Какие уравнения называются равносильными свойства уравнений

Какие уравнения называются равносильными свойства уравнений thumbnail

Некоторые преобразования позволяют нам перейти от решаемого уравнения к равносильным, а также к уравнениям-следствиям, благодаря чему упрощается решение первоначального уравнения. В данном материале мы расскажем, что из себя представляют эти уравнения, сформулируем основные определения, проиллюстрируем их наглядными примерами и поясним, как именно осуществляется вычисление корней исходного уравнения по корням уравнения-следствия или равносильного уравнения.

Понятие равносильных уравнений

Определение 1

Равносильными называются такие уравнения, имеющие одни и те же корни, или же те, в которых корней нет.

Определения такого типа часто встречаются в различных учебниках. Приведем несколько примеров.

Определение 2

Уравнение f(x)=g(x) считается равносильным уравнению r(x)=s(x), если у них одинаковые корни или у них обоих нет корней.

Определение 3

Уравнения с одинаковыми корнями считаются равносильными. Также ими считаются два уравнения, одинаково не имеющие корней.

Определение 4

Если уравнение f(x)=g(x) имеет то же множество корней, что и уравнение p(x)=h(x), то они считаются равносильными по отношению друг к другу.

Когда мы говорим о совпадающем множестве корней, то имеем в виду, что если определенное число будет корнем одного уравнения, то оно подойдет в качестве решения и другому уравнению. Ни одно из уравнений, являющихся равносильными, не может иметь такого корня, который не подходит для другого.

Приведем несколько примеров таких уравнений.

Пример 1

Например, равносильными будут 4·x=8, 2·x=4 и x=2, поскольку каждое из них имеет только один корень – двойку. Также равносильными будут x·0=0 и 2+x=x+2, поскольку их корнями могут быть любые числа, то есть множества их решений совпадают. Также равносильными будут уравнения x=x+5 и x4=−1, каждое из которых не имеет ни одного решения.

Для наглядности рассмотрим несколько примеров неравносильных уравнений.

Пример 2

К примеру, таковыми будут x=2 и x2=4, поскольку их корни отличаются. То же относится и к уравнениям xx=1 и x2+5×2+5, потому что во втором решением может быть любое число, а во втором корнем не может быть 0.

Определения, данные выше, подойдут и для уравнений с несколькими переменными, однако в том случае, когда мы говорим о двух, трех и более корнях, более уместно выражение «решение уравнения». Таким образом, подытожим: равносильные уравнения – это те уравнения, у которых одни и те же решения или их совсем нет.

Возьмем примеры уравнений, которые содержат несколько переменных и являются равносильными друг другу. Так, x2+y2+z2=0 и 5·x2+x2·y4·z8=0 включают в себя по три переменных и имеют только одно решение, равное 0, во всех трех случаях. А пара уравнений x+y=5 и x·y=1 равносильной по отношению друг к другу не будет, поскольку, например, значения 5 и 3 подойдут для первого, но не будут решением второго: при подстановке их в первое уравнение мы получим верное равенство, а во второе – неверное.

Понятие уравнений-следствий

Процитируем несколько примеров определений уравнений-следствий, взятых из учебных пособий.

Определение 5

Следствием уравнения f(x)=g(x) будет уравнение p(x)=h(x) при условии, что каждый корень первого уравнения будет в то же время корнем второго.

Определение 6

Если первое уравнение имеет те же корни, что и второе, то второе будет уравнением-следствием первого.

Возьмем несколько примеров таких уравнений.

Пример 3

Так, x·2=32 будет следствием x−3=0, поскольку в первом есть только один корень, равный трем, и он же будет корнем второго уравнения, поэтому в контексте данного определения одно уравнение будет следствием другого. Еще один пример: уравнение (x−2)·(x−3)·(x−4) =0 будет следствием x-2·x-3·x-42x-4, потому что второе уравнение имеет два корня, равные 2 и 3, которые в то же время будут корнями первого.

Из данного выше определения можно сделать вывод, что следствием любого уравнения, не имеющего корней, будет также любое уравнение. Приведем здесь некоторые другие следствия из всех сформулированных в данной статье правил:

Определение 7

  1. Если одно уравнение равносильно другому, то каждое из них будет следствием другого.
  2. Если из двух уравнений каждое будет следствием другого, то данные уравнения будут равносильны друг другу.
  3. Уравнения будут равносильны по отношению друг к другу только в том случае, если каждое из них будет следствием другого.

Как найти корни уравнения по корням уравнения-следствия или равносильного уравнения

Исходя из того, что мы написали в определениях, то в случае, когда мы знаем корни одного уравнения, то нам известны и корни равносильных ему, поскольку они будут совпадать.

Если мы знаем все корни уравнения-следствия, то можем определить корни второго уравнения, следствием которого оно является. Для этого нужно только отсеять посторонние корни. О том, как это делается, мы написали отдельную статью. Советуем вам ее прочитать.

Источник

Равносильными называют уравнения,  имеющие одни и те же корни. Равносильными считаются также уравнения, каждое из которых не имеет корней.

Примеры: 

  • Уравнения (x+2=7) и (2x+1=11) равносильны, так как каждое из них имеет единственный корень – число (5).
  •  Равносильны и уравнения (x^2+1=0) и (2x^2+3=1) – ни одно из них не имеет корней.
  •  А вот уравнения (x-6=0) и (x^2=36) неравносильны, поскольку первое имеет только один корень (6), второе имеет два корня: (6) и (-6).


Равносильные преобразования уравнений
– это такие преобразования, которые приводят нас к равносильным уравнениям.

Основные равносильные преобразования уравнений:

  1. Перенос слагаемых из одной части уравнения в другую со сменой  знака слагаемого на противоположный.

    (4x-1=7)
    (4x=7+1)

  2. Умножение или деление обеих частей уравнения на одно число или выражение не равное нулю.

    (4x=8)   (|:4)
    (x=2)          

    (x(x^2+1)=x^2+1)    (|:(x^2+1))
    (x=1)                        

  3. Применение всех формул и свойств, которые есть в математике.

    ((x+1)^2=4)
    (x^2+2x+1=4)

    (5^{x+1}=25)
    (5^{x+1}=5^2)

  4. Возведение в нечетную степень обеих частей уравнения.

    (sqrt[3]{12x^2-28x+8}=2)
    (12x^2-28x+8=8)

  5. Извлечение корня нечетной степени из обеих частей уравнения.

    ((x-5)^3=(2x+4)^3)
    (x-5=2x+4)

  6. Переход вида: (a^{f(x)}=a^{g(x)}) (⇔) (f(x)=g(x)), если (a>1) и (a≠1).

    (5^{x^2-2x}=5^{x-2})
    (x^2-2x=x-2)

Равносильные уравнения и уравнения следствия

Равносильные преобразования уравнений можно назвать «правильными» или «безошибочными» преобразованиями, потому что, сделав их, вы не нарушите математических законов. Почему тогда математики так их и не назвали: «правильные преобразования уравнений»? Потому что есть еще «полу-правильные» преобразования уравнений. В них уравнение при преобразовании приобретает дополнительные корни по ходу решения, но лишние корни мы при записи ответа не учитываем. Строгие математики их называют уравнениями следствиями:

Если каждый корень первого уравнения является корнем второго уравнения, но при этом у второго также есть корни не подходящие первому, то второе уравнение является следствием второго.

Пример (ОГЭ). Решите уравнение (x^2-2x+sqrt{2-x}=sqrt{2-x}+3)

(x^2-2x+sqrt{2-x}=sqrt{2-x}+3)

Запишем  ОДЗ.

ОДЗ: (2-x≥0)
(x≤2)

Перенесем оба слагаемых из правой части в левую.

(x^2-2x+sqrt{2-x}-sqrt{2-x}-3=0 )

Взаимно уничтожим подобные слагаемые. Это и есть «полу-правильное преобразование», так как после него у уравнения становится два корня вместо изначального одного.

(x^2-2x-3=0)

Это уравнение следствие из предыдущего. Найдем корни уравнения по теореме Виета. 

(x_1=3)       (x_2=-1)

Сверяем корни с ОДЗ и исключаем неподходящие.

(↑) не подходит под ОДЗ

Запишем ответ.

Ответ: (-1 ).

Переходить к уравнению следствию не запрещено, но при работе с ними нужно быть осторожным и не забывать про ОДЗ. 

Пример. В каких пунктах применялись равносильные преобразования, а в каких был переход к уравнению следствию? Укажите какие виды равносильных преобразований применялись.

a) (x+5=2x-3)
    (x-2x+5=-3)

b) (x^2+3x+sqrt{x}=sqrt{x}+4)
   (x^2+3x-4=0)

c) (frac{-x-1}{x^2-1}=0)
(-x-1=0)

d) (x^3=27)
(x=3)

e) (frac{1}{2}x^2+1=x^3-x)
(x^2+2=2x^3-2x)

f) ( 2^{x+2}=2)
(x+2=1)

Решение:

В пункте a) применялось равносильное преобразование 1.

В пункте b) перешли к уравнению следствию, так как (sqrt{x}) «ушло», то ОДЗ расширилось;

В пункте с) тоже перешли к уравнению следствию, из-за того что умножили на знаменатель;

В пункте d) применялось равносильное преобразование: «Извлечения корня нечетной степени из обеих частей уравнения»;

В пункте e) умножили обе части уравнения на (2) т.е. равносильно преобразовали;

В пункте f) перешли от вида (a^{f(x)}=a^{g(x)}) к виду (f(x) =g(x)), что тоже является равносильным преобразованием.

Смотри также:
Равносильное преобразование неравенств

Какие уравнения называются равносильными свойства уравненийСкачать статью

Источник

Алгебра

7 класс

Урок № 47

Равносильность уравнений и систем уравнений

Перечень вопросов, рассматриваемых в теме:

  • Понятие равносильных уравнений.
  • Изучение равносильных систем уравнений.
  • Практическое применение равносильности систем уравнений.

Тезаурус:

Уравнение, левой и правой частями которого являются числа или многочлены степени не выше первой относительно х и у, называются линейными уравнением с двумя неизвестными х и у.

Члены многочленов, находящиеся в левой и правой частях линейного уравнения, называют членами этого уравнения.

Два уравнения называют равносильными, если любое решение первого уравнения является решением второго, а любое решение второго является решением первого.

Равносильны два уравнения, каждое из которых не имеет решения.

Две системы уравнений называют равносильными, если любое решение первой системы является решением второй системы и любое решение второй системы является решением первой системы.

Равносильны две системы, если каждая из них не имеет решений.

Основная литература:

  1. Никольский С. М. Алгебра: 7 класс. // Никольский С. М., Потапов М. К., Решетников Н. Н., Шевкин А. В. – М.: Просвещение, 2017. – 287 с.

Дополнительная литература:

  1. Чулков П. В. Алгебра: тематические тесты 7 класс. // Чулков П. В. – М.: Просвещение, 2014 – 95 с.
  2. Потапов М. К. Алгебра: дидактические материалы 7 класс. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 96 с.
  3. Потапов М. К. Рабочая тетрадь по алгебре 7 класс: к учебнику С. М. Никольского и др. «Алгебра: 7 класс». 1, 2 ч. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 160 с.

Теоретический материал для самостоятельного изучения.

Уравнение, левой и правой частями которого являются числа или многочлены степени не выше первой относительно х и у, называются линейными уравнением с двумя неизвестными х и у.

Какие уравнения называются равносильными свойства уравнений

Члены многочленов, находящиеся в левой и правой частях линейного уравнения, называют членами этого уравнения.

Два уравнения называют равносильными, если любое решение первого уравнения является решением второго, а любое решение второго является решением первого.

Равносильны такие два уравнения, каждое из которых не имеет решения.

Утверждения:

1) Если обе части уравнения умножить или разделить на одно и то же число, не равное нулю, то получим уравнение, равносильное исходному.

Какие уравнения называются равносильными свойства уравнений

2) Если перенести с противоположным знаком член уравнения из одной части в другую, то получим уравнение, равносильное исходному.

Какие уравнения называются равносильными свойства уравнений

3) Если в левой и правой частях линейного уравнения привести подобные члены, то получится уравнение, равносильное исходному:

Какие уравнения называются равносильными свойства уравнений

Доказательство этих утверждений проводится так же, как для линейного уравнения с одним неизвестным.

Какие уравнения называются равносильными свойства уравнений

Две системы уравнений называют равносильными, если любое решение первой системы является решением второй системы и любое решение второй системы является решением первой системы. Равносильны также две системы, если каждая из них не имеет решений.

Очевидно, что если одно из уравнений системы заменить другим, равносильным ему уравнением, то полученная система будет равносильна исходной.

Какие уравнения называются равносильными свойства уравнений

Перенеся свободные члены уравнений этой системы в их правые части, получим следующую равносильную систему:

Какие уравнения называются равносильными свойства уравнений

Пример 2. Решите систему уравнений:

Какие уравнения называются равносильными свойства уравнений

Какие уравнения называются равносильными свойства уравнений

Решим системы способом подстановки.

Пример 3. Решите систему уравнений

Какие уравнения называются равносильными свойства уравнений

Пример 4. Решите систему уравнений

Какие уравнения называются равносильными свойства уравнений

Разбор решения заданий тренировочного модуля.

№1. Тип задания: единичный выбор.

Какие два уравнения называются равносильными?

Варианты ответов:

Два уравнения называют равносильными, если любое решение первого уравнения является решением второго, а любое решение второго является решением первого.

Два уравнения называют равносильными, если любое решение первого уравнения не является решением второго, а любое решение второго не является решением первого.

Два уравнения называют равносильными, если любое решение первого уравнения является продолжением решения второго, и является единственно верным.

Правильный ответ:

Два уравнения называют равносильными, если любое решение первого уравнения является решением второго, а любое решение второго является решением первого.

№2. Тип задания: Восстановление последовательности элементов горизонтальное / вертикальное.

Решите систему уравнений:

Какие уравнения называются равносильными свойства уравнений

Умножим первое уравнение на 2:

Какие уравнения называются равносильными свойства уравнений

Источник

Равносильность уравнений

Определение 1: Два уравнения с одной переменной f(x)=g(x) и p(x)=h(x)

называются равносильными, если множества их корней совпадают.

Определение 2: Если каждый корень уравнения f(x)=g(x) (1)

является в тоже время корнем уравнения p(x)=h(x) (2),

то уравнение (2) называют следствием уравнения (1).

(1)→(2)

Очевидно: Два уравнения равносильны тогда и только тогда, когда каждое из них является следствием другого.

(1)↔(2)

Схема решения любого уравнения:

1.Технический этап. Осуществляется преобразование уравнения(1)→(2)→(3)→(4) …

2. Анализ решения. Все ли преобразования были равносильными?

3.Проверка.

Реализация данного плана связана с поиском ответов на четыре вопроса:

  1. Как узнать, является ли переход от одного уравнения к другому равносильным преобразованием?

  2. Какие преобразования могут перевести данное уравнение в уравнение-следствие?

  3. Если мы в конечном итоге решили уравнение-следствие, то как сделать проверку в случае, когда она сопряжена со значительными вычислительными трудностями?

  4. В каких случаях при переходе от одного уравнения к другому может произойти потеря корней и как этого не допустить?

1.Теоремы о равносильности уравнений.

«спокойные» теоремы:

Теорема 1. Если какой либо член уравнения перенести из одной части уравнения в другую с противоположным знаком, то получится уравнение, равносильное данному.

Теорема 2. Если обе части уравнения возвести в одну и ту же нечетную степень, то получится уравнение, равносильное данному.

Теорема 3. Показательное уравнение а f(x) =а g(x) ( где а>0, а≠1) равносильно уравнению f(x)=g(x).

«беспокойные» теоремы:

Определение: Областью определения уравнения f(x)=g(x) или областью допустимых значений (ОДЗ) переменной называют множество тех значений переменной х, при которых одновременно имеют смысл выражения f(x) и g(x).

Теорема 4. Если обе части уравнения f(x)=g(x) умножить на одно и то же выражение h(x), которое:

А) имеет смысл всюду в области определения (в ОДЗ) уравнения f(x)=g(x)

Б) нигде в этой области не обращается в 0 –

то получится уравнение f(x) h(x)=g(x) h(x), равносильное данному.

Следствие («спокойное» утверждение): Если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.

Теорема 5. Если обе части уравнения f(x)=g(x) неотрицательны в области определения уравнения, то после возведения обеих его частей в одну и ту же четную степень n получится уравнение, равносильное данному f(x)n =g(x)n.

Теорема 6. Если f(x) >0 и g(x) >0, то логарифмическое уравнение logаf(x)= logа g(x), где а>0, а≠1, равносильно уравнению f(x)=g(x).

2. Преобразование данного уравнения в уравнение-следствие.

Если в процессе решения уравнения мы применили заключение одной из теорем 4,5,6, не проверив выполнения ограничительных условий, заложенных в формулировках теорем, то получится уравнение-следствие.

Некоторые переходы от одного уравнения к другому приводят к расширению области определения уравнения. Именно в добавленную часть ОДЗ и «проникают» посторонние корни.

Причины расширения области определения уравнения.

  1. Освобождение в процессе решения уравнения от знаменателей, содержащих переменную величину.

  2. Освобождение в процессе решения уравнения от знаков корней четной степени.

  3. Освобождение в процессе решения уравнения от знаков логарифмов.

Обязательна проверка всех найденных корней, если:

  1. произошло расширение области определ6ения уравнения.

  2. осуществлялось возведение обеих частей уравнения в одну и ту же четную степень.

  3. выполнялось умножение обеих частей уравнения на одно и то же выражение с переменной (разумеется, имеющее смысл во всей области определения уравнения).

3. О проверке корней.

Как правило, самый легкий обходной путь проверки – по области определения (ОДЗ) заданного уравнения. Но не переоценивайте этот способ: он является полноценным только в том случае, когда при решении уравнения других причин нарушения равносильности, кроме расширения области определения, не было (это чаще всего бывает в логарифмических уравнениях). При решении же иррациональных уравнений, где используется метод возведения в квадрат, способ проверки найденных корней по ОДЗ не выручит; лучше, если это возможно, делать проверку подстановкой.

  1. О потере корней.

Причины потери корней при решении уравнений:

  1. деление обеих частей уравнения на одно и то же выражение h(x) (кроме тех случаев, когда точно известно, что всюду в области определения уравнения выполняется условие h(x) ≠0).

  2. сужение ОДЗ в процессе решения уравнения.

  3. замена уравнения h (f(x))= h (g(x)) уравнением f(x)=g(x) в том случае, если функция

у= h(x) – немонотонная функция.

Этот метод можно применить только в том случае, если функция у= h(x) – монотонная функция.

Источник

Определение. Два уравнения f1(х) = g1(х) и f2(х) = g2(х) называют­ся равносильными, если множества их корней совпадают.

Например, уравнения х2 – 9 = 0 и (2 х + 6)( х – 3) = 0 равносильны, так как оба имеют своими корнями числа 3 и -3. Равносильны и урав­нения (3х + 1)-2 = х2– + 1 и х2 + 1 = 0, так как оба не имеют корней, т.е. множества их корней совпадают.

Определение. Замена уравнения равносильным ему уравнением на­зывается равносильным преобразованием.

Выясним теперь, какие преобразования позволяют получать рав­носильные уравнения.

Теорема 1.Пусть уравнение f(х) и g(х)задано на множестве и h(x) – выражение, определенное на том же множестве. Тогда уравнения f(х) = g(х) (1)и f(х) + h(x) = g(х) + h(x) (2) равносильны.

Доказательство. Обозначим через Т1 – множество решений уравнения (1), а через Т2 – множество решений уравнения (2). Тогда уравнения (1) и (2) будут равносильны, если Т1 = Т2. Чтобы убедиться в этом, необходимо показать, что любой корень из Т1является корнем уравнения (2) и, наоборот, любой корень из Т2является корнем урав­нения (1).

Пусть число а – корень уравнения (1). Тогда a ? Т1, и при подста­новке в уравнение (1) обращает его в истинное числовое равенство f(a) = g(a), а выражение h(х) обращает в числовое выражение h(a), имеющее смысл на множестве X. Прибавим к обеим частям истинно­го равенства f(a) = g(a) числовое выражение h(a). Получим, согласно свойствам истинных числовых равенств, истинное числовое равенст­во f(a) + h(a) = g(a) + h(a), которое свидетельствует о том, что число а является корнем уравнения (2).

Итак, доказано, что каждый корень уравнения (1) является корнем и уравнения (2), т.е. Т1с T2.

Пусть теперь а – корень уравнения (2). Тогда а ? T2 и при подста­новке в уравнение (2) обращает его в истинное числовое равенство f(a) + h(a) = g(a) + h(a). Прибавим к обеим частям этого равенства чис­ловое выражение –h(a), Получим истинное числовое равенство f(х) = g(х), которое свидетельствует о том, что число а – корень уравнения (1).

Итак, доказано, что каждый корень уравнения (2) является и кор­нем уравнения (1), т.е. T2 с Т1.

Так как Т1с Т2и Т2с Т1, то по определению равных множеств Т1= Т2, а значит, уравнения (1) и (2) равносильны.

Данную теорему можно сформулировать иначе: если к обеим частям уравнения с областью определения X прибавить одно и то же выраже­ние с переменной, определенное на том же множестве, то получим новое уравнение, равносильное данному.

Из этой теоремы вытекают следствия, которые используются при решении уравнений:

1.Если к обеим частям уравнения прибавить одно и то лее число, то получим уравнение, равносильное данному.

2. Если какое-либо слагаемое (числовое выражение или выражение с переменной) перенести из одной части уравнения в другую, поменяв знак слагаемого на противоположный, то получим уравнение, равносильное данному.

Теорема 2. Пусть уравнение f(х) = g(х) задано на множестве X и h(х) – выражение, которое определено на том же множестве и не об­ращается в нуль ни при каких значениях х из множества X. Тогда уравнения f(х) = g(х) и f(х) · h(x) = g(х) · h(x) равносильны.

Доказательство этой теоремы аналогично доказательству теоремы 1.

Теорему 2 можно сформулировать иначе: если обе части уравнения с областью определения X умножить на одно и то же выражение, кото­рое определено на том же множестве и не обращается на нем в нуль, то получим новое уравнение, равносильное данному.

Из этой теоремы вытекает следствие: если обе части уравнения ум­ножить (или разделить) на одно и то же число, отличное от нуля, то получим уравнение, равносильное данному.

Решение уравнений с одной переменной

Решим уравнение 1- x/3 = x/6, x ? R и обоснуем все преобразования, которые мы будем выполнять в процессе решения.

Преобразования Обоснование преобразования
1. Приведем выражения, стоящие в левой и правой частях уравнения, к общему знаменателю: (6-2х)/ 6 = х/6 Выполнили тождественное преобразование выражения в левой части уравнения.
2. Отбросим общий знаменатель: 6-2х = х Умножили на 6 обе части уравнения (теорема 2), получили уравнение, равносильное данному.
3. Выражение -2х переносим в правую часть уравнения с проти­воположным знаком: 6 = х+2х. Воспользовались следствием из теоремы 1, получили уравнение, равносильное предыдущему и, значит, данному.
4. Приводим подобные члены в правой части уравнения: 6 = 3х. Выполнили тождественное пре­образование выражения.
5. Разделим обе части уравнения на 3: х = 2. Воспользовались следствием из теоремы 2, получили уравнение, равносильное предыдущему, а значит, и данному

Так как все преобразования, которые мы выполняли, решая данное уравнение, были равносильными, то можно утверждать, что 2 – ко­рень этого уравнения.

Если же в процессе решения уравнения не выполняются условия теорем 1 и 2, то может произойти потеря корней или могут появиться посторонние корни. Поэтому важно, осуществляя преобразования уравнения с целью получения более простого, следить за тем, чтобы они приводили к уравнению, равносильному данному.

Рассмотрим, например, уравнение х(х – 1) = 2х, х ? R. Разделим обе части на х, получим уравнение х – 1 = 2, откуда х = 3, т. е. данное уравнение имеет единственный корень – число 3. Но верно ли это? Не­трудно видеть, что если в данное уравнение вместо переменной х подставить 0, оно обратится в истинное числовое равенство 0·(0 – 1) = 2·0. А это означает, что 0 – корень данного уравнения, который мы поте­ряли, выполняя преобразования. Проанализируем их. Первое, что мы сделали, – это разделили обе части уравнения на х, т.е. умножили на выражение1/x , но при х = О оно не имеет смысла. Следовательно, мы не выполнили условие теоремы 2, что и привело к потере корня.

Чтобы убедиться в том, что множество корней данного уравне­ния состоит из двух чисел 0 и 3, приведем другое его решение. Пере­несем выражение 2х из правой части в левую: х(х – 1) – 2х = 0. Выне­сем в левой части уравнения за скобки х и приведем подобные члены: х(х – 3) = 0. Произведение двух множителей равно нулю в том и толь­ко в том случае, когда хотя бы один из них равен нулю, поэтому x= 0 или х – 3 = 0. Отсюда получаем, что корни данного уравнения – 0 и 3.

В начальном курсе математики теоретической основой решения уравнений является взаимосвязь между компонентами и результатами действий. Например, решение уравнения (х·9):24 = 3 обосновывается следующим образом. Так как неизвестное находится в делимом, то, чтобы найти делимое, надо делитель умножить на частное: х ·9 = 24·3, или х·9 = 72.

Чтобы найти неизвестный множитель, надо произведение разделить на известный множитель: х = 72:9, или х = 8, следовательно, корнем данного уравнения является число 8.

Упражнения

1. Установите, какие из следующих записей являются уравнениями с одной переменной:

а) (х -3)·5 = 12х; г) 3 + (12-7)· 5 = 16;

б) ( х -3)·5 = 12; д) (х-3)· y =12х;

в) (х-3)·17 + 12; е) х2- 2х + 5 = 0.

2.Уравнение 2 х 4 + 4 х 2 -6 = 0 задано на множестве натуральных чисел. Объясните, почему число 1 является корнем этого уравнения, а 2 и -1 не являются его корнями.

3.В уравнении (х + …)(2 х + 5) – (х – 3)(2 х + 1) = 20 одно число стерто и заменено точками. Найдите стертое число, если известно, что корнем этого уравнения является число 2.

4.Сформулируйте условия, при которых:

а) число 5 является корнем уравнения f(х) = g(х);

б) число 7 не является корнем уравнения f(х) = g(х).

5. Установите, какие из следующих пар уравнений равносильны на множестве действительных чисел:

а) 3 + 7 х = -4 и 2(3 + 7л х) = -8;

6)3 + 7 х = -4 и 6 + 7 х = -1;

в)3 + 7 х = -4 и л х + 2 = 0.

6. Сформулируйте свойства отношения равносильности уравнений. Какие из них используются в процессе решения уравнения?

7. Решите уравнения (все они заданы на множестве действительных чисел) и обоснуйте все преобразования, выполняемые в процессе их упрощения:

a)(7x+4)/2 – x = (3x-5)/2;

б) x –(3x-2)/5 = 3 – (2x-5)/3;

в)(2- х)2- х (х + 1,5) = 4.

8. Учащийся решил уравнение 5 х + 15 = 3 х + 9 следующим образом: вынес за скобки в левой части число 5, а в правой число 3, полу­чил уравнение 5(х + 3) = 3(х + 3), а затем разделил обе части на вы­ражение х + 3. Получил равенство 5 = 3 и сделал вывод – данное уравнение корней не имеет. Прав ли учащийся?

9. Решите уравнение 2/(2-x) – ½ = 4/((2-x)x); х ? R. Является ли число 2 корнем этого уравнения?

10. Решите уравнения, используя взаимосвязь между компонентами и результатами действий:

а) (х + 70)·4 = 328; в) (85 х + 765): 170 = 98;

б) 560: (х + 9) – 56; г) (х – 13581):709 = 306.

11. Решите задачи арифметическим и алгебраическим способами:

а) На первой полке на 16 книг больше, чем на второй. Если с каж­дой полки снять по 3 книги, то на первой полке книг будет в полтора раза больше, чем на второй. Сколько книг на каждой полке?

б) Весь путь от турбазы до станции, равный 26 км, велосипедист проехал за 1 ч 10 мин. Первые 40 мин этого времени он ехал с одной скоростью, а остальное время – со скоростью на 3 км/ч меньше. Най­дите скорость велосипедиста на первом участке пути.

Прокрутить вверх

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

Источник

Читайте также:  Какое молоко обладает бактерицидными свойствами