Какие важнейшие свойства всех живых организмов изучает генетика
Предмет генетики
Генетика (греч. γενητως — порождающий, происходящий от кого-то) – наука о наследственности и изменчивости. Это определение
отлично соответствует афоризму А.П. Чехова “Краткость – сестра таланта”. В словах наследственность и изменчивость скрыта
вся сущность генетики, к изучению которой мы приступаем.
Наследственность подразумевает возможность передачи из поколения в поколение различных признаков и свойств, общих
особенностей развития. Это происходит благодаря способности ДНК к самоудвоению (репликации) и дальнейшему равномерному
распределению генетического материала.
Изменчивость подразумевает способность организмов приобретать новые признаки, которые отличают их от родительских особей.
Вследствие этого формируется материал для главного направленного фактора эволюции – естественного отбора, который
отбирает наиболее приспособленных особей.
Мы с вами истинное чудо генетики 🙂 Очевидно, что в чем-то мы схожи с собственными родителями, в чем-то отличаемся от них.
Гены, которые собраны в нас, уже миллионы лет передаются из поколения в поколение, в каждом поколении совершая
чудо вновь и вновь.
Ген и генетический код
Ген – участок молекулы ДНК, кодирующий последовательность аминокислот для синтеза одного белка. Генетическая информация
в ДНК реализуется с помощью процессов транскрипции и трансляции, изученных нами ранее.
В одной молекуле ДНК зашифрованы сотни тысяч различных белков. Все наши соматические клетки имеют одну и ту же молекулу ДНК.
Задумайтесь: почему же в таком случае клетки кожи отличаются от клеток печени, миоцитов, клеток эпителия рта – ведь ДНК везде
одинакова!
Это происходит потому, что в разных клетках одни гены “выключены”, а другие “активны”: транскрипция идет только
с активных генов. Именно из-за этого наши клетки отличаются по строению, функции и форме.
Способ кодирования последовательности аминокислот в белке с помощью генов – универсальный способ для всех живых организмов,
доказывающий единство их происхождения. Выделяют следующие свойства генетического кода:
- Триплетность
- Непрерывность
- Неперекрываемость
- Специфичность (однозначность)
- Избыточность (вырожденность)
- Колинеарность (лат. con — вместе и linea — линия)
- Однонаправленность
Каждой аминокислоте соответствует 3 нуклеотида (триплет ДНК, кодон иРНК). Существует 64 кодона, из которых 3 являются
нонсенс кодонами (стоп-кодонами)
Информация считывается непрерывно – внутри гена нет знаков препинания: так как ген кодирует один белок, то было бы
нецелесообразно разделять его на части. Стоп-кодоны – “знаки препинания” – есть между генами, которые кодируют разные белки.
Один и тот же нуклеотид не может принадлежать 2,3 и более триплетам ДНК/кодонам иРНК. Он входит в состав только одного
триплета.
Один кодон соответствует строго одной аминокислоте и никакой другой более соответствовать не может.
Одна аминокислота может кодироваться несколькими кодонами (при этом одну а/к кодируют 3 нуклеотида.)
Соответствие линейной последовательности кодонов иРНК последовательности аминокислот в молекуле белка.
Кодоны считываются строго в одном направлении от первого к последующим. Считывание происходит в процессе
трансляции.
Аллельные гены
Аллельные гены (греч. allélon — взаимно) – гены, занимающие одинаковое положение в локусах гомологичных хромосом и
отвечающие за развитие альтернативных признаков. Такими признаками может являться карий и голубой цвет глаз, праворукость
и леворукость, вьющиеся и прямые волосы.
Локусом (лат. locus — место) – в генетике обозначают положение определенного гена в хромосоме.
Обратите внимание, что гены всегда парные, по этой причине генотип должен быть записан двумя генами – AA, Aa, aa. Писать
только один ген было бы ошибкой.
Гены бывают рецессивные (подавляемые) и доминантные (подавляющие альтернативный ген). Доминантным геном (А) является карий цвет,
рецессивным (а) – голубой цвет глаз. Именно поэтому у человека с генотипом Aa будет карий цвет глаз: А – доминантный ген подавляет
a – рецессивный ген.
Генотип организма (совокупность генов – AA, Aa, aa) может быть описан терминами:
- Гомозиготный (в случае, когда оба гена либо доминантны, либо рецессивны) – AA, aa
- Гетерозиготный (в случае, когда один ген доминантный, а другой – рецессивный) – Аа
Понять, какой признак являются подавляемым – рецессивным, а какой подавляющим – доминантным, можно в результате основного метода
генетики – гибридологического, то есть путем скрещивания особей и изучения их потомства.
Гаметы
Гамета (греч. gamos – женщина в браке) – половая клетка, образующаяся в результате гаметогенеза (путем мейоза) и обеспечивающая
половое размножение организмов. Гамета (сперматозоид/яйцеклетка) имеет гаплоидный набор хромосом – n, при слиянии двух гамет набор восстанавливается до диплоидного – 2n.
Часто в генетических задачах требуется написать гаметы для особей с различным генотипом. Для правильного решения задачи
необходимо знать и понимать следующие правила:
- В гаметах представлены все гены, составляющие гаплоидный набор хромосом – n
- В каждую гамету попадает только одна хромосома из гомологичной пары
- Число возможных вариантов гамет можно рассчитать по формуле 2i = n, где i – число генов в
гетерозиготном состоянии в генотипе - Одну гомологичную хромосому ребенок всегда получает от отца, другую – от матери
- Организмы, у которых проявляется рецессивный признак – гомозиготны (аа). У гетерозигот всегда проявляется доминантный
ген (гетерозигота – Aa)
К примеру для особи AABbCCDDEeFfGg количество гамет будет рассчитывать исходя из количества генов в гетерозиготном состоянии, которых в генотипе 4: Bb, Ee, Ff, Gg. Формула будет записана 24 = 16 гамет.
Осознайте изученные правила и посмотрите на картинку ниже. Здесь мы образуем гаметы для различных особей: AA, Aa, aa.
При решении генетических задач гаметы принято обводить в кружок, не следует повторяться при написании гамет – это ошибка.
К примеру, у особи “AA” мы напишем только одну гамету “А” и не будем повторяться, а у особи “Aa” напишем два типа гамет
“A” и “a”, так как они различаются между собой.
Гибридологический метод
Мы приступаем к изучению методологии генетики, то есть тех методов, которые использует генетика. Один из первых методов
генетики, предложенный самим Грегором Менделем – гибридологический.
Этот метод основан на скрещивании организмов между собой и дальнейшем анализе полученного потомства от данного скрещивания.
С помощью гибридологического метода возможно изучение наследственных свойств организмов, определение рецессивных и доминантных
генов.
Цитогенетический метод
С помощью данного метода становится возможным изучение наследственного материала клетки. Врач-генетик может построить
карту хромосом пациента (кариотип) и на основании этого сделать вывод о наличии или отсутствии
наследственных заболеваний.
Если быть более точным, кариотипом называют совокупность признаков хромосом: строения, формы, размера и числа. При наследственных заболеваниях может быть нарушена структура хромосом (часто летальный исход), иногда нарушено их количество (синдром Дауна, Шерешевского-Тернера,
Клайнфельтера).
Генеалогический метод (греч. γενεαλογία — родословная)
Генеалогический метод является универсальным методом медицинской генетики и основан на составлении родословных.
Человек, с которого начинают составление родословной – пробанд. В результате изучения родословной врач-генетик
может предположить вероятность возникновения тех или иных заболеваний.
По мере изучения законов Менделя, хромосомной теории, я непременно буду обращать ваше внимание на родословные. Вы
научитесь видеть детали, по которым можно будет сказать об изучаемом признаке: “рецессивный он или доминантный?”,
“сцеплен с полом или не сцеплен?”
На предложенной родословной в поколениях семьи хорошо прослеживается наследование не сцепленного с полом (аутосомного)
рецессивного признака (например, альбинизма). Это можно определить по ряду признаков, которые я в
следующих статьях научу вас видеть. Аутосомно-рецессивный тип наследования можно заподозрить, если:
- Заболевание проявляется только у гомозигот
- Родители клинически здоровы
- Если больны оба родителя, то все их дети будут больны
- В браке больного со здоровым рождаются здоровые дети (если здоровый не гетерозиготен)
- Оба пола поражаются одинаково
Сейчас это может показаться сложным, но не волнуйтесь – решая генетические задачи вы сами “дойдете” до этих правил,
и через некоторое время они будут казаться вам очевидными.
Близнецовый метод
Применение близнецового метода в генетике – вопрос удачи. Ведь для этого нужны организмы, чьи генотипы похожи “один в один”:
такими являются однояйцевые близнецы, их появление подчинено случайности.
Близнецовый метод изучает влияние наследственных факторов и внешней среды на формирование фенотипа – совокупности внешних и
внутренних признаков организма. К фенотипу относят физические черты: размеры частей тела, цвет кожи, форму и особенности
строения внутренних органов и т.д.
Часто изучению подвергают склонность к различным заболеваниям. Интересный факт: если психическое расстройство – шизофрения
– развивается у первого из однояйцевых близнецов, то у второго она возникает с вероятностью 90%. Таким образом, удается
сделать вывод о значительной доле наследственного фактора в развитии данного заболевания.
© Беллевич Юрий Сергеевич 2018-2020
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.
Источник
Генетика — наука, изучающая закономерности наследственности и изменчивости.
Наследственность — способность организмов передавать из поколения в поколение различные признаки, свойства и особенности развития.
Изменчивость — способность организмов изменяться в процессе индивидуального развития под воздействием факторов среды, приобретать новые признаки.
Основоположником генетики является Г. Мендель, проводивший опыты по скрещиванию различных форм гороха, разработавший метод гибридологического анализа и установивший ряд законов наследования (1865 г.).
Современная генетика располагает комплексом различных методов.
Метод гибридологического анализа — метод скрещивания особей с альтернативными признаками; анализ проявления у гибридов только исследуемых признаков, без учета остальных; выращивание и анализ потомства каждой особи отдельно от других; ведение строгого количественного учета гибридов, различающихся по исследуемым признакам.
Цитологический метод — микроскопическое изучение хромосом, ДНК на клеточном и субклеточном уровнях.
Цитогенетический метод — изучение хромосомного набора (кариотипа) — количества, формы, размеров хромосом у различных организмов, а также изменения их количества, строения.
Генеалогический метод, или метод родословных, — изучение наследования какого-либо признака у человека в ряду поколений родственников. Позволяет установить тип и характер наследования признаков.
Близнецовый метод — изучение проявления признаков у однояйцовых близнецов с оценкой роли внешней среды в реализации действия генов.
Математический метод — количественный учет наследования признаков.
Биохимический метод — изучение нарушений обмена веществ, возникающих в результате генных наследственных изменений.
Онтогенетический метод — изучение действия генов в процессе индивидуального развития организма, выявление присутствия рецессивных генов в гетерозиготном состоянии.
Популяционно-статистический метод — определение частот встречаемости различных генов в популяциях, позволяющее вычислить количество гетерозиготных организмов и прогнозировать количество особей с патологическими (мутантными) проявлениями действия генов.
Основными понятиями генетики являются следующие.
Генотип — совокупность всех генов одного организма.
Фенотип — совокупность всех внутренних и внешних признаков организма, формирующихся в процессе взаимодействия генотипа с окружающей средой.
У всех организмов одного и того же вида каждый ген располагается в одном и том же месте — локусе строго определенной хромосомы. В гаплоидном наборе хромосом (в гаметах) представлен 1 ген, ответственный за развитие признака. В диплоидном наборе хромосом (в соматических клетках) содержатся 2 гомологичные хромосомы, соответственно 2 идентично расположенных аллельных гена, определяющих развитие признака.
Альтернативные признаки — контрастные, взаимоисключающие признаки (например, белый — красный, гладкий — морщинистый и т. д.).
Доминантный признак (ген) — преобладающий признак, подавляющий развитие другого альтернативного признака. Проявляется всегда как в гомозиготном, так и в гетерозиготном состоянии. Ген, его контролирующий, обозначается заглавной буквой, например, А. У человека доминантными признаками являются, к примеру, черные волосы, темные глаза, кудрявые волосы.
Рецессивный признак (ген) — подавляемый признак. Проявляется только в гомозиготном состоянии. Ген, его контролирующий, обозначается строчной буквой, например, а.
Гомозиготный организм (гомозигота) — особь (зигота), дающая при самоопылении однородное, нерасщепляющееся потомство. В гомологичных хромосомах содержит одинаковые аллельные гены (АА или аа) и образует один сорт гамет: только с геном А, или только с геном а.
Гетерозиготный организм (гетерозигота) — особь (зигота), дающая расщепление. В гомологичных хромосомах содержит разные аллели (Аа) и образует два сорта гамет: с геном А и с геном а.
Источник
Генетика. Наследственность и изменчивость
Раздел ЕГЭ 3.4. Генетика, ее задачи. Наследственность и изменчивость — свойства организмов. Методы генетики. Основные генетические понятия и символика. Хромосомная теория наследственности. Современные представления о гене и геноме
Генетика: задачи, методы, понятия, символика
Генетика — наука о закономерностях наследственности и изменчивости организмов. Наследственность и изменчивость являются фундаментальными свойствами всех живых организмов. Они обеспечивают постоянство и многообразие видов и являются основой эволюции живой природы.
Задачи генетики:
- Исследование механизмов хранения и передачи генетической информации от родительских форм дочерним.
- Изучение механизма реализации генетической информации в процессе онтогенеза под контролем генов и влиянием условий внешней среды.
- Исследование типов, причин и механизмов изменчивости всех живых существ.
- Изучение взаимосвязи процессов наследственности, отбора и изменчивости как движущих факторов эволюции органического мира.
Методы генетики:
- Гибридологический — анализ наследования признаков при скрещиваниях.
- Цитологический — изучение хромосом: подсчёт их числа, описание структуры, поведения при делении клетки, а также связь между изменением структуры хромосом с изменчивостью признаков.
- Биохимические и физико-химические методы — изучение структуры и функции генетического материала и выяснение этапов пути лен — признак» и механизмов взаимодействия различных молекул на атом пути.
- Популяционный — изучение генетической структуры популяций и характера распределения в них генных частот для установления факторов, которые влияют на эти процессы.
- Близнецовый и онтогенетический — анализ и сравнение изменчивости признаков в пределах различных групп близнецов позволяют оценить роль генотипа и среды и наблюдаемой изменчивости.
- Генеалогический (метод анализа родословных) даёт возможность изучить наследование признаков и семьях.
Основные генетические понятия
Ген — структурная и функциональная единица наследственности живых организмов; участок ДНК, задающий последовательность определённого белка либо функциональной РНК.
Аллели — различные формы одного и того же гена, расположенные в одинаковых локусах гомологичных хромосом и определяющие альтернативные варианты развития одного и того же признака.
Доминирование — форма взаимоотношений между аллелями одного гена, при которой один из них (доминантный) подавляет проявление другого (рецессивного). Доминантный признак проявляется у гетерозигот и доминантных гомозигот.
Доминантный ген — аллель, определяющий развитие признака не только в гомозиготном, но и в гетерозиготном состоянии; такой признак будет называться доминантным.
Рецессивный ген — аллель, определяющий развитие признака только в гомозиготном состоянии; такой признак будет называться рецессивным.
Гомозигота — диплоидный организм, несущий идентичные аллели гена в гомологичных хромосомах.
Гетерозигота — диплоидный организм, копии генов которого в гомологичных хромосомах представлены разными аллелями.
Локус — участок хромосомы, в которой расположен определённый ген.
Гены эукариот состоят из нескольких элементов: регуляторная часть (влияние на активность гена в разные периоды жизни организма) и структурная часть (информация о первичной структуре кодируемого белка). Гены эукариот прерывисты, их ДНК содержит кодирующие участки — экзоны, чередующиеся с некодирующими — нитронами.
Генотип — совокупность генов организма.
Фенотип — совокупность всех внешних и внутренних признаков организма, сформировавшегося на базе генотипа во время индивидуального развития.
Геном — совокупность генов, свойственных для гаплоидного набора хромосом данного биологического вида. Геном, в отличие от генотипа, является характеристикой вида, а не особи, поскольку описывает набор генов, свойственных данному виду, а не их аллели, обусловливающие индивидуальные отличия отдельных организмов. Степень сходства геномов разных видов отражает их эволюционное родство.
Генетическая символика
АА ⇒ Доминантная гомозигота (даёт один тип гамет (А))
аа ⇒ Рецессивная гомозигота (один тип гамет (а))
Аа ⇒ Гетерозигота (два типа гамет (А; а))
Р ⇒ Родители
G ⇒ Гаметы
F ⇒ Потомство, число внизу или сразу после буквы указывает на порядковый номер поколения
F1 ⇒ Гибриды первого поколения
F2 ⇒ Гибриды второго поколения
♀ ⇒ Материнский организм
♂ ⇒ Отцовский организм
× ⇒ Значок скрещивания
Наследственность и изменчивость
Наследственность проявляется в способности организма передавать свои признаки и свойства из поколения в поколение. Материальной единицей наследственности являются гены, расположенные у прокариот в нуклеоиде, а у эукариот — в генетическом материале ядра и двумембранных органелл. Совокупность генов организма называют генотипом. Именно он обуславливает развитие большинства его признаков.
Изменчивость — это способность организмов приобретать новые признаки под действием условий среды. Различают генотипическую и фенотипическую изменчивость.
Генотипическая (наследственная) изменчивость затрагивает наследственную информацию организма и проявляется в двух формах: мутационной и комбинативной. В основе комбинативной изменчивости лежат половой процесс, кроссинговер и случайный характер встреч гамет в процессе оплодотворения. Это создаёт огромное разнообразие генотипов. Мутационная связана с возникновением мутаций, которые могут затрагивать как отдельные гены, так и целые хромосомы или даже весь их набор. В зависимости от природы возникновения мутации делят на спонтанные и индуцированные. Мутации делят на соматические и генеративные в зависимости от типа клеток, в которых они возникают. Наблюдения показывают, что многие мутации вредны для организма. Лишь некоторые из них могут оказаться полезными. Вещества и воздействия, приводящие к возникновению мутаций, называются мутагенными факторами, или мутагенами.
Фенотипическая (ненаследственная, или модификационная) изменчивость связана с возникновением модификационных изменений признаков организма, не затрагивающих его геном. Исследования модификационной изменчивости доказывают, что наследуется не сам признак, а способность проявлять этот признак в определённых условиях. Модификационная изменчивость не имеет эволюционного значения, т. к. не связана с образованием новых генов. Так, размеры листьев одного дерева варьируют в довольно широких пределах, хотя генотип их одинаков. Если листья расположить в порядке нарастания или убывания их длины, то получится вариационный ряд изменчивости данного признака.
Хромосомная теория наследственности
Т. Морган с учениками сформулировал хромосомную теорию наследственности в начале XX в. Основные её положения:
- Гены находятся в хромосомах, располагаются в них линейно на определённом расстоянии друг oi друга и не перекрываются.
- Гены, расположенные в одной хромосоме, относятся к одной группе сцепления. Число групп сцепления соответствует гаплоидному числу хромосом.
- Признаки, гены которых находятся в одной хромосоме, наследуются сцепленно.
- В потомстве гетерозиготных родителей новые сочетания генов, расположенных в одной паре хромосом, могут возникать в результате кроссинговера.
- Частота кроссинговера, определяемая по проценту кроссоверных особей, зависит от расстояния между генами.
- На основании линейного расположения генов в хромосоме и частоты кроссинговера как показателя расстояния между генами можно построить карты хромосом.
Это конспект для 10-11 классов по теме «Генетика. Наследственность и изменчивость». Выберите дальнейшее действие:
- Вернуться к Списку конспектов по Биологии.
- Найти конспект в Кодификаторе ЕГЭ по биологии
Источник