Какие закономерности наблюдаются в изменении свойств кислотных оксидов в периодах и группах

Какие закономерности наблюдаются в изменении свойств кислотных оксидов в периодах и группах thumbnail

Периодический закон был открыт Д.И. Менделеевым в 1868 году. Его современная формулировка: свойства химических элементов и образуемых ими
соединений (простых и сложных) находятся в периодической зависимости от величины заряда атомного ядра.

Периодический закон лежит в основе современного учения о строении вещества. Периодическая система Д.И. Менделеева является наглядным отражением
периодического закона.

Периодическая таблица Д.И. Менделеева

В периодической таблице элементы расположены в порядке увеличения атомного заряда, группируются в “строки и столбцы” – периоды и группы.

Период – ряд горизонтально расположенных химических элементов. 1, 2 и 3 периоды называются малыми, они состоят из одного ряда элементов.
4, 5, 6 – называются большими периодами, они состоят из двух рядов химических элементов.

Группой называют вертикальный ряд химических элементов в периодической таблице. Элементы собраны в группы на основе степени окисления в
высшем оксиде. Каждая из восьми групп состоит из главной подгруппы (а) и побочной подгруппы (б).

Периодическая таблица Д.И. Менделеева содержит колоссальное число ответов на самые разные вопросы. При умелом ее использовании вы сможете
предполагать строение и свойства веществ, успешно писать химические реакции и решать задачи.

Менделеев Дмитрий Иванович

Радиус атома

Радиусом атома называют расстояние между атомным ядром и самой дальней электронной орбиталью. Это не четкая, а условная граница, которая
говорит о наиболее вероятном месте нахождения электрона.

В периоде радиус атома уменьшается с увеличением порядкового номера элементов (“→” слева направо). Это связано с тем, что с увеличением номера группы
увеличивается число электронов на внешнем уровне. Запомните, что для элементов главных подгрупп номер группы равен числу электронов на внешнем уровне.

С увеличением числа электронов они становятся более скученными, так как притягиваются друг к другу сильнее: это и есть причина маленького радиуса атома.

Чем меньше электронов, тем больше у них свободы и больше радиус атома, поэтому радиус увеличивается в периоде “←” справа налево.

Радиус атома в периоде

В группе радиус атома увеличивается с увеличением заряда атомных ядер – сверху вниз “↓”. Чем больше период, тем больше электронных орбиталей вокруг атома,
соответственно, и больше его радиус.

С уменьшением заряда атома в группе радиус атома уменьшается – снизу вверх “↑”. Это связано с уменьшением количества электронных орбиталей вокруг
атома. Для примера возьмем атомы бора и алюминия, элементов, расположенных в одной группе.

Радиус атома в группе

Период, группа и электронная конфигурация

Обратите внимание еще раз на важную деталь: элементы, находящиеся в одной группе (главной подгруппе!), имеют сходную конфигурацию внешнего уровня.
Так у бора на внешнем уровне расположены 3 электрона, у алюминия – тоже 3. Оба они в III группе.

Такая закономерность иногда может сильно облегчить жизнь, однако у элементов побочных подгрупп она отсутствует – там нужно считать электроны
“вручную”, располагая их на электронных орбиталях.

Раз уж мы повели речь об электронных конфигурациях, давайте запишем их для бора и алюминия, чтобы лучше представлять их внешний уровень и увидеть
то самое “сходство”:

  • B5 – 1s22s22p1
  • Al13 – 1s22s22p63s23p1

Общую электронную конфигурацию для элементов III группы главной подгруппы можно записать ns2np1. Это будет работать для
бора, внешний уровень которого 2s22p1, алюминия – 3s23p1, галия – 4s24p1,
индия – 5s25p1 и таллия – 6s26p1. За “n” мы принимаем номер периода.

Правило составления электронной конфигурации, которое вы только что увидели, универсально. Если вы имеете дело с элементом главной подгруппы,
то увидев номер группы вы знаете, сколько электронов у него на внешнем уровне. Посмотрев на период, знаете номер его внешнего уровня.

Вам остается только распределить известное число электронов по s и p ячейкам, а затем подставить номер периода – и вот быстро получена
конфигурация внешнего уровня. Предлагаю посмотреть на примере ниже 🙂

Электронная конфигурация по номеру группы и периоду

Очень надеюсь, что теперь вы знаете: только глядя на положение элемента в периодической таблице, на группу и период, в которых он расположен,
вы уже можете составить конфигурацию его внешнего уровня. Безусловно, это для элементов главных подгрупп. Повторюсь: у побочных – только “вручную”.

Читайте также:  Какие химические свойства характерны для серной кислоты

Длина связи

Длина связи – расстояние между атомами химически связанных элементов. Очевидно, что понятия длины связи и атомного радиуса взаимосвязаны напрямую.
Чем больше радиус атома, тем больше длина связи.

Убедимся в этом на наглядном примере, сравнив длину связей в четырех веществах: HF, HCl, HBr, HI.

Длина связи в химии

Чем больше радиусы атомов, которые образуют химическую связь, тем больше между ними и длина связи. Радиус атома водорода неизменен во всех трех
веществах, а в ряду F → Cl → Br → I происходит увеличение радиуса атома. Наибольшим радиусом обладает йод, поэтому самая длинная связь в молекуле HI.

Металлические и неметаллические свойства

В периоде с увеличением заряда атома металлические свойства ослабевают, неметаллические – усиливаются (слева направо “→”). В группе с увеличением
заряда атома металлические свойства усиливаются, а неметаллические – ослабевают (сверху вниз “↓”).

Металлические и неметаллические свойства

Сравним металлические и неметаллические свойства Rb, Na, Al, S. Натрий, алюминий и сера находятся в одном периоде. Металлические свойства возрастают
S → Al → Na. Натрий и рубидий находятся в одной группе, металлические свойства возрастают Na → Rb.

Таким образом, самые сильные металлические свойства проявляет рубидий, но с другой стороны – у него самые слабые неметаллические свойства. Сера
обладает самыми слабыми металлическими свойствами, но, если посмотреть по-другому, сера – самый сильный неметалл.

Распределение металлов и неметаллов в периодической таблице также является наглядным отображением этого правила. Если провести условную
линию, проходящую от бора до астата, то справа окажутся неметаллы, а слева – металлы.

Металлы и неметаллы в таблице Менделеева

Основные и кислотные свойства

Основные свойства в периоде с увеличением заряда атома уменьшаются, кислотные – возрастают. В группе с увеличением заряда атома основные
свойства усиливаются, а кислотные – ослабевают.

Кислотные и основные свойства противопоставлены друг другу, как противопоставлены металлические и неметаллические. Где первые усиливаются,
вторые – убывают. Все аналогично, поэтому смело ассоциируйте одни с другими, так будет гораздо легче запомнить.

Основные и кислотные свойства

Замечу, что здесь есть одно важное исключение. Как и в общем случае: исключения только подтверждают правила. В ряду галогенводородных
кислот HF → HCl → HBr → HI происходит усиление кислотных свойств (а не ослабление, как должно быть по логике нашего правила).

Это можно объяснить в темах диссоциации и химических связей. Когда мы дойдем до соответствующей темы, я напомню про HF и водородные связи между
молекулами, которые делают эту кислоту самой слабой. Сейчас воспринимайте это как исключение: HF – самая слабая из этих кислот, а
HI – самая сильная.

Галогеноводородные кислоты

Восстановительные и окислительные свойства

Восстановительные свойства в периоде с увеличением заряда атома ослабевают, окислительные – усиливаются. В группе с увеличением заряда
атома восстановительные свойства усиливаются, а окислительные – ослабевают.

Ассоциируйте восстановительные свойства с металлическими и основными, а окислительные – с неметаллическими и кислотными. Так гораздо проще
запомнить 😉

Восстановительные и окислительные свойства

Электроотрицательность (ЭО), энергия связи, ионизации и сродства к электрону

Электроотрицательность – способность атома, связанного с другими, приобретать отрицательный заряд (притягивать к себе электроны).
Мы уже касались ее в статье, посвященной степени окисления. Это важное свойство, ведь более ЭО-ый атом притягивает
к себе электроны и уходит в отрицательную степень окисления со знаком минус “-“.

Все перечисленные в подзаголовке свойства вместе с ЭО усиливаются в периоде с увеличением заряда атома, в группе с увеличением заряда атома
они ослабевают. Таким образом, самый электроотрицательный элемент расположен справа вверху таблицы Д.И. Менделеева – это фтор.

Электроотрициательность в таблице Менделеева

Для примера сравним ЭО-ость атомов Te, In, Al, P. Индий расположен в одной группе с алюминием, ЭО-ость In → Al возрастает (снизу вверх). Алюминий
расположен в одном периоде с серой, ЭО-ость возрастает Al → S (слева направо). Сравнивая серу и теллур, мы видим, что сера расположена в группе
выше теллура, значит и ее электроотрицательность тоже выше.

Читайте также:  Какой клевер полезные свойства

Энергия связи (а также ее прочность) возрастают с увеличением электроотрицательности атомов, образующих данную связь. Чем сильнее атом тянет на
себя электроны (чем больше он ЭО-ый), тем прочнее получается связь, которую он образует.

Понятию ЭО-ости “синонимичны” также понятия сродства к электрону – энергии, выделяющейся при присоединении электрона к атому, и энергии ионизации –
количеству энергии, которое необходимо для отщепления электрона от атома. И то, и другое возрастают с увеличением электроотрицательности.

Продемонстрирую на примере. Сравним энергию связи в трех молекулах: H2O, H2S, H2Se.

Энергия связи

Высшие оксиды и летучие водородные соединения (ЛВС)

В периодической таблице Д.И. Менделеева ниже 7 периода находится строка, в которой для каждой группы указаны соответствующие высшие оксиды,
ниже строка с летучими водородными соединениями.

Периодическая таблица Д.И. Менделеева

Для элементов главных подгрупп начиная с IV группы (в большинстве случае) максимальная степень окисления (СО) определяется по номеру группы. К примеру,
для серы (в VI группе) максимальная СО = +6, которую она проявляет в соединениях: H2SO4, SO3.

В таблице видно, что для VIa группы формула высшего оксида RO3, а, к примеру, для IIIa группы – R2O3. Напишем
высшие оксиды для веществ из VIa : SO3, SeO3, TeO3 и IIIa группы: B2O3, Al2O3,
Ga2O3.

На экзамене строка с готовыми “высшими” оксидами, как в таблице наверху, может отсутствовать. Считаю важным подготовить вас к этому. Предположим,
что эта строчка внезапно исчезла из таблицы, и вам нужно записать высшие оксиды для фосфора и углерода.

Высшие оксиды

С летучими водородными соединениями (ЛВС) ситуация аналогичная: их может не быть в периодической таблице Д.И. Менделеева, которая попадется на экзамене.
Я расскажу вам, как легко их запомнить.

ЛВС характерны для IV, V, VI и VII группы. Элементы этих групп более электроотрицательны, чем водород, поэтому ходят в “-” отрицательную СО.
Минимальная степень окисления для элементов главных подгрупп, начиная с IV группы, может быть рассчитана так: номер группы – 8.

Например, для углерода минимальная СО = 4-8 = -4; для азота 5-8 = -3; для кислорода 6-8 = -2; для фтора 7-8 = -1. Для того, чтобы запомнить
ЛВС, вы должны ассоциировать IV, V, VI и VII группы с хорошо известными вам веществами: метаном, аммиаком, водой и фтороводородом.

Летучие водородные соединения

Так как общее строение ЛВС в пределах одной группы сходно, то, вспомнив например H2O для кислорода в VI группе, вы легко
найдете формулы других ЛВС VI группы: серы – H2S, H2Se, H2Te, H2Po.

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

И гидроксисоединений

Кислотно-основные свойства оксидов и гидроксисоединений закономерно изменяются по периоду и подгруппе.

В составе гидроксисоединений всегда присутствует фрагмент

I II

Например:

; ; .

Кислотно-основные свойства вещества определяются типом химических связей I и II . Ионный тип химической связи I определяет её относительно легкую диссоциацию в растворе с образованием ОН—ионов

―Э― О Н → ―Э+1 + ОН—

Вещества с преимущественно ионной связью I проявляют основные свойства.

С увеличением электроотрицательности центрального атома (Э) ковалентность и прочность связи I возрастают. Одновременно связь II становится более полярной и менее прочной, это определяет её преимущественную диссоциацию в растворе с образованием ионов Н+:

―Э―О―Н ―Э―О— + Н+

Такие соединения проявляют кислотные свойства.

Соединения с прочными промежуточными по характеру – ионно-ковалентными связями I и II – проявляют амфотерные свойства.

С увеличением электроотрицательности центрального атома (Э) фрагмента ––Э––О––Н усиливаются кислотные и ослабляются основные свойства со-ответствующего гидроксисоединения в периоде в направлении слева направо и в подгруппе снизу вверх.

Сравним, например, свойства гидроксисоединений элементов III периода и IIA-подгруппы:

Читайте также:  Какие свойства называют спиртами

Be(OH)2

Амфотер-

ный гидроксид

NaOH Mg(OH)2 Al(OH)3 H2SiO3 H3PO4 H2SO4 HClO4

Очень Средней Амфотерный Очень Средней Сильная Очень

сильное силы гидроксид слабая силы кислота сильная

основание основание кислота кислота кислота

Ca(OH)2 – увеличение электроотрицательности центрального

Сильное атома (Э)

основание – усиление кислотных свойств оксидов и гидроксисое-

Sr(OH)2 динений

Сильное – ослабление основных свойств оксидов и гидрокси-

основание соединений

Ba(OH)2 – усиление гидролиза по катиону

Сильное

основание

С увеличением степени окисления элемента (Э+n) возрастает его электроотрицательность и, следовательно, усиливаются кислотные и ослабляются основные свойства соответствующих оксидов и гидроксисоединений.

+2 +3 +6

Например: CrO Cr2O3 CrO3

Cr(OH)2 Cr(OH)3 H2CrO4

основные амфотерные кислотные

Таблица 7

Сравнительная характеристика свойств оксидов металлов и неметаллов

Оксиды металлов Оксиды неметаллов
Оксиды металлов в низших степенях окисления являются основными; некоторые реагируют с водой, образуя ОН- (водн.), например CaO, MgO
 
Другие нерастворимы в воде, но реагируют с кислотами и с кислотными оксидами, например, Fe2O3, CuO
 
Сильные основные оксиды, например, K2O, CaO, реагируют с амфотерными оксидами; некоторые оксиды металлов амфотерны, реагируют как с основными, так и с кислотными оксидами, например, ZnO, SnO, SnO2, PbO, PbO2, Cr2O3, Al2O3.
Большинство являются кислотными; некоторые растворяются в воде, образуя растворы с высокой концентрацией водородных ионов, например, SO2
 
Макромолекулярные оксиды, например, (SiO2)m, (B2O3)n, не растворяются, но реагируют с основными и амфотерными оксидами, образуя соли
 
Небольшое число несолеобразующих нейтральных, например, N2O, NO, F2O

Генетическая связь между классами неорганических соединений

Основной

оксид

Металл Основание

Неметалл Кислотный Кислота

оксид

Гидролиз солей

Гидролиз солей – ионно-обменное взаимодействие солей с водой, сопровождающееся разложением соли. Гидролиз – реакция, обратная нейтрализации.

+ Н2О +

1. Соли, образованные сильной кислотой и сильным основанием (Na2SO4, KCl, CrNO3 и др.), гидролизу не подвергаются, их растворы нейтральны (рН=7).

2. Соли, образованные сильной кислотой и слабым основанием (NH4Cl, CuSO4, MgCl2 и др.), подвергаются гидролизу по катиону, среда в растворе кислая (рН<7).

Составим уравнения гидролиза NH4Cl:

NH4Cl + H2O NH4OH + HCl (молекулярное

(H++OH-) слабое. сильная. уравнение)

основание кислота

NH4+ + Cl– + H2O NH4OH + H+ + Cl– (полное ионное уравнение)

NH4+ + H2O NH4OH + H+ (краткое ионное уравнение)

В растворе увеличивается концентрация ионов Н+, следовательно, среда в растворе кислая (рН<7).

Процесс гидролиза равновесный, характеризуется константой гидролиза и степенью гидролиза:

, следовательно, равновесие сильно смещено влево, идет частичный гидролиз.

Степень гидролиза – это отношение молярной концентрации гидролизовавшейся соли к общей молярной концентрации соли в растворе.

h = Mгидр./Mo

Многозарядные катионы слабых оснований подвергаются гидролизу ступенчато:

Рассмотрим гидролиз CuSO4:

CuSO4 Cu2+ + SO42– (уравнение диссоциации)

H2O H+ + OH– (уравнение диссоциации воды)

1 стадия Cu2+ + H2O CuOH+ + H+ (краткое ионное уравнение)

2CuSO4 + 2H2O [CuOH]2SO4 + H2SO4 (молекулярное уравнение)

2 стадия CuOH+ + H2O Cu(OH)2 + H+ (краткое ионное уравнение)

[CuOH]2SO4 + 2H2O 2Cu(OH)2 + H2SO4 (молекулярное уравнение)

Вторая стадия гидролиза идет в гораздо меньшей степени, чем первая, т.е. «подавлена».

3. Соли, образованные сильным основанием и слабой кислотой (Na2CO3, K2S, Na3PO4 и др.), подвергаются гидролизу по аниону, среда в растворе щелочная (рН>7).

Рассмотрим гидролиз соли CH3COONa.

CH3COO–Na+ + H2O CH3COOH + NaOH (молекулярное уравнение)

(H+―OH–) слабая сильное

кислота основание

CH3COO– + Na+ + H2O CH3COOH + Na+ + OH– (полное ионное уравнение)

СH3COO– + H2O CH3COOH + OH– (краткое ионное уравнение)

В растворе увеличивается концентрация ОН– – ионов, следовательно, среда щелочная (рН>7).

4. Соли, образованные слабым основанием и слабой кислотой (NH4F, CH3COONH4 и др.), подвергаются гидролизу одновременно по катиону и аниону, среда в растворе близка к нейтральной (слабокислая или слабощелочная, рН≈7).

Например:

CH3COO–NH4+ + H2O CH3COOH + NH4OH (молекулярное уравнение)

(H+―OH–) слабая слабое

кислота основание

CH3COO– + NH4+ + H2O CH3COOH + NH4OH (ионное уравнение)

Некоторые соли подвергаются полному гидролизу, если образующиеся продукты – газы или плохо растворимые соединения.

Например:

 
 

Al2S3 + 6H2O 2Al(OH)3↓ + 3H2S↑



Источник