Какие вещества содержаться в растениях

Друзья, привет,

Сегодня расскажу о питании растений. Основные вещества, которые содержатся в протоплазме клеток растения – это белки, жиры (липиды), углеводы и минеральные соли.

ЭТ-Роскошь (селекционер А.Устинова)

В сухом веществе растения содержится:

1. углерода (C) – 45%,

2. кислорода (O) около 42%,

3. водорода (H) – 6,5%,

4. азота (N) – 1,5%.

Зольных веществ – фосфора (P), калия (K), кальция (Ca), магния (Mg), железа (Fe) и других – всего лишь 5 – 6% сухого веса растений.

Азот, фосфор, серу, железо и другие элементы растения получают через корневую систему из почвы, где они находятся в виде минеральных (соли) и органических (аминокислоты, органические кислоты и нуклеиновые кислоты и др.) веществ.

Но эти же вещества могут проникать в растение и через… листья. Это называется внекорневым питанием.

Растительная клетка (увеличение световым микроскопом)

Растения нуждаются главным образом в азоте, калии, фосфоре, магнии, сере и кальции. В очень малых количествах им нужно железо, марганец, бор, цинк, медь и другие микроэлементы.

Для чего нужно то или иное вещество/элемент растению

Азот (N)

Представляет собой необходимую составную часть белка клетки растения, белок – один из самых сложных веществ на земле; он является важнейшей частью протоплазмы растительной клетки.

Азот, находящийся в огромном количестве в воздухе, недоступен растениям, и они его поглощают из почвы в виде различных солей и органических соединений.

Исключением являются бобовые растения, на корнях которых развиваются клубеньковые бактерии, поглощающие азот из атмосферы и включающие его в сложные химические соединения, доступные растениям для усвоения.

Биологический цикл азота (N). Из открытого источника

Сера (S)

Также входит в состав белков, но в меньшем количестве, чем азот.

Фосфор (P)

Находится в виде соединений фосфорной кислоты, входящих в состав белковых веществ, из которых состоят клеточные ядра и протоплазма. Фосфорная кислота участвует в процессе дыхания, без которого нет жизни.

Калий (K)

Присутствует в жизнедеятельности протоплазмы и играет важную роль при образовании углеводов и отложении их в запас.

Кальций (Ca)

Влияет на рост корней. При его недостаточности корни загнивают.

Магний (Mg)

Входит в состав хлорофилла и поэтому необходим для растения. Кроме того, он находится в протоплазме молодых клеток и играет определенную роль в происходящем в них обмене веществ.

Эти элементы растения поглощают корнями из почвы.

Почему растения могут не усваивать питание

Многие элементы питания содержатся в почве в больших количествах, чем необходимо растениям, но… нередко все же растения испытывают недостаток в них.

Это объясняется тем, что элементы питания часто находятся в почве в виде нерастворимых соединений, недоступных для усвоения растениями.

Чтобы растения могли использовать органические удобрения, органика должна перегнить, разложиться на более простые соединения под воздействием микроорганизмов, которые живут в почвах в огромных количествах.

Микроорганизмы не только воздействуют на нерастворимые питательные вещества почвы, помогая растениям усваивать их, но и выделяют витамины, антибиотики и другие вещества, нужные растениям.

Грунт для фиалок. 5 важных показателей!

Источник

Алкалоиды – азотсодержащие органические вещества природного происхождения. При взаимодействии с кислотами они образуют хорошо растворимые соли. В растениях алкалоиды чаще находятся (смесь нескольких алкалоидов) в виде солей органических и неорганических кислот. Ядовитость многих растений обусловлена именно их наличием. Яд в малых дозах обеспечивает лечебный эффект. Наиболее широко распространенными алкалоидами являются кофеин, атропин, эхинопсин, стрихнин, кокаин, берберин, папаверин и др.

Гликозиды – сложные безазотистые соединения, состоящие из сахаристой (глюкоза и другие сахара) и несахаристой частей. Сахаристая часть гликозида называется гликоном, несахаристая – агликоном. Биологическая активность веществ зависит от характера агликона. Среди гликозидов выделяют сердечные гликозиды, антрагликозиды, сапонины и другие вещества. Гликозиды оказывают влияние на сердце, желудочно-кишечный тракт, мочевыводящую систему и т. д.

Флавоноиды – гетероциклические кислородсодержащие соединения желтого цвета, плохо растворимые в воде. Они обладают различной биологической активностью. Человеческий организм не способен синтезировать флавоноиды, они попадают в организм только с растительной пищей. В растительных тканях флавоноиды участвуют в контроле за ростом и развитием растений.

Дубильные вещества – сложные вещества, производные многоатомных фенолов. Они обладают способностью коагулировать клеевые растворы и давать нерастворимые осадки с алкалоидами. Дубильные вещества хорошо растворяются в воде и спирте. Они широко распространены почти во всех растениях. Дубильными веществами являются также катехины, в основе строения которых лежат производные флавонолов и антоцианов.

Эфирные масла – смесь летучих безазотистых веществ, обладающих сильным характерным запахом. Эфирные масла нестойки. Получают их из растений, перегоняя сырье с водяным паром. Эфирные масла обладают противомикробным, болеутоляющим, противокашлевым, противовоспалительным, желчегонным и мочегонным действием. Некоторые из них, например, валериановый корень, снижают функциональную активность нервной системы и применяются для лечения неврозов. Растительное сырье, которое содержит эфирное масло, сушат медленно при температуре 25-35°С.

Витамины – органические соединения различной химической структуры, которые необходимы для нормального функционирования практически всех процессов в организме. Они повышают устойчивость организма к различным экстремальным факторам и инфекционным заболеваниям, способствуют обезвреживанию и выведению токсичных веществ и т. д. В настоящее время известно около 30 витаминов. Большинство из них поступают в организм с растительной и животной пищей. Наибольшую пользу приносит прием витаминов в сбалансированном виде. В растениях они находятся в оптимальном соотношении, что практически исключает возможность их передозировки, которая иногда имеет место при бесконтрольном приеме синтетических витаминных препаратов.

Жирные масла – сложные эфиры глицерина и высокомолекулярных жирных кислот. В медицинской практике их используют как основу для приготовления различных мазей и получения масляных экстрактов из растительного сырья. Некоторые из них, например касторовое масло, обладают слабительным действием. Особенно широк спектр биологического действия у масла облепихи крушиновидной. Его используют в качестве эпителизирующего, ранозаживляющего и болеутоляющего средства при трофических язвах, аллергических заболеваниях кожи и ожогах, а также для повышения устойчивости тканей к облучению и ликвидации последствий лучевой терапии.

Микроэлементы (марганец, цинк, медь, йод и др.) – вещества, которые совместно с витаминами участвуют в жизненно важных процессах, происходящих в организме. Их дисбаланс может привести к развитию тяжелых заболеваний. Например, недостаток кобальта снижают синтез витамина В12, способствует развитию малокровия. Дефицит лития ведет к проявлению маниакально-депрессивного психоза и других психических заболеваний. Недостаток или избыток йода нарушает функцию щитовидной железы.

Читайте также:  Какие вещества содержатся в луковой шелухе

Микроэлементы накапливаются избирательно в следующих органах: цинк – в половых и поджелудочной железах, гипофизе; йод – в щитовидной железе; литий – в легких; медь – в печени; никель – в поджелудочной железе; стронций – в костях; хром – в гипофизе, и там же марганец. Чтобы полнее набирать норму микроэлементов, надо использовать в питании около ста растений; чем больше их в меню, тем выше вероятность, что потребности будут удовлетворены, тем надежнее жизнеобеспечение.

Смотрите также:

У нас также читают:

Источник

      Химический состав и питание растений
  • Химический состав растений и качество урожая
  • Роль отдельных элементов в жизни растений. Вынос питательных веществ с урожаем сельскохозяйственных культур
  • Питание растений
  • В состав растений входит вода и так называемое сухое вещество, представленное органическими и минеральными соединениями. Соотношение между количеством воды и сухого вещества в растениях, их органах и тканях изменяется в широких пределах. Так, содержание сухого вещества в плодах огурцов, бахчевых культур может составлять до 5% общей их массы, в кочанах капусты, корнях редиса и турнепса — 7-10, корнеплодах столовой свеклы, моркови и луковицах лука — 10-15, в вегетативных органах большинства полевых культур — 15-25, корнеплодах сахарной свеклы и клубнях картофеля — 20-25, в зерне хлебных злаков и бобовых культур — 85-90, семенах масличных культур — 90-95%.

    Вода

    В тканях растущих вегетативных органов растений содержание воды колеблется от 70 до 95%, а в запасающих тканях семян и в клетках механических тканей — от 5 до 15%. По мере старения растений общий запас и относительное содержание воды в тканях, особенно репродуктивных органов, снижается.

    Функции воды в растениях обусловлены присущими ей физическими и химическими свойствами. Она обладает высокой удельной теплоемкостью и благодаря способности испаряться при любой температуре предохраняет растения от перегрева. Вода — прекрасный растворитель для многих соединений, в водной среде происходит электролитическая диссоциация этих соединений и усвоение растениями ионов, содержащих необходимые элементы минерального питания. Высокое поверхностное натяжение воды определяет ее роль в процессах поглощения и передвижения минеральных и органических соединений. Полярные свойства и структурная упорядоченность молекул воды обусловливают гидратацию ионов и молекул низко- и высокомолекулярных соединений в клетках растений.

    Вода является не просто наполнителем растительных клеток, но и неотделимой частью их структуры. Оводненность клеток тканей растений обусловливает их тургор (давление жидкости внутри клетки на ее оболочку), является важным фактором интенсивности и направленности разнообразных физиологических и биохимических процессов. При непосредственном участии воды происходит огромное число биохимических реакций синтеза и распада органических соединений в растительных организмах. Особое значение вода имеет в энергетических преобразованиях в растениях, прежде всего в аккумуляции солнечной энергии в виде химических соединений при фотосинтезе. Вода обладает способностью пропускать лучи видимой и близкой к ней ультрафиолетовой части света, необходимой для фотосинтеза, но задерживает определенную часть инфракрасной тепловой радиации.

    Содержание воды в растениях зависит от вида и возраста растений, условий водоснабжения, транспирации и в определенной степени от условий минерального питания. Влагообеспеченность наряду с другими факторами внешней среды оказывает значительное влияние на величину, качество урожая сельскохозяйственных культур и эффективность удобрений.

    Сухое вещество

    Сухое вещество растений на 90-95% представлено органическими соединениями — белками и другими азотистыми веществами, углеводами (сахарами, крахмалом, клетчаткой, пектиновыми веществами), жирами, содержание которых определяет качество урожая (табл. 1).

    Сбор сухого вещества с товарной частью урожая основных сельскохозяйственных культур может колебаться в очень широких пределах — от 15 до 100 ц и более с 1 га.

    Белки и другие азотистые соединения.

    Белки — основа жизни организмов — играют решающую роль во всех процессах обмена веществ. Белки выполняют структурные и каталитические функции, являются также одним из основных запасных веществ растений. Содержание белков в вегетативных органах растений обычно составляет 5-20% их массы, в семенах хлебных злаков — 6-20%, а в семенах бобовых и масличных культур — 20-35%.

    Белки имеют следующий довольно стабильный элементарный состав (в %): углерод — 51-55, кислород — 21-24, азот — 15-18, водород — 6,5-7, сера — 0,3-1,5.

    Растительные белки построены из 20 аминокислот и двух амидов. Особое значение имеет содержание в белках растений так называемых незаменимых аминокислот (валина, лейцина и изолейцина, треонина, метионина, гистидина, лизина, триптофана и фенилаланина), которые не могут синтезироваться в организме человека и животных. Эти аминокислоты люди и животные получают только с растительными пищевыми продуктами и кормами.

    Таблица №1.
    Средний химический состав урожая сельскохозяйственных растений, в % (по Б. П. Плешкову)

    КультураВодаБелкиСырой протеинЖирыДр. углеводыКлетчаткаЗола
    Пшеница (зерно)1214162,0652,51,8
    Рожь (зерно)1412132,0682,31,6
    Овес (зерно)1311124,25510,03,5
    Ячмень(зерно)139102,2655,53,0
    Рис (зерно)11780,8780,60,5
    Кукуруза (зерно)159104,7662,01,5
    Гречиха (зерно)139112,8628,82,0
    Горох (зерно)1320231,5535,42,5
    Фасоль (зерно)1318201,2584,03,0
    Соя (зерно)11293416,0277,03,5
    Подсолнечник (ядра)822255075,03,5
    Лен (семена)8232635168,04,0
    Картофель (клубни)781,32,00,1170,81,0
    Сахарная свекла (корни)751,01,60,2191,40,8
    Кормовая свекла (корни)870,81,50,190,90,9
    Морковь (корни)860,71,30,291,10,9
    Лук репчатый852,53,00,180,80,7
    Клевер (зеленая масса)753,03,60,8106,03,0
    Ежа сборная (зеленая масса)702,13,01,21010,52,9
    *Сырой протеин включает белки и небелковые азотистые вещества

    Белки различных сельскохозяйственных культур неравноценны по аминокислотному составу, растворимости и переваримости. Поэтому качество растениеводческой продукции оценивается не только по содержанию, но и по усвояемости, полноценности белков на основе изучения их фракционного и аминокислотного состава.

    В составе белков находится подавляющая доля азота семян (не менее 90% общего количества в них азота) и вегетативных органов большинства растений (75-90%). В тоже время в клубнях картофеля, корнеплодах и листовых овощах до половины общего количества азота приходится на долю азотистых небелковых соединений. Они представлены в растениях минеральными соединениями (нитраты, аммоний) и органическими (среди которых преобладают свободные аминокислоты и амиды, хорошо усваиваемые в организмах животных и человека). Небольшая часть небелковых органических соединений в растениях представлена пептидами (построенными из ограниченного количества остатков аминокислот и поэтому в отличие от белков имеющими низкую молекулярную массу), а также пуриновыми и пиримидиновыми основаниями (входящими в состав нуклеиновых кислот).

    Читайте также:  Какие химические соединения содержатся в сыворотке крови

    Для оценки качества растениеводческой продукции часто пользуются показателем «сырой протеин», которым выражают сумму всех азотистых соединений (белка и небелковых соединений). Рассчитывают «сырой протеин» путем умножения процентного содержания общего азота в растениях на коэффициент 6,25 (получаемый исходя из среднего (16%) содержания азота в составе белка и небелковых соединений).

    Качество зерна пшеницы оценивается по содержанию сырой клейковины, количество и свойства которой определяют хлебопекарные свойства муки. Сырая клейковина — это белковый сгусток, остающийся при отмывании водой теста, замешанного из муки. Сырая клейковина содержит примерно 2/3 воды и 1/3 сухих веществ, представленных прежде всего труднорастворимыми (спирто- и щелочерастворимыми) белками. Клейковина обладает эластичностью, упругостью и связанностью, от которых зависит качество выпекаемых из муки изделий. Между содержанием «сырого протеина» в зерне пшеницы и «сырой клейковины» существует определенная коррелятивная зависимость. Количество сырой клейковины можно рассчитать путем умножения процентного содержания сырого протеина в зерне на коэффициент 2,12.

    Углеводы

    Углеводы в растениях представлены сахарами (моносахарами и олигосахаридами, содержащими 2-3 остатка моносахаров) и полисахаридами (крахмалом, клетчаткой, пектиновыми веществами).

    Сахара содержатся в небольших количествах во всех сельскохозяйственных растениях, а в корнеплодах и отдельных органах овощных культур, плодах винограда, ягодах и фруктах могут накапливаться в качестве запасных веществ. Преобладающими моносахаридами в большинстве растений являются глюкоза и фруктоза, а олигосахаридами — дисахарид сахароза.

    Сладкий вкус многих плодов и ягод связан с содержанием в них глюкозы и фруктозы. Глюкоза в значительных количествах (8-15%) содержится в ягодах винограда, откуда и получила название «виноградный сахар», и составляет до половины общего количества сахаров в плодах и ягодах. Фруктоза, или «плодовый сахар», накапливается в больших количествах в косточковых плодах (6-10%) и содержится в меде. Она слаще глюкозы и сахарозы. В корнеплодах доля моносахаридов среди Сахаров невелика (до 1% общего их содержания).

    Сахароза — дисахарид, построенный из глюкозы и фруктозы. Сахароза является основным запасным углеводом в корнях сахарной свеклы (14-22%) и в соке стеблей сахарного тростника (11-25%). Целью выращивания этих растений и является получение сырья для производства сахара, используемого в питании людей. В небольших количествах находится во всех растениях, более высоким ее содержанием (4-8%) отличаются плоды и ягоды, а также морковь, столовая свекла и лук.

    Крахмал в небольших количествах содержится во всех зеленых органах растений, но в качестве основного запасного углевода накапливается в клубнях, луковицах и семенах. В клубнях картофеля ранних сортов содержание крахмала 10-14%, средне- и позднеспелых — 16-22%. В расчете на сухую массу клубней это составляет 70-80%. Примерно такое же относительное содержание крахмала в семенах риса и пивоваренного ячменя. В зерне других хлебных злаков крахмала обычно 55-70%. Между содержанием белка и крахмала в растениях существует обратная зависимость. В богатых белками семенах зернобобовых культур крахмала меньше, чем в семенах злаков; еще меньше крахмала в семенах масличных культур.

    Крахмал — легко усвояемый организмом людей и животных углевод. При ферментативном (под действием ферментов амилаз) и кислотном гидролизе распадается до глюкозы.

    Клетчатка, или целлюлоза — основной компонент клеточных стенок (в растениях она связана с лигнином, пектиновыми веществами и другими соединениями). Волокно хлопчатника на 95-98%, лубяные волокна льна, конопли, джута на 80-90% представлены клетчаткой. В семенах пленчатых злаков (овса, риса, проса) клетчатки содержится 10-15%, а в не имеющих пленок семенах хлебных злаков — 2-3%, в семенах зернобобовых культур — 3-5%, в корнеплодах и клубнях картофеля — около 1 %. В вегетативных органах растений содержание клетчатки составляет от 25 до 40% на сухую массу.

    Клетчатка — высокомолекулярный полисахарид из неразветвленной цепи глюкозных остатков. Ее усвояемость значительно хуже, чем крахмала, хотя при полном гидролизе клетчатки образуется также глюкоза.

    Пектиновые вещества — высокомолекулярные полисахариды, содержащиеся в плодах, корнеплодах и растительных волокнах. В волокнистых растениях они скрепляют между собой отдельные пучки волокон. Свойство пектиновых веществ в присутствии кислот и сахаров образовывать желе или студни используется в кондитерской промышленности. В основе строения этих полисахаридов лежит цепь из остатков полигалактуроновой кислоты с метильными группировками.

    Жиры и жироподобные вещества (липиды) являются структурными компонентами цитоплазмы растительных клеток, а у масличных культур выполняют роль запасных соединений. Количество структурных липидов обычно небольшое — 0,5-1% сырой массы растений, но они выполняют в растительных клетках важные функции, в том числе по регуляции проницаемости мембран. Семена масличных культур и сои используют для получения растительных жиров, называемых маслами.

    Среднее содержание жира в семенах важнейших масличных культур и сои следующее (в %): клещевина — до 60; кунжут, мак, маслина — 45-50; подсолнечник — 24-50; лен, конопля, горчица — 30-35; хлопчатник — 25; соя — 20.

    По химическому строению жиры — смесь сложных эфиров трехатомного спирта глицерина и высокомолекулярных жирных кислот. В растительных жирах ненасыщенные кислоты представлены олеиновой, линолевой и линоленовой кислотами, а насыщенные — пальмитиновой и стеариновой кислотами. Состав жирных кислот в растительных маслах определяет их свойства — консистенцию, температуру плавления и способность к высыханию, прогорканию, омылению, а также их пищевую ценность. Линолевая и линоленовая жирные кислоты содержатся только в растительных маслах и являются «незаменимыми» для человека, так как не могут синтезироваться в его организме. Жиры являются наиболее энергетически выгодными запасными веществами — при их окислении выделяется на единицу массы в два раза больше энергии, чем углеводов и белков.

    К липидам относятся также фосфатиды, воски, каротиноиды, стеарины и жирорастворимые витамины A, D, E и K.

    Читайте также:  В каком объеме воздуха содержится 1 мг аргона

    В зависимости от вида и характера использования продукции ценность отдельных органических соединений может быть различной. В зерне злаков основными веществами, определяющими качество продукции, являются белки и крахмал. Большим содержанием белка среди зерновых культур отличается пшеница, а крахмала — рис и пивоваренный ячмень. При использовании ячменя для пивоваренного производства накопление белка ухудшает качество сырья. Нежелательно также накопление белка и небелковых азотистых соединений в корнях сахарной свеклы, используемых для производства сахара. Зернобобовые культуры и бобовые травы отличаются повышенным содержанием белков и меньшим — углеводов, качество их урожая зависит прежде всего от размеров накопления белка. Качество клубней картофеля оценивается по содержанию крахмала. Цель возделывания льна, конопли и хлопчатника — получение волокна, состоящего из клетчатки. Повышенное количество клетчатки в зеленой массе и сене однолетних и многолетних трав ухудшает их кормовые достоинства. Масличные культуры выращиваются для получения жиров — растительных масел, используемых как для пищевых, так и промышленных целей. Качество продукции сельскохозяйственных культур может зависеть и от наличия других органических соединений — витаминов, алкалоидов, органических кислот и пектиновых веществ, эфирных и горчичных масел.

    Содержание отдельных групп органических соединений в сельскохозяйственной продукции может изменяться в зависимости от видовых и сортовых особенностей растений, условий выращивания, способов возделывания и применения удобрений.

    Условия питания растений имеют важное значение для повышения валового сбора наиболее ценной части урожая и улучшения его качества. Например, усиление азотного питания увеличивает относительное содержание в растениях белка, а повышение уровня фосфорно-калийного питания обеспечивает большее накопление углеводов — сахарозы в корнях сахарной свеклы, крахмала в клубнях картофеля. Созданием соответствующих условий питания с помощью удобрений можно повысить накопление наиболее ценных в хозяйственном отношении органических соединений в составе сухого вещества растений.

    Элементарный состав растений

    Сухое вещество растений имеет в среднем следующий элементарный состав (в весовых процентах); углерод — 45, кислород — 42, водород —6,5, азот и зольные элементы — 6,5. Всего в растениях обнаружено более 70 элементов. На современном уровне развития научных данных около 20 элементов (в том числе углерод, кислород, водород, азот, фосфор, калий, кальций, магний, сера, железо, бор, медь, марганец, цинк, молибден, ванадий, кобальт и йод) считаются, безусловно, необходимыми для растений. Без них невозможны нормальный ход жизненных процессов и завершение полного цикла развития растений. В отношении еще более 10 элементов (в том числе кремния, алюминия, фтора, лития, серебра и др.) имеются сведения об их положительном действии на рост и развитие растений; эти элементы считаются условно необходимыми. Очевидно, что по мере совершенствования методов анализа и биологических исследований общее число элементов в составе растений и список необходимых элементов будут расширены.

    Углеводы, жиры и прочие безазотистые органические соединения построены из трех элементов — углерода, кислорода и водорода, а в состав белков и других азотистых органических соединений входит еще и азот. Эти четыре элемента — С, О, Н и N получили название органогенных, на их долю в среднем приходится около 95% сухого вещества растений.

    При сжигании растительного материала органогенные элементы улетучиваются в виде газообразных соединений и паров воды, а в золе остаются преимущественно в виде окислов многочисленные «зольные» элементы, на долю которых приходится в среднем всего около 5% массы сухого вещества.

    Азот и такие зольные элементы, как фосфор, сера, калий, кальций, магний, натрий, хлор и железо, содержатся в растениях в относительно больших количествах (от нескольких процентов до сотых долей процента сухого вещества) и называются макроэлементами.

    Содержание других необходимых элементов — бора, марганца, меди, цинка, молибдена, ванадия, кобальта и йода — в растениях составляет от тысячных до стотысячных долей процента, и они получили название микроэлементов.

    Количественные различия в содержании макро- и микроэлементов в составе сухого вещества растений показаны в таблице 2.

    Таблица №2.
    Содержание атомов основных элементов минерального питания, в тыс. на 1 млрд. атомов, в сухом веществе типичного растения

    МакроэлементыМикроэлементыМакроэлементыМикроэлементы
    N10000B3Ca1840Cu0,1
    P1060Mn1Mg1740Mo0,005
    K3760Zn0,3S580Co0,001
    Fe130

    Относительное содержание азота и зольных элементов в растениях и их органах может колебаться в широких пределах и определяется биологическими особенностями культуры, возрастом и условиями питания. Количество азота в растениях тесно коррелирует с содержанием белка, а его всегда больше в семенах и молодых листьях, чем в соломе созревших культур. В ботве содержание азота больше, чем в клубнях и корнеплодах. В товарной части урожая основных сельскохозяйственных культур на долю золы приходится от 2 до 5% массы сухого вещества, в молодых листьях и соломе зерновых, ботве корне- и клубнеплодов 6-14%. Наиболее высоким содержанием золы (до 20% и более) отличаются листовые овощи (салат, шпинат).

    Состав зольных элементов у растений также имеет существенные различия (табл. 3). В золе семян зерновых и бобовых культур сумма оксидов фосфора, калия и магния составляет до 90%, а среди них преобладает фосфор (30—50% массы золы). Доля фосфора в золе листьев и соломы значительно меньше, и в ее составе преобладают калий и кальций. Зола клубней картофеля, корней сахарной свеклы и других корнеплодов представлена преимущественно оксиданом калия (40-60% массы золы). В золе корнеплодов содержится значительное количество натрия, а в соломе злаков — кремния. Более высоким содержанием серы отличаются бобовые культуры и растения семейства капустные.

    Таблица №3.
    Примерное содержание отдельных элементов в золе растений, в % ее массы

    КультураP2O5K2OСаОMgOSO4Na2OSiO2
    Пшеница
    зерно4830312522
    солома10302063320
    Горох
    зерно3040561011
    солома8253586210
    Картофель
    клубни166035622
    ботва8303012832
    Сахарная свекла
    корни154010106102
    ботва83015125252
    Подсолнечник
    семена4025712333
    стебли350157326

    В состав растений в относительно больших количествах входят кремний, натрий и хлор, а также значительное число так называемых ультрамикроэлементов, содержание которых исключительно мало — от 10-6до 10-8%. Физиологические функции и абсолютная необходимость этих элементов для растительных организмов еще не окончательно установлены.

    Источник