Какие вещества являются продуктами распада жиров

Под действием различных физико-химических факторов внешней среды, а также микроорганизмов жиры могут подвергаться значительным изменениям.
Воздействие микроорганизмов на жир начинается обычно с гидролиза его при участии ферментов липаз на глицерин и свободные Жирные кислоты. Продукты гидролиза подвергаются дальнейшим превращениям. Глицерин используется многими микроорганизмами и может быть полностью окислен до СО2 и Н2О.
Жирные кислоты окисляются медленнее, но и они, в первую очередь ненасыщенные, постепенно окисляются. Некоторые микроорганизмы, помимо липолитических ферментов (липаз), обладают окислительным ферментом — ли-поксигеназой, катализирующей процесс окисления кислородом воздуха некоторых ненасыщенных жирных кислот. В результате образуются перекиси жирных кислот, легко подвергающиеся дальнейшему окислению с образованием различных промежуточных продуктов кето- и оксикислот, альдегидов, кетонов и других, придающих жиру специфические неприятные вкус (прогорклость) и запах.
Промежуточные продукты окисления жирных кислот в свою очередь могут быть использованы микроорганизмами в процессах их метаболизма и в конечном счете могут превратиться в СО2 и Н2О.
Возбудителями процессов разложения жирам жирных кислот являются различные палочковидные бактерии, а также микрококки, многие мицелиальные грибы, некоторые дрожжи” и актиномицеты. Из бактерий очень активны бактерии рода Рзеийотоп аз, особенно продуцирующие пигменты. Из мицелиальных грибов значительной липолитической активностью обладают Oidium iactis. Cladosporiun herbarum, многие виды Aspergillus и Peniillus. Многие жирорасщепляющие микроорганизмы являются психротрофами, способными развиваться при низких положительных температурах.
Порча пищевых жиров и жира, содержащегося в различных продуктах (молочных, рыбных, крупяных и др.), очень распространена и нередко наносит большой ущерб народному хозяйству.
При длительным хранении жиров в условиях, не допускающих развития микробов, порча жира может быть результатом химических процессов. под влиянием света, кислорода воздуха.
Превращения азотсодержащих веществ
Гнилостные процессы
В метаболизме микроорганизмов азотсодержащие вещества подвергаются разнообразным превращениям.
Гниение — это процесс глубокого разложения белковых веществ микроорганизмами. Продукты разложения белков микроорганизмы используют для синтеза веществ клетки, а также в качестве энергетического материала.
Химизм разложения белковых веществ. Гниение — сложный, многоступенчатый биохимический процесс, характер и конечный результат которого зависят от состава белков, условий процесса и видов вызывающих его микроорганизмов.
Белковые вещества не могут поступать непосредственно в клетки микроорганизмов, поэтому использовать белки могут только микробы, которые обладают протеолитическими ферментами — экзопротеазами, выделяемыми клетками в окружающую среду.
Процесс распада простых белков начинается с их гидролиза. Первичными продуктами гидролиза являются пептиды. Они поступают в клетку и гидролизуются внутриклеточными протеазами до аминокислот.
Такие белки, как нуклеопротеиды, под действием гнилостных микробов расщепляются на белковый комплекс и нуклеиновые кислоты. Затем белки разлагаются до аминокислот, а нуклеиновые кислоты распадаются на фосфорную кислоту, углеводы и смесь азотсодержащих оснований.
Лммнокислоты непосредственно используются микроорганизмами на синтез клетки или подвергаются ими дальнейшим изменениям, например дезаминированию, в результате чего образуются аммиак[6]’ и разнообразные органические соединения. Различают дезаминирование гидролитическое, окислительное и восстановительное.
Гидролитическое дезаминирование сопровождается образованием оксикислот и аммиака. Если при этом происходит и декарбоксилирование аминокислоты, то образуются спирт, аммиак и углекислый газ:
RСНМН 2СООН + Н 20 -> RСНОНСООН + NН3
RСНNН 2СООН + Н 2 O — RCH 2ОН + NH3 + СО2
При окислительном дезаминировании образуются кето-кислоты и аммиак:
RСНМН 2СООН + 1/202 —. RСОСООН + NН3;
При восстановительном дезаминировании образуются карбоновые кислоты и аммиак:
RСНМН 2СООН + 2Н — RCH 2 COОН + NН3.
Из приведенных уравнений видно, что среди продуктов разложения аминокислот в зависимости от строения их радикала (R) обнаруживаются различные органические кислоты и спирты. Так, при разложении аминокислот жирного ряда могут накапливаться муравьиная, уксусная, пропио-новая, масляная и другие кислоты; пропиловый, бутиловый, амиловый и другие спирты. При разложении аминокислот ароматического ряда промежуточными продуктами являются характерные продукты гниения: фенол, крезол, скатол, индол — вещества, обладающие очень неприятным запахом. При распаде аминокислот, содержащих серу, получается сероводород или его производные — меркаптаны (например, метилмеркаптан —СН3SH). Меркаптаны обладают запахом тухлых яиц, который ощущается даже при ничтожно малых концентрациях.
Образующиеся при гидролизе белка диаминокислоты могут подвергаться декарбоксилированию без отщепления аммиака, в результате чего получаются диамины и СО2. Например, лизин превращается в кадаверин:
декарбоксилаза
NH2(CH2) CHNH2COOH—————————> NH2(CH2)5NH2+ СО2.
Аналогично этому орнитин превращается в путресцин.
Кадаверин, путресцин и другие амины, образующиеся при гниении, часто объединяют под общим названием птомаины, (трупные яды). Некоторые производные птомаинов (нейрин, мускарин и др.) обладают ядовитыми свойствами.
Дальнейшая “судьба” азотистых и безазотистых органических соединений, получающихся при распаде различных аминокислот, зависит от окружающих условий и состав микрофлоры. Под воздействием аэробных микроорганизмов эти соединения подвергаются окислению, так что могут быть полностью минерализованы. В этом случае конечными продуктами гниения являются аммиак, углекислый газ, вода, соли серной и фосфорной кислот. В анаэробных условиях не происходит полного окисления промежуточных продуктов распада аминокислот. В связи с этим кроме NH3 и СО2, накапливаются различные, указанные выше органические соединения, в числе которых могут быть вещества, обладающие ядовитыми свойствами, и вещества, сообщающие гниющему материалу отвратительный запах.
Возбудители гниения. Наиболее активными возбудителями гнилостных процессов являются бактерии. Среди них есть спорообразующие и бесспоровые, аэробные и анаэробные. Многие из них мезофилы, но есть холодоустойчивые и термостойкие. Большинство их чувствительно к кислотности среды и повышенному содержанию в ней поваренной соли.
Наиболее распространенными гнилостными бактериями являются следующие.
Сенная и картофельная палочки[7] — аэробные, подвижные, грамположительные, спорообразующие бактерии (рис. 25). Споры их отличаются высокой термоустойчивостыо.
Рис. 26. а — Рчеиаотопаа; б
Температурный оптимум развития этих бактерий лежит в пределах 35-45°С, максимум роста — при температуре 55-60°С; при температуре ниже 5°С они не размножаются. Помимо разложения белков эти бактерии способны разлагать пектиновые вещества, полисахариды растительных тканей, сбраживать углеводы. Сенная и картофельная палочки широко распространены в природе и являются возбудителями порчи многих пищевых продуктов.
Бактерии рода Рseudomas — аэробные подвижные палочки с полярным жгутиком, не образующие спор, гра-мотрицательные (рис. 26, а).
Некоторые виды синтезируют пигменты, их называют флуоресцирующими псевдомонасами. Есть холодоустойчивые виды, минимальная температура роста которых от -2 до -5°С. Многие псевдомонасы, помимо протеолитической, обладают и липолитической активностью; они способны окислять углеводы с образованием кислит, выделять слизь. Развитие и биохимическая активность этих бактерий значительно тормозятся при рН ниже 5,5 и 5-6%-ной концентрации NaС1 в среде, Псевдомонасы широко распространены в природе, являются антагонистами ряда бактерий и мицелиальных грибов, так как образуют антибиотические вещества. Некоторые виды РяеиДотопаз являются возбудителями болезней (бактериозов) культурных растений, плодов и овощей.
Протей (Ргоteus vulgaris) — мелкие грамотрицательные, бесспоровые палочки с резко выраженными гнилостными свойствами. Белковые субстраты при развитии в них протея приобретают сильный гнилостный запах. В зависимости от условий жизни эти бактерии способны заметно менять форму и размеры (рис. 26, б).
Протей — факультативный анаэроб; сбраживает углеводы с образованием кислот и газа. Он хорошо развивается как при температуре 25°С, так и при 37°С, прекращает размножаться при температуре около 5-10°С, но может сохраняться и в замороженных продуктах.
Особенностью протея является его очень энергичная подвижность. Это свойство лежит в основе метода выявления протея в пищевых продуктах и отделения его от сопутствующих бактерий. Некоторые виды выделяют токсические для человека вещества.
Clostridium putrificum (рис. 27, а) — анаэробная подвижная, спорообразующая палочка. Относительно крупные Споры ее располагаются ближе к концу клетки, которая при этом приобретает сходство с барабанной палочкой. Споры довольно термоустойчивы. Углеводы эта бактерия не сбраживает. Белки разлагает с образованием большого количества газа (NH3, Н2S). Оптимальная температура развития 37-43°С, минимальная — 5°С.
Рис. 27. а— Clostridium putrificum; б — Clostridium sporogenes
Clostridium sporogenes (рис. 27, б) — анаэробная подвижная, спороносная палочка. Споры термоустойчивы, в клетке они расположены центрально. Характерным является очень быстрое образование спор. Эта бактерия сбраживает углеводы с образованием кислот и газа, обладает липолитическсй способностью. При разложении белков обильно выделяется сероводород. Оптимальная температура развития 35-40°С, минимальная — около 5°С.
Оба вида клостридий известны как возбудители порчи баночных консервов (мясных, рыбных и др.).
Кроме бактерий белки могут разлагать и грибы. Практическое значение процессов гниения. Гнилостные микроорганизмы нередко наносят большой ущерб народному хозяйству, вызывая порчу ценнейших, богатых белками продуктов питания, например мяса и мясопродуктов, рыбы и рыбопродуктов, яиц, молока и др. Но эти же микроорганизмы играют большую положительную роль в круговороте азота в природе, минерализуя белковые вещества, попадающие в почву, воду.
Источник
Жиры пищи под действием ферментов желудочного, поджелудочного и кишечного соков (при участии желчи) расщепляются на глицерин и ясирные кислоты (последние подвергаются омылению) . Из глицерина и жирных кислот в эпителиальных клетках ворсинок тонкого кишечника синтезируется жир, свойственный организму человека. Жир в виде эмульсии поступает в лимфу, а вместе с ней — в общий кровоток. Суточная потребность в жирах в среднем составляет 100 г. Избыточное количество жира откладывается в соединительнотканной жировой клетчатке и между внутренними органами. При необходимости эти жиры используются как источник энергии для клеток организма. При расщеплении 1 г жира выделяется наибольшее количество энергии — 38,9 кДж. Конечными продуктами распада жиров являются вода и углекисльш газ. Жиры могут синтезироваться из углеводов и белков.
Белки пищи, их значение, азотистый баланс, особенности обмена, переваривание и всасывание белков в желудочно-кишечном тракте. Роль составных частей сока в переваривание белков.
Азотистый баланс – это соотношение количества азота, поступившего в организм с пищей и выделенного. Так как основным источником азота в организме является белок, то по азотистому балансу можно судить о соотношении количества поступившего и разрушенного в организме белка. А значит и о наличии или отсутствии мышечного роста. Белки относятся к незаменимым веществам, необходимым для жизни, роста и развития организма. Недостаточность белка в организме приводит к развитию алиментарных заболеваний. Положительный азотистый баланс – это синоним анаболизма, а отрицательный азотистый баланс – синоним катаболизма.
Белки используются как пластический материал для построения различных тканей и клеток организма, а также гормонов, ферментов, антител и специфических белков. Белки — необходимый фон для нормального обмена в организме других веществ, в частности витаминов, минеральных солей.
Белки участвуют и в поддержании энергетического баланса организма. Белки пищи в процессе пищеварения распадаются на аминокислоты, которые, поступая из кишечника в кровь и далее в ткани, используются для синтеза белка организма.
Из 80 известных аминокислот в науке о питании интерес представляют 22—25 аминокислот, которые наиболее часто представлены в белках продуктов питания, используемых человеком.
Химический состав, свойства нормального желудочного сока, значение соляной кислоты в желудочном пищеварении. Физико-химические свойства желудочного сока, виды кислотности. Исследования желудочного сока. Определение дебит часа НСІ.
Желудочный сок — сложный по составу пищеварительный сок, вырабатываемый различными клетками слизистой оболочки желудка. Париетальные клетки фундальных желёз желудка секретируют соляную кислоту — важнейшую составляющую желудочного сока. Основные её функции: поддержание определённого уровня кислотности в желудке, обеспечивающего превращение пепсиногена впепсин, препятствование проникновению в организм болезнетворных бактерий и микробов, способствование набуханию белковых компонентов пищи, её гидролиз, стимулирует выработку секрета поджелудочной железы
Бикарбонаты НСО3− необходимы для нейтрализации соляной кислоты у поверхности слизистой оболочки желудка и двенадцатиперстной кишки в целях защиты слизистой от воздействия кислоты.
Пепсин является основным ферментом, с помощью которого происходит расщепление белков. Существует несколько изоформ пепсина, каждая из которых воздействует на свой класс белков. Пепсины получаются из пепсиногенов, когда последние попадают в среду с определённой кислотностью. За продукцию пепсиногенов в желудке отвечают главные клетки фундальных желёз.
Основные химические компоненты желудочного сока:[1]
вода (995 г/л);хлориды (5—6 г/л);сульфаты (10 мг/л);фосфаты (10—60 мг/л);гидрокарбонаты (0—1,2 г/л) натрия, калия, кальция, магния;аммиак (20—80 мг/л
Роль печени в обмене белков.
Печень играет центральную роль в обмене белков. Она выполняет следующие основные функции: синтез специфических белков плазмы; образование мочевины и мочевой кислоты; синтез холина и креатина; трансаминирование и дезаминирование аминокислот, что весьма важно для взаимных превращений аминокислот, а также для процесса глюконеогенеза и образования кетоновых тел. Печень является единственным органом, где синтезируются такие важные для организма белки, как протромбин, фибриноген, проконвертин и проакцелерин. При заболеваниях печени определение фракционного состава белков плазмы (или сыворотки) крови нередко представляет интерес как в диагностическом, так и в прогностическом плане Большая часть мочевой кислоты также образуется в печени, где много фермента ксантиноксидазы, при участии которого оксипурины (гипо-ксантин и ксантин) превращаются в мочевую кислоту. Нельзя забывать о роли печени и в синтезе креатина.
Источник
Под действием липаз клетки жир распадается с образованием глицерина и свободных жирных кислот, которые подвергаются дальнейшим превращениям.
ПРЕВРАЩЕНИЯ ГЛИЦЕРИНА
Вначале глицерин активируется с помощью АТФ:
3-фосфоглицериновый альдегид включается далее в процесс гликолиза (синонимы: анаэробное сбраживание углеводов, путь Эмбдена — Мейергофа — Парнаса), поэтому его считают первым связующим звеном в обмене жиров и углеводов.
Р-ОКИСЛЕНИЕ ЖИРНЫХ КИСЛОТ
Известно три типа окислительных превращений жирных кислот: а-окисле- ние, (5-окисление, ю-окисление. Процесс (5-окисления (распада) жирных кислот, являющийся главным поставщиком энергии, активно протекает в печени, почках, сердечной и скелетной мышцах. Ферменты, катализирующие реакции (5-окисления, локализованы в митохондриях клетки. Поэтому обязательным условием включения жирных кислот в энергетический обмен является транспорт их в митохондрии при помощи специфического переносчика. (5-окис- лению подвергаются активированные жирные кислоты.
Таким образом, первым этапом (5-окисления является активация жирных кислот. Процесс происходит под действием ацил-КоА-синтетаз (синонимы — тиокиназы, активирующие ферменты), находящихся как в цитозоле клетки, так и в митохондриях. Реакция протекает с затратой энергии АТФ и может быть представлена в виде суммарного уравнения:
Образующийся пирофосфат (Н,Р207) расщепляется ферментом пирофосфатазой, поэтому равновесие реакции сдвинуто вправо, в сторону образования активной жирной кислоты. Далее эта кислота взаимодействует с карнити- ном с образованием комплекса ацил-карнитин, который легко проникает в митохондрии.
После поступления в митохондрию комплекс распадается с образованием карнитина и активной жирной кислоты, которая подвергается далее [3-распаду.
Реакции (3-распада начинаются с ферментативного дегидрирования активной жирной кислоты:
Восстановленный ФАДН2 передает свои электроны электропереносящему флавопротеиду дыхательной цепи.
Следующая реакция этого цикла катализируется ферментом еноил-КоА- гидратазой:
Третья реакция цикла окисления жирных кислот катализируется ферментом р-оксиацил-КоА-дегидрогеназой с коферментом НАД+:
Четвертая реакция катализируется ферментом тиолазой, под действием которой происходит отщепление ацетил-КоА (синонимы: активный ацетил, активная уксусная кислота). В результате этого цепочка исходной кислоты укорачивается на два атома углерода:
Далее процесс превращений укороченной жирной кислоты повторяется, а активный ацетил включается далее в цикл аэробного сбраживания (синонимы: цикл трикарбоновых кислот, лимонный цикл Кребса, метаболический котел).
Таким образом, активный ацетил является вторым связующим звеном в обмене жиров и углеводов.
Поскольку в состав жиров животного происхождения входят кислоты только с четным числом атомов углерода, то конечным продуктом (3-распада является активный ацетил.
Энергетика процесса р-окисления жирных кислот: установлено, что при передаче двух электронов с ФАДН2 на кислород в цитохромной системе происходит синтез 2 молекул АТФ.
При передаче двух электронов с НАДН + Н+ на кислород синтезируются 3 молекулы АТФ.
При окислении одной молекулы активного ацетила в метаболическом котле синтезируется 12 молекул АТФ.
Следовательно, при р-окислении жирной кислоты, сопровождающемся отщеплением одной молекулы активного ацетила, синтезируется 17 молекул АТФ.
При полном р-распаде, например, стеариновой кислоты, образуется 9 молекул активного ацетила, что соответствует 153 молекулам АТФ. Одна молекула АТФ затрачивалась на активацию свободной жирной кислоты в начале процесса. Окончательный баланс процесса — накопление 152 молекул АТФ, что соответствует 6080 кДж энергии.
Источник