Какие закономерности наблюдается в изменении свойств кислотных оксидов
И гидроксисоединений
Кислотно-основные свойства оксидов и гидроксисоединений закономерно изменяются по периоду и подгруппе.
В составе гидроксисоединений всегда присутствует фрагмент
I II
Например:
; ; .
Кислотно-основные свойства вещества определяются типом химических связей I и II . Ионный тип химической связи I определяет её относительно легкую диссоциацию в растворе с образованием ОН—ионов
―Э― О Н → ―Э+1 + ОН—
Вещества с преимущественно ионной связью I проявляют основные свойства.
С увеличением электроотрицательности центрального атома (Э) ковалентность и прочность связи I возрастают. Одновременно связь II становится более полярной и менее прочной, это определяет её преимущественную диссоциацию в растворе с образованием ионов Н+:
―Э―О―Н ―Э―О— + Н+
Такие соединения проявляют кислотные свойства.
Соединения с прочными промежуточными по характеру – ионно-ковалентными связями I и II – проявляют амфотерные свойства.
С увеличением электроотрицательности центрального атома (Э) фрагмента ––Э––О––Н усиливаются кислотные и ослабляются основные свойства со-ответствующего гидроксисоединения в периоде в направлении слева направо и в подгруппе снизу вверх.
Сравним, например, свойства гидроксисоединений элементов III периода и IIA-подгруппы:
Be(OH)2
Амфотер-
ный гидроксид
NaOH Mg(OH)2 Al(OH)3 H2SiO3 H3PO4 H2SO4 HClO4
Очень Средней Амфотерный Очень Средней Сильная Очень
сильное силы гидроксид слабая силы кислота сильная
основание основание кислота кислота кислота
Ca(OH)2 – увеличение электроотрицательности центрального
Сильное атома (Э)
основание – усиление кислотных свойств оксидов и гидроксисое-
Sr(OH)2 динений
Сильное – ослабление основных свойств оксидов и гидрокси-
основание соединений
Ba(OH)2 – усиление гидролиза по катиону
Сильное
основание
С увеличением степени окисления элемента (Э+n) возрастает его электроотрицательность и, следовательно, усиливаются кислотные и ослабляются основные свойства соответствующих оксидов и гидроксисоединений.
+2 +3 +6
Например: CrO Cr2O3 CrO3
Cr(OH)2 Cr(OH)3 H2CrO4
основные амфотерные кислотные
Таблица 7
Сравнительная характеристика свойств оксидов металлов и неметаллов
Оксиды металлов | Оксиды неметаллов |
Оксиды металлов в низших степенях окисления являются основными; некоторые реагируют с водой, образуя ОН- (водн.), например CaO, MgO Другие нерастворимы в воде, но реагируют с кислотами и с кислотными оксидами, например, Fe2O3, CuO Сильные основные оксиды, например, K2O, CaO, реагируют с амфотерными оксидами; некоторые оксиды металлов амфотерны, реагируют как с основными, так и с кислотными оксидами, например, ZnO, SnO, SnO2, PbO, PbO2, Cr2O3, Al2O3. | Большинство являются кислотными; некоторые растворяются в воде, образуя растворы с высокой концентрацией водородных ионов, например, SO2 Макромолекулярные оксиды, например, (SiO2)m, (B2O3)n, не растворяются, но реагируют с основными и амфотерными оксидами, образуя соли Небольшое число несолеобразующих нейтральных, например, N2O, NO, F2O |
Генетическая связь между классами неорганических соединений
Основной
оксид
Металл Основание
Неметалл Кислотный Кислота
оксид
Гидролиз солей
Гидролиз солей – ионно-обменное взаимодействие солей с водой, сопровождающееся разложением соли. Гидролиз – реакция, обратная нейтрализации.
+ Н2О +
1. Соли, образованные сильной кислотой и сильным основанием (Na2SO4, KCl, CrNO3 и др.), гидролизу не подвергаются, их растворы нейтральны (рН=7).
2. Соли, образованные сильной кислотой и слабым основанием (NH4Cl, CuSO4, MgCl2 и др.), подвергаются гидролизу по катиону, среда в растворе кислая (рН<7).
Составим уравнения гидролиза NH4Cl:
NH4Cl + H2O NH4OH + HCl (молекулярное
(H++OH-) слабое. сильная. уравнение)
основание кислота
NH4+ + Cl– + H2O NH4OH + H+ + Cl– (полное ионное уравнение)
NH4+ + H2O NH4OH + H+ (краткое ионное уравнение)
В растворе увеличивается концентрация ионов Н+, следовательно, среда в растворе кислая (рН<7).
Процесс гидролиза равновесный, характеризуется константой гидролиза и степенью гидролиза:
, следовательно, равновесие сильно смещено влево, идет частичный гидролиз.
Степень гидролиза – это отношение молярной концентрации гидролизовавшейся соли к общей молярной концентрации соли в растворе.
h = Mгидр./Mo
Многозарядные катионы слабых оснований подвергаются гидролизу ступенчато:
Рассмотрим гидролиз CuSO4:
CuSO4 Cu2+ + SO42– (уравнение диссоциации)
H2O H+ + OH– (уравнение диссоциации воды)
1 стадия Cu2+ + H2O CuOH+ + H+ (краткое ионное уравнение)
2CuSO4 + 2H2O [CuOH]2SO4 + H2SO4 (молекулярное уравнение)
2 стадия CuOH+ + H2O Cu(OH)2 + H+ (краткое ионное уравнение)
[CuOH]2SO4 + 2H2O 2Cu(OH)2 + H2SO4 (молекулярное уравнение)
Вторая стадия гидролиза идет в гораздо меньшей степени, чем первая, т.е. «подавлена».
3. Соли, образованные сильным основанием и слабой кислотой (Na2CO3, K2S, Na3PO4 и др.), подвергаются гидролизу по аниону, среда в растворе щелочная (рН>7).
Рассмотрим гидролиз соли CH3COONa.
CH3COO–Na+ + H2O CH3COOH + NaOH (молекулярное уравнение)
(H+―OH–) слабая сильное
кислота основание
CH3COO– + Na+ + H2O CH3COOH + Na+ + OH– (полное ионное уравнение)
СH3COO– + H2O CH3COOH + OH– (краткое ионное уравнение)
В растворе увеличивается концентрация ОН– – ионов, следовательно, среда щелочная (рН>7).
4. Соли, образованные слабым основанием и слабой кислотой (NH4F, CH3COONH4 и др.), подвергаются гидролизу одновременно по катиону и аниону, среда в растворе близка к нейтральной (слабокислая или слабощелочная, рН≈7).
Например:
CH3COO–NH4+ + H2O CH3COOH + NH4OH (молекулярное уравнение)
(H+―OH–) слабая слабое
кислота основание
CH3COO– + NH4+ + H2O CH3COOH + NH4OH (ионное уравнение)
Некоторые соли подвергаются полному гидролизу, если образующиеся продукты – газы или плохо растворимые соединения.
Например:
Al2S3 + 6H2O 2Al(OH)3↓ + 3H2S↑
Источник
Увеличение степени окисления элемента и уменьшение радиуса его иона (при этом происходит уменьшение эффективного отрицательного заряда на этоме кислорода) делают оксид более кислотным. Это и объясняет закономерное изменение свойств оксидов от основных к амфотерным и далее к кислотным.
1) В одном периоде при увеличении порядкового номера происходит усиление кислотных свойств оксидов и увеличение силы соответствующих им кислот.
2) В главных подгруппах периодической системы при переходе от одного элемента к другому сверху вниз наблюдается усиление новых свойств оксидов:
3) При повышении степени окисления элемента усиливаются кислотные свойства оксида и ослабевают основные
Химические свойства оксидов
Основные оксиды
К основным оксидам относятся:
– оксиды всех металлов главной подгруппы первой группы (щелочные металлы Li – Fr)
– главной подгруппы второй группы, начиная с магния (Mg – Ra)
– оксиды переходных металлов в низших степенях окисления, например, MnO, FeO.
Большинство основных оксидов представляет собой твердые кристаллические вещества ионного характера, в узлах кристаллической решетки расположены ионы металлов, достаточно прочно связанные с оксид-ионами О2-, поэтому оксиды типичных металлов обладают высокими температурами плавления и кипения.
Отметим одну характерную для оксидов особенность. Близость ионных радиусов многих ионов металлов приводит к тому, что в кристаллической решетке оксидов часть ионов одного металла может быть заменена на ионы другого металла. Это приводит к тому, что для оксидов часто не выполняется закон постоянства состава и могут существовать смешанные оксиды переменного состава.
Большинство основных оксидов не распадается при нагревании, исключение составляют оксиды ртути и благородных металлов:
to
2HgO = 2Hg + O2
to
2Ag2O = 4Ag + O2
Основные оксиды при нагревании могут вступать в реакции кислотными и амфотерными оксидами, с кислотами:
ВаО + SiO2 = ВаSiO3,
МgО + Аl2О3 = Мg(AlO2)2,
ZnО + Н2SО4 = ZnSО4 + Н2О.
Оксиды щелочных и щелочноземельных металлов непосредственно реагируют с водой:
Как и другие типы оксидов, основные оксиды могут вступать в окислительно-восстановительные реакции:
to
Fe2O3+2Al = Al 2O3 + 2Fe
to
3CuO+2NH3 = 3Cu + N2+3H2O
to
4FeO+O2 = 2Fe2 + O3
Основные оксиды наиболее активных металлов (щелочных и щелочноземельных, начиная с оксида кальция) при взаимодействии с водой (реакция гидратации) образуют соответствующие им гидроксиды (основания). Например, при растворении оксида кальция (негашёной извести) в воде образуется гидроксид кальция – сильное основание:
СаO + H2O → Са(OH)2
Основные оксиды взаимодействуют с кислотами, образуя соответствующие соли:
CaO + 2HCl → CaCl2 + H2O
К образованию солей также приводит реакция основных оксидов с кислотными оксидами:
Na2O + CO2 → Na2CO3
И с амфотерными оксидами:
Li2O+Al2O3 → 2LiAlO2
Кислотные оксиды
Большинство оксидов неметаллов являются кислотными оксидами (CO2, SO3, P4O10). Оксиды переходных металлов в высших степенях окисления проявляют преимущественно также свойства кислотных оксидов, например: CrO3, Mn2O7, V2O5.
Кислотные оксиды представляют ее оксиды неметаллов или переходных металлов в высоких степенях окисления и могут быть получены методами, аналогичными методам получения основных оксидов, например:
to
4P+5O2 = 2P2 + O5
to
2ZnS+3O2 = 2ZnO + 2SO2
to
K2Cr2O7+H2SO4 = 2CrO3↓+ K2SО4+H2O
Nа2SiO3 + 2НСl = 2NаСl + SiO2↓ + Н2О
Большинство кислотных оксидов непосредственно взаимодействует с водой с образованием кислот:
Наиболее типичными для кислотных оксидов являются их реакции с основными и амфотерными оксидами, с щелочами:
to
P2O5+Al2O3 = 2AlPO4
Са(ОН)2 + СО2 = СаСО3↓ + Н2О.
Выше упоминалось, что кислотные оксиды могут вступать в многочисленные окислительно-восстановительные реакции, например:
to
CO2+C = 2CO
to
2SO2+O2 2SO3
SО2 + 2Н2S = 3S + 2Н2О,
4CrO3 + С2Н5ОН = 2Сr2О3 + 2СО2 + ЗН2О
Практически все кислотные оксиды при взаимодействии с водой (гидратации) образуют соответствующие им кислотные гидроксиды (кислородосодержащие кислоты). Например, при растворении оксида серы (VI) в воде образуется серная кислота:
SO3 + H2O → H2SO4
Кислотные оксиды могут быть получены из соответствующей кислоты:
H2SiO3 → SiO2 + H2O
Амфотерные оксиды
Амфотерность (от греч. Amphoteros – и тот и другой) – способность химических соединений (оксидов, гидроксидов, аминокислот) проявлять как кислотные свойства, так и основные свойства, в зависимости от свойств второго реагента, учавствующего в реакции.
Амфотерные оксиды реагируют с сильными кислотами, образуя соли этих кислот. Такие реакции являются проявлением основных свойств амфотерных оксидов, например:
ZnO + H2SO4 → ZnSO4 + H2O
Они также реагируют с сильными щелочами, проявляя этим свои кислотные свойства, например:
ZnO + 2NaOH → Na2ZnO2 + H2O
Амфотерные оксиды могут реагировать с щелочами двояко: в растворе и в расплаве.
При реакции с щёлочью в расплаве образуется обычная средняя соль(как показано на примере выше).
При реакции с щёлочью в растворе образуется комплексная соль.
Al2O3 + 2NaOH + 3H2O → 2Na[Al(OH)4] (В данном случае образуется тетрагидроксоаллюминат натрия)
Для каждого амфотерного металла есть свое координационное число.
Для Be и Zn — это 4; для и Al — это 4 или 6; для и Cr — это 6 или (очень редко) 4;
Амфотерные оксиды обычно не растворяются в воде и не реагируют с ней.
Амфотерные оксиды обладают двойственной природой: они одновременно способны к реакциям, в которые вступают как основные, так и кислотные оксиды, т.е. реагируют и с кислотами, и со щелочами:
Аl2О3 + 6НСl = 2АlСl3 + ЗН2О,
Аl2О3 + 2NаОН + ЗН2О = 2Nа[Аl(ОН)4].
К числу амфотерных оксидов относятся оксид алюминия Аl2О3, оксид хрома (III) Сr2О3, оксид бериллия ВеО, оксид цинка ZnО, оксид железа (III) Fe2О3 и ряд других.
Идеально амфотерным оксидом является вода Н2О, которая диссоциирует с образованием одинаковых количеств ионов водорода (кислотные свойства) и гидроксид-иона (основные свойства). Амфотерные свойства воды ярко проявляются при гидролизе растворенных в ней солей:
Сu2+ + Н2О Сu(ОН)+ + Н+,
СО32- + Н2О НСО3- + ОН-.
Источник
Определение
Оксиды – бинарные соединения, в состав которых входит кислород в степени окисления -2.
Номенклатура оксидов
Названия оксидов строятся по следующим правилам систематической номенклатуры:
Сначала указывают слово оксид, после него, в родительном падеже, – название второго элемента.
Если элемент, образующий оксид, имеет единственную валентность, то её в названии оксида можно не указывать. Если же элемент имеет переменную валентность и образует несколько оксидов, то валентность элемента обязательно указывается римскими цифрами в скобках в конце записи названия оксида.
При записи химической формулы оксида кислород записывается на последнем месте.
Примеры:
$Na_2O$ – оксид натрия
$CaO$ – оксид кальция
$Al_2O_3$ – оксид алюминия
$overset{+7}{Mn_2}O_7$ – оксид марганца (VII)
$overset{+2}{Cr}O$ – оксид хрома (II)
$overset{+3}{Cr_2}O_3$ – оксид хрома (III)
В настоящее время при формировании названий оксидов пользуются правилами систематической номенклатуры. Однако до её появления, пока число известных соединений было не столь велико, широко использовалась тривиальная номенклатура, в которой названия веществ основаны не на особенностях их строения, а на внешнем виде или каких-то специфических свойствах именуемых объектов. Многие тривиальные названия распространены и в наше время.
На смену тривиальной номенклатуре пришла полусистематическая номенклатура. В полусистематических названиях веществ с помощью использования морфем пытались отразить особенности химического строения соединений. Применительно к оксидам вводились следующие названия: закись – для оксидов элементов в низких степенях окисления, окись – для более высоких степеней окисления. Кислотные оксиды часто рассматривали как продукты дегидратации соответствующих кислот и отражали это в виде названия ангидрид: $P_2O_5$ – фосфорный ангидрид, $SO_3$ – серный ангидрид и т.д.
Таблица 1
Формулы и названия некоторых оксидов в соответствии с тривиальной, полусистематической и систематической номенклатурой
Формула | Тривиальное название | Устаревшее название | Систематическое название |
$N_2O$ | веселящий газ | закись азота | оксид азота (I) |
$NO$ | окись азота | оксид азота (II) | |
$N_2O_3$ | трёхокись азота, азотистый ангидрид | оксид азота (III) | |
$NO_2$ | бурый газ | двуокись азота | оксид азота (IV) |
$N_2O_5$ | пятиокись азота, азотный ангидрид | оксид азота (V) | |
$SO_2$ | сернистый газ | двуокись серы, сернистый ангидрид | оксид серы (IV) |
$SO_3$ | трёхокись серы, серный ангидрид | оксид серы (VI) | |
$CO$ | угарный газ | окись углерода | оксид углерода (II) |
$CO_2$ | углекислый газ | двуокись углерода | оксид углерода (IV) |
$Na_2O$ | натр | окись натрия | оксид натрия |
$MgO$ | жжёная магнезия | окись магния | оксид магния |
$CaO$ | жжёная известь, негашёная известь | окись кальция | оксид кальция |
$Al_2O_3$ | глинозём | окись алюминия | оксид алюминия |
$SiO_2$ | кремнезём | двуокись кремния | оксид кремния (IV) |
$Fe_3O_4$ | железная окалина | закись-окись железа | оксид железа (II, III) |
$H_2O$ | вода | окись водорода | оксид водорода |
КЛАССИФИКАЦИЯ ОКСИДОВ
Оксиды делятся на две большие группы: солеобразующие и несолеобразующие. Последние, как вытекает из названия, не образуют солей.
Несолеобразующими называют оксиды, которые не вступают во взаимодействие ни с щелочами, ни с кислотами и не образуют солей. Эти оксиды образованы неметаллами.
Несолеобразующих оксидов немного, их необходимо запомнить: $N_2O$, $NO$, $CO$, $SiO$.
Солеобразующими называют оксиды, способные взаимодействовать с кислотами или с основаниями с образованием солей.
Солеобразующие оксиды делятся на основные, кислотные и амфотерные оксиды.
Основные оксиды – оксиды, которым соответствуют основные гидроксиды (основания).
Основные оксиды образованы типичными металлами (щелочными, щелочноземельными, магнием), а также переходными металлами в низких степенях окисления (кроме $ZnO$).
Примеры основных оксидов: $Li_2O$, $Na_2O$, $K_2O$, $MgO$, $CaO$, $BaO$, $overset{+2}{Fe}O$, $overset{+2}{Cr}O$, $overset{+1}{Cu_2}O$, $overset{+2}{Cu}O$, $overset{+2}{Mn}O$ и др.
Кислотные оксиды – оксиды, которым соответствуют кислотные гидроксиды (кислоты).
Кислотные оксиды образованы неметаллами (за исключением несолеобразующих оксидов $CO$, $SiO$, $NO$, $N_2O$), а также переходными металлами в высоких степенях окисления.
Примеры кислотных оксидов: $Cl_2O_7$, $SO_3$, $SO_2$, $N_2O_5$, $NO_2$, $N_2O_3$, $P_2O_5$, $P_2O_3$, $CO_2$, $SiO_2$, $B_2O_3$, $overset{+6}{Cr}O_3$, $overset{+7}{Mn_2}O_7$ и др.
Амфотерными называются оксиды, которые в зависимости от условий проявляют основные или кислотные свойства. Им соответствуют амфотерные гидроксиды.
К амфотерным оксидам относятся оксид бериллия $BeO$, оксид алюминия $Al_2O_3$, оксид цинка $ZnO$, а также оксиды переходных металлов в промежуточных степенях окисления.
Примеры амфотерных оксидов: $Al_2O_3$, $overset{+3}{Fe_2}O_3$, $overset{+3}{Cr_2}O_3$, $overset{+4}{Mn}O_2$, $overset{+2}{Sn}O$, $overset{+4}{Sn}O_2$, $overset{+5}{V_2}O_5$, $ZnO$, $BeO$ и др.
Основные оксиды взаимодействуют с кислотами с образованием соли и воды. Это оксиды металлов (кроме некоторых переходных металлов в высших степенях окисления), твердые вещества.
Основным оксидам соответствуют основания, в которых металл имеет такую же степень окисления, как в оксиде, при этом степень окисления равна числу гидроксильных групп.
Например, оксиду натрия $overset{+1}{Na}_2O$ соответствует гидроксид натрия $overset{+1}{Na}OH$;
оксиду кальция $overset{+2}{Ca}O$ соответствует гидроксид кальция $overset{+2}{Ca}(OH)_2$;
оксиду железа (II) $overset{+2}{Fe}O$ соответствует гидроксид железа (II) $overset{+2}{Fe}(OH)_2$.
Кислотные оксиды взаимодействуют с щелочами с образованием соли и воды, им соответствуют кислоты. Это оксиды неметаллов ($mathrm{CO_2, SO_2, SO_3, N_2O_5}$) или переходных металлов в высших степенях окисления ($mathrm{CrO_3, Mn_2O_7}$).
Оксиду соответствует кислота в случае, если степень окисления элемента в обоих соединениях одинакова, при этом степень окисления кислотного остатка равна количеству атомов водорода.
Например, оксиду углерода (IV) $overset{+4}{C}O_2$ соответствует угольная кислота $H_2overset{+4}{C}O_3$;
оксиду серы (IV) $overset{+4}{S}O_2$ соответствует сернистая кислота $H_2overset{+4}{S}O_3$;
оксиду серы (VI) $overset{+6}{S}O_3$ соответствует серная кислота $H_2overset{+6}{S}O_4$;
оксиду азота (V) $overset{+3}{N}_2O_3$ соответствует азотистая кислота $Hoverset{+3}{N}O_2$;
оксиду азота (V) $overset{+5}{N}_2O_5$ соответствует азотная кислота $Hoverset{+5}{N}O_3$;
оксиду азота (IV) $overset{+4}{N}O_2$ соответствует сразу две кислоты: азотная — $Hoverset{+5}{N}O_3$ и азотистая — $Hoverset{+3}{N}O_2$;
оксиду хлора (IV) $Cloverset{+4}O_2$ соответствует хлорноватая $Hoverset{+3}{Cl}O_2$ и хлористая $Hoverset{+5}{Cl}O_3$ кислоты.
Обратите внимание: если элемент в оксиде проявляет степень окисления, отличную от той, которую он проявляет в кислоте, такой оксид является несолеобразующим!
Например: углерод в угарном газе $overset{+2}{C}O$ проявляет степень окисления +2, в то время как в единственной кислоте, содержащей углерод, $H_2overset{+4}{C}O_3$ его степень окисления равна +4. Поэтому оксид углерода (II) относится к несолеобразующим оксидам.
Амфотерные оксиды проявляют в зависимости от условий свойства основных или кислотных оксидов.
Им соответствуют амфотерные основания.
Например, оксиду железа (III) $overset{+3}{Fe}_2O_3$ соответствует гидроксид железа (III) $overset{+3}{Fe}(OH)_3$
оксиду алюминия $overset{+3}{Al}_2O_3$ соответствует гидроксид алюминия $overset{+3}{Al}(OH)_3$
оксиду хрома (III) $overset{+3}{Cr}_2O_3$ соответствует гидроксид хрома (III) $overset{+3}{Cr}(OH)_3$
В таблице представлены основные свойства кислотных, основных и амфотерных оксидов.
основные | амфотерные | кислотные |
---|---|---|
Взаимодействуют с кислотами с образованием соли и воды. Это оксиды металлов (кроме некоторых переходных металлов в высших степенях окисления), твердые вещества CaO, FeO, Cu$_2$O | оксиды, проявляющие в зависимости от условий свойства основных или кислотных оксидов. Им соответствуют амфотерные основания Это твердые вещества. Al$_2$O$_3$, ZnO, Fe$_2$O$_3$, $Cr_2O_3$, BeO | взаимодействуют с щелочами с образованием соли и воды, им соответствуют кислоты. Это оксиды неметаллов (CO$_2$, SO$_2$, SO$_3$, N$_2$O$_5$) или переходных металлов в высших степенях окисления (CrO$_3$, Mn$_2$O$_7$) Газы, жидкости, твердые тела Прим. Некоторые (NO$_2$, ClO$_2$) образуют сразу две кислоты |
ФИЗИЧЕСКИЕ СВОЙСТВА ОКСИДОВ
Основные и амфотерные оксиды при комнатной температуре – твердые вещества ($CaO$, $Fe_2O_3$ и др.); кислотные оксиды – твёрдые вещества ($P_2O_5$, $SiO_2$), жидкости ($SO_3$, $Сl_2О_7$ и др.) или газы ($NO_2$, $SO_2$ и др.). Все несолеообразующие оксиды являются газами, кроме $SiO$, который является твердым веществом. Однако, нужно помнить, что кремниевую кислоту $H_2SiO_3$ нельзя получить непосредственно из оксида кремния, добавляя воду! Эту кислоту можно получить косвенным путем из солей кремния – силикатов.
Оксиды металлов могут быть окрашены в разные цвета: оксиды щелочных и щелочно-земельных металлов обычно белого цвета, оксиды переходных металлов $Cr_2O_3$ – зеленый; $HgO$ – красно-оранжевый; $CuO$ – черный, а $Cu_2O$ – красный.
Оксид кремния $SiO_2$ – самое распространенное твердое вещество на Земле. Он входит в состав почвы (песок), горных пород и минералов. Драгоценные камни, такие как изумруд, сапфир, горный хрусталь имеют в своей структуре молекулы оксида кремния, при этом атомы кремния и кислорода образуют атомную кристаллическую решетку, и, поэтому представляют собой тугоплавкие, твердые, но хрупкие кристаллы правильной формы:
Бурый газ (оксид азота(IV)) Оксид железа (III) Оксид кремния
ХИМИЧЕСКИЕ СВОЙСТВА ОКСИДОВ
ХИМИЧЕСКИЕ СВОЙСТВА ОСНОВНЫХ ОКСИДОВ
Исходное вещество | Реагент | Продукты реакции | Уравнение реакции |
---|---|---|---|
$K_2O$ | вода | растворимое основание (щелочь)* | $K_2O + H_2O = 2KOH$ |
MgO | кислота | соль и вода | $MgO + 2HCl = MgCl_2 + H_2O$ |
CaO | кислотный оксид | соль | $ CaO + CO_2 = CaCO_3$ |
$Na_2O$ | амфотерный оксид | соль | $Na_2O + ZnO = Na_2ZnO_2$ |
* Взаимодействие основного оксида с водой протекает только в случае, если образуется растворимое основание, т.е. щелочь. В случае возможного образования нерастворимого основания реакция не идет, например:
$MgO + H_2O not = Mg(OH)_2 downarrow$
ХИМИЧЕСКИЕ СВОЙСТВА КИСЛОТНЫХ ОКСИДОВ
Исходное вещество | Реагент | Продукты реакции | Уравнение реакции |
---|---|---|---|
$SO_3$ $N_2O_5$ | вода | соответствующая растворимая* кислота | $SO_3 + H_2O = H_2SO_4$ $N_2O_5 + H_2O = 2HNO_3$ $SiO_2 + H_2O not = H_2SiO_3 downarrow$ |
$SO_2$ | щелочь | соль и вода | $SO_2 + 2NaOH = Na_2SO_3 + H_2O$ |
$P_2O_5$ | основный оксид | соль | $P_2O_5 + 3Na_2O = 2Na_3PO_4 $ |
$SO_3$ | амфотерный оксид | соль | $ZnO + SO_3= ZnSO_4 $ |
*Реакция не протекает в случае,если образуется нерастворимая кислота, например: $SiO_2 + H_2O not = H_2SiO_3 downarrow$
Кислотные оксиды образуют соли, соответствующие определенной кислоте. Если у элемента может быть две или более кислот, то следует ориентироваться на степень окисления этого элемента в оксиде и кислоте: она должна быть одинаковой. Для лучшего понимания превращений кислотных оксидов в соли советуем воспользоваться следующим алгоритмом (на примере взаимодействия оксида азота(V) с гидроксидом кальция): $N_2O_5 + Ca(OH)_2 rightarrow$
1) Определим степень окисления азота в оксиде: $overset{X}{N}_2 overset{-2}{O_5} $ X=10/2=+5
2) Вспомним, какие кислоты образует азот и определим в каждой его степень окисления:
$hspace{2cm} overset{+1}{H}overset{x}{N}overset{-2}{O_2}hspace{3cm} overset{+1}{H}overset{x}{N}overset{-2}{O_3}hspace{2cm} $
$1cdot (+1) +1 cdot x + 2cdot(−2) = 0 hspace{0.5cm} 1cdot (+1) +1 cdot x + 3cdot(−2) = 0 $
$hspace{2cm} x = +3 hspace{3.2cm} x = +5$
Значит оксиду азота (V) соответствует азотная кислота, и $N_2O_5$ при взаимодействии с щелочами образует ее соли – нитраты ($NO_3^ – $):
$N_2O_5 + Ca(OH)_2 = Ca(NO_3)_2 + H_2O$
Воспользовавшись этим алгоритмом, можно составить следующие логические ряды:
$N_2O_5 rightarrow HNO_3$ ст.ок=+5 образует соли нитраты $NO_3^ – $
$ N_2O_3 rightarrow HNO_2$ ст.ок=+3 образует соли нитриты $NO_2^ –$
$P_2O_5 rightarrow H_3PO_4$ ст.ок=+5 образует соли нитраты $PO_4^{3 -}$
Для наглядного запоминания этого принципа можно воспользоваться таблицей, приведенной ниже.
Таблица. Формулы и названия кислот, кислотных остатков и соответствующих кислотных оксидов
Формула кислоты | Название кислоты | Формула кислотного остатка | Название кислотного остатка | Соответствующий кислотный оксид |
---|---|---|---|---|
HF | Фтороводород, плавиковая | $ F^-$ | Фторид | |
HCl | Хлороводород, соляная | $ Cl^-$ | Хлорид | |
HBr | Бромоводород | $Br-$ | Бромид | |
HI | Йодоводород | $I^-$ | Йодид | |
$H_2S$ | Сероводород | $S^{2-}$ | Сульфид | |
HCN | Циановодородная | $CN^-$ | Цианид | |
$HNO_2$ | Азотистая | $NO^{2-}$ | Нитрит | $N_2O_3$ |
$HNO_3$ | Азотная | $NO^{3-}$ | Нитрат | $N_2O_5$ |
$H_3PO_4$ | Ортофосфорная | $mathrm{PO_4^{3-}}$ | Фосфат | $P_2O_5$ |
$ H_3AsO_4$ | Мышьяковая | $mathrm{AsO_4^{3-}}$ | Арсенат | $As_2O_5$ |
$ H_2SO_3$ | Сернистая | $mathrm{SO_3^{2-}}$ | Сульфит | $SO_2$ |
$ H_2SO_4$ | Серная | $mathrm{SO_4^{2-}}$ | Сульфат | $SO_3$ |
$H_2CO_3$ | Угольная | $mathrm{CO_3^{2-}}$ | Карбонат | $CO_2$ |
$ H_2SiO_3$ | Кремниевая | $mathrm{SiO_3^{2-}}$ | Силикат | $SiO_2$ |
$ H_2CrO_4$ | Хромовая | $mathrm{CrO_4^{2-}}$ | Хромат | $CrO_3$ |
$ H_2Cr_2O_7$ | Дихромовая | $mathrm{Cr_2O_7^{2-}}$ | Дихромат | $CrO_3$ |
$HMnO_4$ | Марганцовая | $mathrm{MnO_4^{-}}$ | Перманганат | $Mn_2O_7$ |
$HClO$ | Хлорноватистая | $mathrm{ClO^-}$ | Гипохлорит | $Cl_2O$ |
$ HClO_2$ | Хлористая | $mathrm{ClO_2^{-}}$ | Хлорит | $Cl_2O_3$ |
$ HClO_3$ | Хлорноватая | $mathrm{ClO_3^{-}}$ | Хлорат | $Cl_2O_5$ |
$ HClO_4$ | Хлорная | $mathrm{ClO_4^{-}}$ | Перхлорат | $Cl_2O_7$ |
$HCOOH$ | Метановая, муравьиная | $mathrm{HCOO^-}$ | Формиат | |
$CH_3COOH$ | Этановая, уксусная | $mathrm{CH_3COO^-}$ | Ацетат | |
$ H_2C_2O_4$ | Этандиовая, щавелевая | $mathrm{C_2O_4^-}$ | Оксалат |
ХИМИЧЕСКИЕ СВОЙСТВА АМФОТЕРНЫХ ОКСИДОВ
Исходное вещество | Реагент | Продукты реакции | Уравнение реакции | |
---|---|---|---|---|
$ZnO, Al_2O_3$ | вода | $not = $ | не взаимодействуют | |
$ZnO$ | кислотный оксид | соль | $ ZnO + SO_3= ZnSO_4 $ | |
основный оксид | соль | $ZnO + Na_2O = Na_2ZnO_2$ | ||
$Al_2O_3$ | кислота | соль | $ Al_2O_3 + 6HNO_3 = 2Al(NO_3)_3 + 3H_2O $ | |
$Al_2O_3$ | щелочь | щелочь в расплаве — соль+вода | $Al_2O_3 + 2NaOH (т)xrightarrow[t, ^circ C]{}$ $ 2NaAlO_2 + H_2O $ | |
$Al_2O_3$ | щелочь в растворе — комплексная соль | $Al_2O_3 + 6NaOH (p-p) + 3H_2O = $ $=2Na_3[Al(OH)_6]$ |
СПОСОБЫ ПОЛУЧЕНИЯ ОКСИДОВ
1) взаимодействие простых веществ с кислородом
$mathrm{2Ca + O_2 = 2CaO}$
$mathrm{S + O_2 = SO_2}$
2) взаимодействие сложных веществ с кислородом
$mathrm{2ZnS + 3O_2 = 2ZnO + SO_2}$
3) разложение некоторых солей при нагревании
$mathrm{CaCO_3 = CaO + CO_2}$
$mathrm{2CuSO_4 = 2CuO + 2SO_2 + O_2}$
Примечание: соли натрия и калия обычно не разлагаются с образованием оксидов. Подробнее смотрите тему “Разложение солей”
4) дегидратация кислот и нерастворимых оснований
$mathrm{ H_2SO_4 = SO_3 + H_2O}$
(точнее: $mathrm{3H_2SO_4 + P_2O_5 = 3SO_3uparrow + 2H_3PO_4}$)
$mathrm{H_2SiO_3 = SiO_2 + H_2O}$
$mathrm{Cu(OH)_2 = CuO + H_2O}$
5) окисление одних оксидов и восстановление других
$mathrm{MnO_2 + 2H_2 = MnO + 2H_2O}$
$mathrm{2NO + O_2 = 2NO_2}$
$mathrm{Cr_2O_3 + 2Al = Al_2O_3 + 2Cr}$ (алюмотермия)
$mathrm{CuO + C = Cu + CO}$
При этом более активный металл вытесняет менее активный из его оксида. Для сравнения активности металлов следует использовать электрохимический ряд напряжения металлов.
6) вытеснение летучих оксидов из солей менее летучими
$mathrm{Na_2CO_3 + SiO_2 = Na_2SiO_3 + CO_2uparrow}$
Источник