогично.

Неравенства, имеющие одно и то же множество решений, называют равносильными. Неравенства, не имеющие решений, также являются равносильными.

Разбор решения заданий тренировочного модуля

Пример 1.

Решим уравнение:

Возведем в квадрат обе части уравнения, получим:

, которое не будет равносильно исходному уравнению, потому что у этого уравнения два корня , а у первоначального уравнения только один корень х=4.

Пример 2.

  1. Неравенства и x-3<0 равносильны, так как имеют одно и то же множество решений x<3.
  2. Неравенства и 2x>x-1 не равносильны, так как решениями первого являются числа x<-1 и x>1, а решениями второго- числа x>-1. При решении неравенств обычно данное неравенство преобразуется в ему равносильное.

Источник