Каким свойством масса обладает

Отношение величины силы, действующей на тело, к приобретенному телом ускорению постоянно для данного тела. Масса тела и есть это отношение.

1. Масса=Сила/ускорение
m=F/a
 

Масса тела является неизменной характеристикой данного тела, не зависящей от его местоположения. Масса характеризует два свойства тела:

Инерция

Тело изменяет состояние своего движения только под воздействием внешней силы.

Тяготение

Между телами действуют силы гравитационного притяжения.

Эти свойства присущи не только телам, т.е. веществу, но и другим формам существования материи (например излучению, полям). Справедливо следующее утверждение:

Масса тела характеризует свойство любого вида материи быть инертной и тяжелой, т.е. принимать участие в гравитационных взаимодействиях.

Центр масс и система центра масс

В любой системе частиц имеется одна замечательная точка С- центр инерции, или центр масс, – которая обладает рядом интересных и важных свойств. Центр масс является точкой приложения вектора импульса системы , так как вектор любого импульса является полярным вектором. Положение точки С относительно начала О данной системы отсчета характеризуется радиусом-вектором, определяемым следующей формулой:

(4.8)

где – масса и радиус-вектор каждой частицы системы, M – масса всей

системы (рис. 4.3).

Импульс материальной точки, системы материальных точек и твердого тела.

Импульсом материальной точки называют величину равную произведению массы точки на ее скорость.

Обозначим импульс (его также называют иногда количеством движения) буквой . Тогда

. (2)

Из формулы (2) видно, что импульс — векторная величина. Так как m > 0, то импульс имеет то же направление, что и скорость.

Единица импульса не имеет особого названия. Ее наименование получается из определения этой величины:

[p] = [m] · [υ] = 1 кг · 1 м/с = 1 кг·м/с .

Момент импульса материальной точки относительно точки O определяется векторным произведением

, где — радиус-вектор, проведенный из точки O, — импульс материальной точки.

Момент импульса материальной точки относительно неподвижной оси равен проекции на эту ось вектора момента импульса, определенного относительно произвольной точки O данной оси. Значение момента импульса не зависит от положения точки O на оси z.

Момент импульса твердого тела относительно оси есть сумма моментов импульса отдельных частиц, из которых состоит тело относительно оси. Учитывая, что , получим
.

Если сумма моментов сил, действующих на тело, вращающееся вокруг неподвижной оси, равна нулю, то момент импульса сохраняется (закон сохранения момента импульса):

.

Производная момента импульса твердого тела по времени равна сумме моментов всех сил, действующих на тело:

.

Фундаментальные и нефундаментальные взаимодействия. Сила как мера взаимодействия тел. Свойства силы.

Фундамента́льные взаимоде́йствия — качественно различающиеся типы взаимодействия элементарных частиц и составленных из них тел.

На сегодня достоверно известно существование четырех фундаментальных взаимодействий:

– гравитационного

– электромагнитного

– сильного

– слабого

При этом электромагнитное и слабое взаимодействия являются проявлениями единого электрослабого взаимодействия.

Сила как мера взаимодействия тел

Сила – векторная величина, характеризующая механическое действие одного тела на другое, которое проявляется в деформациях рассматриваемого тела и изменении его движения относительно других тел.

Сила характеризуется модулем и направлением. Модуль и направление силы не зависят от выбора системы отсчета.

Понятие силы относится к двум телам. Всегда можно указать тело, на которое действует сила, и тело со стороны которого она действует.

Способы измерения силы:
-определение ускорения эталонного тела под действием данной силы;
– определение деформации эталонного тела.

Первый закон Ньютона

Первый закон Ньютона постулирует наличие такого явления, как инерция тел. Поэтому он также известен как Закон инерции. Инерция — это явление сохранения телом скорости движения (и по величине, и по направлению), когда на тело не действуют никакие силы. Чтобы изменить скорость движения, на тело необходимо подействовать с некоторой силой. Естественно, результат действия одинаковых по величине сил на различные тела будет различным. Таким образом, говорят, что тела обладают инертностью. Инертность — это свойство тел сопротивляться изменению их текущего состояния. Величина инертности характеризуется массой тела.

Существуют такие системы отсчёта, называемые инерциальными, относительно которых материальная точка при отсутствии внешних воздействий сохраняет величину и направление своей скорости неограниченно долго.

Системы отсчета, в которых выполняется первый закон Ньютона, называют инерциальными.

Или

Инерциальные системы отсчета – это системы, относительно которых материальная точка при отсутствии на нее внешних воздействий или их взаимной компенсации покоится или движется равномерно и прямолинейно.

18. Второй закон Ньютона

Второй закон Ньютона — дифференциальный закон движения, описывающий взаимосвязь между приложенной к материальной точке силой и получающимся от этого ускорением этой точки. Фактически, второй закон Ньютона вводит массу как меру проявления инертности материальной точки в выбранной инерциальной системе отсчёта (ИСО).

Современная формулировка

В инерциальной системе отсчёта ускорение, которое получает материальная точка, прямо пропорционально равнодействующей всех приложенных к ней сил и обратно пропорционально её массе.

При подходящем выборе единиц измерения, этот закон можно записать в виде формулы:

где — ускорение материальной точки;
— сила, приложенная к материальной точке;
— масса материальной точки.

Или в более известном виде:

В случае, когда масса материальной точки меняется со временем, второй закон Ньютона формулируется с использованием понятия импульс:

В инерциальной системе отсчета скорость изменения импульса материальной точки равна равнодействующей всех приложенных к ней сил.

где — импульс точки,

где — скорость точки;

— время;

— производная импульса по времени.

Когда на тело действуют несколько сил, с учётом принципа суперпозиции второй закон Ньютона записывается:

или

Читайте также:  Какими свойства электроизоляционные материалы

Второй закон Ньютона действителен только для скоростей, много меньших скорости света и в инерциальных системах отсчёта. Для скоростей, приближенных к скорости света, используются законы теории относительности.

Нельзя рассматривать частный случай (при ) второго закона как эквивалент первого, так как первый закон постулирует существование ИСО, а второй формулируется уже в ИСО.

19. Третий закон Ньютона

Этот закон объясняет, что происходит с двумя взаимодействующими телами. Возьмём для примера замкнутую систему, состоящую из двух тел. Первое тело может действовать на второе с некоторой силой , а второе — на первое с силой . Как соотносятся силы? Третий закон Ньютона утверждает: сила действия равна по модулю и противоположна по направлению силе противодействия. Подчеркнём, что эти силы приложены к разным телам, а потому вовсе не компенсируются.

Современная формулировка

Материальные точки попарно действуют друг на друга с силами, имеющими одинаковую природу, направленными вдоль прямой, соединяющей эти точки, равными по модулю и противоположными по направлению:

Закон отражает принцип парного взаимодействия. То есть все силы в природе рождаются парами.



Источник

Что такое “масса”

Слово масса (лат. massa, от др.-греч. μαζα) первоначально в античные времена обозначало кусок теста. Позднее смысл слова расширился, и оно стало обозначать цельный, необработанный кусок произвольного вещества; в этом смысле слово используется, например, у Овидия и Плиния.

Источник: https://sun9-21.userapi.com/cWnyw3_QMGMiAx7bpuYJ6qbWDHK5CGvmwIDOhA/Bqj4E-hF8jo.jpg

Масса как научный термин была введена Ньютоном как мера количества вещества, точнее – материи, до этого естествоиспытатели оперировали понятием веса. В труде «Математические начала натуральной философии» (1687) Ньютон сначала определил «количество материи» в физическом теле как произведение его плотности на объём. Однако, во времена Ньютона, не было ещё чёткого разделения между веществом и материей. В наше время под веществом понимают барионную материю, то есть считают, что барионная материя, состоящая из атомов, называется веществом. А под материей как вещество, так и различные поля, через которые они взаимодействуют, приписывая им энергию и импульс.

Фактически Ньютон использует только два понимания массы: как меры инерции и источника тяготения. Ньютон ввёл массу в законы физики: сначала во второй закон Ньютона, через нее – в первый и третий, а затем — в закон тяготения. В современном понимании в классической механике

1) Масса тела – это физическая величина, которая является мерой инертности тела.

2) Ма́сса — скалярная физическая величина, определяющая инерционные и гравитационные свойства тел в ситуациях, когда их скорость намного меньше скорости света.

Первый закон определяет движение м.т. в отсутствие силы, второй – в присутствии внешней силы:

1. Масса – это мера инерции тела:F = m· w.

2. Третий закон определяет закон равенства действия и противодействия (силы и противосилы) для консервативной системы м.т.: Fi= 0.

3. А затем и в закон тяготения (тел Землей): F = mg, откуда сразу следует, что вес пропорционален массе.

Параметр F называется силой, действующей на м.т. Именно она совместно с массой и ускорением является главным героем всех трех законов Ньютона. Ньютон явно указал на эту пропорциональность и даже проверил её на опыте со всей возможной в те годы точностью: «Определяется масса по весу тела, ибо она пропорциональна весу, что мной найдено опытами над маятниками, произведёнными точнейшим образом» (эти опыты Ньютон подробно описал в III томе своих «Начал»).

Выделенная роль массы, силы и ускорения, а также импульса и энергии, определяется уравнением второго закона Ньютона, в которое входит произведение массы м.т. m на ускорение w = d2r/dt2, получаемое телом при взаимодействии с силовым полем или контактно с другой м.т., и следствиями из них. В этом выражении масса выступает как мера инерции, характеризующей способность изменять скорость под действием внешней силы:

В классической механике в качестве собственных параметров м.т. рассматриваются только скалярная масса m. Импульс скорее является расчетной величиной, чем экспериментально измеряемой. Рассмотрим

Основные их свойства

Левая часть уравнения, определяющего силу взаимодействия F, может зависеть произвольным образом от других параметров м.т. и внешних полей, но обычно порядок дифференциального элемента dnr(t)/dtn для левой части уравнения (2, 3) ограничивается числом n = 1 (иногда 2):

F(m, r, t, , r(t), dr(t)/dt) = mw.

В этом уравнении масса тела определяет чувствительность м.т. к изменению состояния движения под воздействием силы, чувствительной к соответствующему заряду (в т.ч. и массе). Сила, действующая на м.о., обладает свойством аддитивности, и складывается из сил, действующих на каждую ее составную часть:

F = ∑ₖfₖ.

где k – индексы составляющих составной объект м.т.

Масса тела является скаляром и не изменяется при взаимодействиях с внешними полями и между собой (кроме, возможно, случаев рассмотрения неупругого взаимодействия и реактивной силы). Как мера количества вещества, она обладает следующими свойствами:

– масса является мерой количества вещества;

– масса составного тела является аддитивным параметром и равна сумме масс составляющих его частей;

– масса изолированной системы тел сохраняется, не меняется со временем. Как писал М.И.Ломоносов, “ежели где-то что-то убыло, то где-то что-то прибыть должно непременно”.

– масса тела не меняется при переходе от одной системы отсчета к другой, в частности, она одинакова в различных инерциальных системах отсчета.

Масса тела обладает свойством аддитивности. Это означает, что если некоторый материальный объект является составным объектом, но рассматривается как одно целое, то, хотя и каждая составная часть ее взаимодействует с внешним полем (или другими объектами) независимо, ее можно рассматривать как одну м.т. с общей массой и зарядом, находящимся в центре масс (см. законы Ньютона) этих м.т.:

Читайте также:  Какой чай обладает лечебными свойствами

m = ∑ₖmₖ..

При упругих взаимодействиях массы взаимодействующих м.т. не изменяются. При неупругих взаимодействиях двух тел с массами m1 и m2 их массы могут изменяться, но сумма их масс не изменяется. Это же относится и к зарядам м.т.:

Примером неупругого взаимодействия является столкновение двух автомобилей. Еще один интересный пример с противоположным эффектом неупругого взаимодействия – движение ракеты с помощью реактивного двигателя.

Энергия и импульс также обладают свойством аддитивности.

В СТО параметр “масса” имеет две интерпретации. Первое – как скалярный параметр, применяемый в серьезных научных работах, соответствует по значению массе покоя м.т. и обозначается через m. Вторая – как динамическая масса, соответствующая временному элементу 4-х вектора энергии–импульса м.т., отвечающей за полную энергию м.т., поделенной на c2. Динамическая масса применяется в научно-популярной, школьной и частично вузовской учебной литературе. Обозначается тем же символом m, хотя правильнее было бы обозначать как m0 или m0 – эквивалент полной энергии м.т. В СТО эти массы взаимосвязаны и эта связь определяется через модуль полного 4-импульса м.т.:

В ОТО масса м.т. в произвольной точке пространства-времени имеет скалярную массу

Мои странички на Дзен: ВАЛЕРИЙ ТИМИН

Если вам понравилась статья, то поставьте “лайк” и подпишитесь на канал! Если не понравилась – все равно комментируйте и подписывайтесь. Этим вы поможете каналу. И делитесь ссылками в ваших соцсетях!

Если хотите узнать, что обозначает слово или словосочетание, в ОПЕРЕ выделите это слово(сочетание), нажмите правую клавишу мыши и выберите “Искать в …”, далее – “Yandex”. Если это текстовая ссылка – выделите ее, нажмите правую клавишу мыши, выберите “перейти …”. Все! О-ля-ля!

Ссылка на мою статью Как написать формулы в статье на Дзен?

Источник

Удивительно, как много людей, употребляя слова «масса» и «вес», не понимают их различие с точки зрения физики и подразумевают одно и то же. Между тем, это различие принципиально и огромно…

Масса

Начнем с массы. Масса определяет инерционные свойства тела. Что это означает? Инертность – это способность тела сопротивляться изменению его состояния движения под действием силы. Попробуйте остановить катящийся по инерции футбольный мяч. А потом – катящийся с той же скоростью по инерции автомобиль. В последнем случае сделать это гораздо тяжелее, потому что автомобиль обладает большим количеством материи. И можно сказать, что автомобиль обладает большей массой. Измеряется масса в килограммах, а обозначается буквой m. Масса тела всегда постоянна.

Вес

Что касается веса, то это сила. Как и любая другая сила, это векторная величина (имеющая направление действия) и измеряется она в ньютонах. По определению, вес – сила, с которой тело действует на опору или подвес:

Если человек массой 70 кг неподвижно стоит на полу, какие силы на него действуют с точки зрения классической механики? Всего две. Одна из них – сила тяжести, направленная вертикально вниз. Эта та сила, с которой Земля притягивает человека, и она равна произведению массы человека m на ускорение свободного падения g (для Земли – 9,81 м/с2, округлим это значение до 10). Таким образом, эта сила будет равна mg=70*10=700Н. Часто эту силу также измеряют в килограмм-силах, кгс. Ее величина равна весу тела массой в 1 кг, поэтому обыватели часто измеряют вес в килограммах и именно поэтому часто возникает путаница с весом и массой.

Вторая сила – это сила реакции опоры N. Человек давит на пол, а пол этому сопротивляется – ровно с такой же силой, как и сила тяжести. Эта сила направлена в противоположное направление и равна по величине силе тяжести. Суммарная же сила равна F=mg-N=0.

Вы можете спросить – зачем всё это, если сила тяжести и вес – одно и то же? Ничего подобного, это абсолютно разные вещи, просто в данном примере они совпадают. Рассмотрим космонавта, находящегося во взлетающей ракете. На него также действует сила тяжести и сила реакции опоры, но плюс к этому добавляется сила, толкающая космонавта вверх вместе с ракетой. В этом случае сила реакции опоры N будет превышать силу тяжести mg, и вес космонавта возрастет, он испытает перегрузку, хотя сила тяжести и масса космонавта не изменились.

На самом деле, вес для физиков является незначащим термином. С точки зрения физики его правильней называть просто силой, а слово «вес» – это просто дань языковой традиции.

В земных условиях люди обычно приравнивают вес и массу, да и шкала у всех весов откалибрована для земной силы тяжести. Однако, взаимодействие веса и массы очень интересно наблюдать в условиях, отличных от Земли. Так, на Луне сила тяжести меньше земной в 6 раз, соответственно, вес космонавта также будет меньше в 6 раз. При этом масса его останется неизменной. Если мы попробуем забить на Луне гвоздь в доску, то молоток будет весить в 6 раз меньше. Но при ударе по шляпке, он будет воздействовать на гвоздь с той же силой, что и на Земле, потому что масса молотка не изменилась.

Итог. Масса – неотделимое свойство любого тела. Если спортивное ядро массой 7 кг тяжело метнуть на Земле, то точно также тяжело его будет метнуть и в условиях невесомости, несмотря на то, что его вес будет равен нулю.

Если тебе понравилась статья, подписывайся на канал, расскажи о нем в соцсетях, а уж мы постараемся не ударить в грязь лицом )

Источник

Вопрос казалось бы «детский», но адекватное понятие «массы» в современной научной трактовке не определено. По Википедии,- Ма́сса — скалярная физическая величина, определяющая инерционные и гравитационные свойства тел в ситуациях, когда их скорость намного меньше скорости света. Таким разделением на инертную и гравитационную, массе приписывается наличие внутренних и внешних свойств. Это не две разные массы, как принято считать, а лишь проявление одного и того же понятия «МАССА» во внутреннем (мнимом) и внешнем (действительном) пространствах пробного тела.

Читайте также:  Какие углы называются вертикальными свойство

Необходимо отметить, что с точки зрения лишь только трёхмерного пространства понятие «массы» бессмысленно. Смысл появляется лишь при кватернионной концепции пространства. Напомню, в кватернионном пространстве существуют «вложенные» друг в друга одно действительное (r) и три мнимых (I,j,k) пространства. Эти три мнимых пространства обеспечивают три разных взаимодействия в нашем мире,- электрическое (i), магнитное (j) и гравитационное (k). Других взаимодействий в мире просто нет. Сам же механизм взаимодействия основывается на алгебре умножения мнимых чисел кватерниона, открытой великим Гамильтоном.

Согласно этой алгебре, электрический заряд (i) стоит рассматривать как результат взаимодействия (умножения) двух мнимых пространств тела,- мнимого магнитного пространства (j) и мнимого гравитационного пространства (k): i=j*k. Магнитный «заряд» тела обеспечивается перемножением гравитационной компоненты (k) на компоненту электрическую (i): j=k*i. Причём, так как умножение кватернионных единиц не коммутативно, очень важно соблюдать направление обхода (киральность) мнимых единиц. При одной киральности результат алгебраического умножения будет положительным, а при другой – отрицательным. Это обеспечивает в итоге либо притяжение (не важно какого взаимодействия, электрического, магнитного, или гравитационного), либо отталкивание. Киральность потому так важна, что она заложена в механизм мёбиусовой «скрутки» проективных прямых – силовых линий любого поля.

Так вот, МАССА – это обратная сторона (обратная киральность) электромагнитного пространства любого тела (j*i=-k). Прямая киральность электромагнитного пространства даст СВЕТ (i*j=k). СВЕТ и МАССА как две зеркальные мнимые категории как бы «запечатаны» в любом пробном теле (объекте). Друг для друга СВЕТ и МАССА – антиподы. Это наглядно проявляется при динамических трансформациях тела. Мой любимый пример – полёт кометы Лавджоя. При относительно небольшой скорости кометы её головная часть вполне осязаема («массивна»). Когда скорость кометы достигает значительной величины, её головная часть «превращается» в СВЕТ. Выворачивание пространства переводит МАССУ в СВЕТ. Затем, когда скорость кометы опять начнёт снижаться, СВЕТ перейдёт снова в МАССУ, появится вещественное очертание головной части.

Сравнивая снимки кометы Лавджоя, сделанные 19 и 21 декабря, бросается в глаза, как “исчезает” ядро кометы.

Кстати, знаете, почему скорость света есть предел пространства, который невозможно преодолеть? Знаменитая формула Гамильтона (i*j*k=-1) «запирает» кватернионное пространство ПОЛНОСТЬЮ. Все три мнимости становятся «связанными», а без них никакая динамика, и никакая термодинамика невозможна. На этом же основаны и преобразования Лоренца. Мера «связывания» мнимостей даёт эффекты и «замедления» времени, и «уменьшения» линейных размеров тел. По этой же причине невозможно достижение и абсолютного нуля температур. Как я подчёркиваю в своих публикациях, температура – это показатель меры выхода вовне мнимого пространства. А если все мнимости будут «связаны», то понятие «меры» будет терять смысл.

Разделение же МАССЫ на инертную и гравитационную становится возможным по причине алгебры комплексных чисел. Феномен мнимой единицы, квадрат которой равен минус единице, обеспечивает гравитационное взаимодействие между двумя МАССАМИ двух пробных тел (-k*-k=-1). Но эта формула характерна только для двух действительных тел, как например Земли и человека, обеспечивает их взаимное притяжение. Если же взять одно действительное тело (комету) и одно тело мнимое (Солнце), то их взаимная алгебра будет другой (-k*k=1). Это уже будет отталкивание, что мы и видим по направлению хвостов приближающихся к Солнцу комет – всегда строго ОТ СОЛНЦА. Про Солнце я писал здесь.

Хвосты комет в перигее всегда направлены от Солнца.

Инертные же свойства МАССЫ следует рассматривать как «внутреннее» взаимодействие электрической (i), и магнитной (j) компонент внутреннего пространства пробного тела.

В связи со всеми такими алгебраическими операциями мнимостей в пространствах пробных тел, хотелось бы отметить такие интересные физические эффекты как притяжение проводников с сонаправленным электрическим током, и отталкивание с противонаправленным. При сонаправленном электрическом токе алгебра (i*i=-1) обеспечит взаимное притяжение проводников. А при противонаправленном электрическом токе киральность сменится (-i*i=1), вынуждая проводники отталкиваться. По этой же причине отталкиваются, или притягиваются два потока воды (в шлангах, например). Два встречных парохода будут отталкиваться, а два попутных – притягиваться. На этом свойстве притяжения и отталкивания основаны разные механизмы формирования циклонов и антициклонов, обеспечивая разную киральность их вихрей.

Циклоны и антициклоны имеют противоположную друг по отношению к другу закрученность.

PS. В контексте вышесказанного, довольно наивно поднимается вопрос современной физикой,- имеет ли фотон МАССУ? Фотон имеет СВЕТ, вернее, он и есть – СВЕТ! МАССЫ он иметь не может, он её образует. Выверни фотон, получишь МАССУ, выверни МАССУ, получишь фотон.

PS2. Из всего сказанного вытекает ещё один замечательный вывод. Мнимый СВЕТ будет притягиваться к любой звезде как мнимому образованию. Их алгебра будет (k*k=-1). Такое притяжение “подобного к подобному” обеспечивается именно алгеброй комплексных чисел, а не пресловутой “массивностью” звёзд. Так что, Альберт, ты не прав!

Всего Вам доброго.

Источник