Каким свойством обладает отрезок

Каким свойством обладает отрезок thumbnail

ВОПРОСЫ

1. Сколько существует отрезков, концами которых являются две дан­ные точки?

2. Как обозначают отрезок?

3. Какие вы знаете единицы длины?

Нам известны такие единицы длины: миллиметр, сантиметр, дециметр, метр, километр.

1 см – 10 мм
1 дм – 10 см
1 м – 100 см – 10 дм
1 км – 1000 м

4. Объясните, что означает измерить длину отрезка.

5. Каким свойством обладает длина отрезка?

6. Какие отрезки называют равными?

7. Какие длины имеют равные отрезки?

8. Какой из двух неравных отрезков считают большим?

9. Что называют расстоянием между точками А и В?

10. Объясните, какую геометрическую фигуру называют ломаной.

11. Что называют длиной ломаной?

12. Какую ломаную называют замкнутой?


РЕШАЕМ УСТНО

1. Какое число больше числа 46 на 9? Какое число меньше числа 72 на 15? Какое число больше числа 21 в 7 раз? Какое число меньше числа 65 в 13 раз?

55, 57, 147, 5

2. Назовите все двузначные числа, сумма цифр которых равна 6.

15, 24, 33, 42, 51, 60

3. Назовите все двузначные числа, разность цифр которых равна 7.

18, 29, 70, 81, 92

4. Назовите три последовательных натуральных числа, наименьшим из которых является наибольшее четырехзначное число.

9999, 10000, 10001

5. Назовите три последовательных натуральных числа, наибольшим из которых является наименьшее четырехзначное число.

9997, 9998, 9999

6. Выразите в сантиметрах:

1) 7 дм 4 см = 74 см
2) 4 м 1 см = 401 см
3) 2 м 6 дм = 260 см
4) 1 м 2 дм 5 см = 125 см

7. Выразите в дециметрах и сантиметрах:

1) 72 см = 7 дм 2 см
2) 146 см = 14 дм 6 см
3) 450 мм = 4 дм 5 см
4) 8 м 40 мм = 80 дм 4 см

УПРАЖНЕНИЯ

44. Запишите все отрезки, изображенные на рисунке 15.

a) AB, BC, AC, BK
б) OP, OR, OT, PR, PT, RT
в) AE, EC, CD, AC, ED, AD
г) MN, NE, ME, EP, PQ, EQ, MQ, NP

45. Запишите все отрезки, изображенные на рисунке 16.

а) AO, OC, AC, BO, OD, BD, AD
б) MK, KN, NP, MN, KP, MP, FK, KE, FE, EN, NS, ES

46. Отметьте в тетради точки A, B, C, D и соедините их попарно отрезками. Сколько отрезков образовлось? Сколько образовалось отрезков с концом в точке А?

47. Начертите отрезки MN и AC так, чтобы MN=6 см 3 мм, AC = 5 см 3 мм.

48. Начертите отрезки EF и BK так, что EF = 9 см 2 мм, BK = 7 см 6 мм.

49. Начертите отрезок АВ, длина которого равна 8 см 9 мм. Отметьте на нём точку С так, чтобы СВ = 3 см 4 мм. Какова длина отрез­ка АС?

50. Начертите отрезок TP, длина которого равна 7 см 8 мм. Отметьте на нём точку Е так, чтобы ТЕ = 2 см 6 мм. Какова длина отрезка ЕР?

51. Сравните на глаз отрезки АВ и CD (рис. 17). Проверьте свой вывод измерением.

52. Назовите все ломаные, изобра­жённые на рисунке 11. Какая из них имеет наибольшее коли­чество звеньев?

53. Назовите звенья ломаной, изображённой на рисунке 18, и измерьте их длины (в миллиметрах). Вычислите длину ломаной.

54. Запишите звенья ломаной, изображённой на рисунке 19, и измерь­те их длины (в миллиметрах). Вычислите длину ломаной.

Читайте также:  Какие свойства ячеек в excel

55. Отметьте в узле клеток тетради точку А; точку В разместите на 4 клетки левее и на 5 клеток выше точки А; точку С — на 3 клет­ки правее и на 1 клетку выше точки В; точку D — на 3 клетки пра­вее и на 3 клетки ниже точки С; точку Е — на 1 клетку правее и на 2 клетки ниже точки D. Соедините последовательно отрезками точ­ки А, В, С, D и Е. Какая фигура образовалась? Запишите её назва­ние и укажите количество звеньев.

56. Вычислите длину ломаной ABCDE, если АВ = 8 см, ВС = 14 см, CD = 23 см, DE = 10 см.

57. Вычислите длину ломаной MNKPEE, если MN = 42 мм, NK = 38 мм, КР = 19 мм, РЕ = 12 мм, ЕF = 29 мм.

58. Начертите в тетради ломаную, изображённую на рисунке 20. Измерьте длины звеньев (в мил­лиметрах) и найдите длину ло­маной.

59. Известно, что отрезок SK в 3 ра­за больше отрезка RS (рис. 21). Найдите длину отрезка RK, ес­ли RS = 34 см.

60. Известно, что отрезок DВ в 5 раз меньше отрезка AD (рис. 22). Найдите длину отрезка АВ, ес­ли АD = 135 см.

61. Известно, что AC = 32 см, ВС = 9 см, CD = 12 см (рис. 23). Найдите длины отрезков АВ и BD.

62. Известно, что MF= 43 см, МЕ = 26 см, КЕ = 18 см (рис. 24). Найди­те длины отрезков МК и EF.

63. Даны две точки А и В. Сколько можно провести отрезков, соеди­няющих эти точки? Сколько можно провести ломаных, соединяю­щих эти точки?

64. Начертите отрезок МК и отметьте на нём точки А и С. Запишите все образовавшиеся отрезки.

65. Длина отрезка АВ равна 28 см. Точки М и К принадлежат этому от­резку, причём точка К лежит между точками М и В, AM =12 см, ВК = 9 см. Найдите длину отрезка МК.

66. Точка С принадлежит отрезку АВ, длина отрезка АС равна 15 см, а отрезок АВ на 5 см больше отрезка АС. Чему равна длина отрез­ка ВС? Есть ли в условии задачи лишние данные?

67. Отрезки МТ и FK равны (рис. 25). Сравните отрезки MF и ТК.

68. Постройте ломаную ACDM так, чтобы АС = 15 мм, CD = 24 мм, DM = 32 мм. Вычислите длину ло­маной.

69. Постройте ломаную CEFK так, чтобы звено СЕ было равно 8 мм, звено EF было на 14 мм больше звена СЕ, а звено FK — на 7 мм меньше звена EF. Вычислите длину ломаной.

70. Вычислите длину ломаной, изображённой на рисунке 26.

71. Известно, что АС = 8 см, BD = 6 см, ВС = 2 см (рис. 27). Найдите длину отрезка AD.

72. Известно, что MF = 30 см, ME = 18 см, KF = 22 см (рис. 28). Найди­те длину отрезка КЕ.

73. Известно, что КР = РЕ = EF = FT = 2 см (рис. 29). Какие ещё равные отрезки есть на этом рисунке? Найдите их длины.

74. На первом отрезке отметили семь точек так, что расстояние между любыми соседними точками равно 3 см, а на втором — десять точек так, что расстояние между любыми соседними точками равно 2 см. Расстояние между какими крайними точками больше: лежащими на первом отрезке или лежащими на втором отрезке?

Читайте также:  Какими свойствами обладает масло чайного дерева

75. Известно, что АЕ = 12 см, AQ = QB, ВМ = МС, СК = KD, DR = RE, МК = 4 см (рис. 30). Найдите длину отрезка QR.

76. Какое наименьшее количество точек надо отметить на отрезках, изображённых на рисунке 31, чтобы на каждом из них было две от­меченные точки, не считая концов отрезков?

77. У Миши есть линейка, на которой отмечены только 0 см, 5 см и 13 см (рис. 32). Как, пользуясь этой линейкой, он может постро­ить отрезок длиной: 1) 3 см; 2) 2 см; 3) 1 см?

УПРАЖНЕНИЯ ДЛЯ ПОВТОРЕНИЯ

78. Вычислите:

79. Выполните действия:

80. Детскому саду подарили четыре ящика конфет по 5 кг в каждом и шесть ящиков печенья по 3 кг в каждом. На сколько килограм­мов больше подарили конфет, чем печенья?

81. Медведица Настасия Петровна заготовила на зиму семь бочонков мёда по 12 кг в каждом и 8 бочонков мёда по 10 кг в каждом. Сколько всего килограммов мёда заготовила Настасия Петровна?

82. В магазин привезли 240 кг бананов и 156 кг апельсинов. Треть при­везённых фруктов продали в первый день, а остальные — во второй день. Сколько килограммов фруктов продали во второй день?

83. Кот Матроскин вырастил в своём саду 246 кг яблок и 354 кг груш. Шестую часть всех фруктов он отдал своим друзьям из детского са­да, пятую часть всех фруктов — друзьям из школы, а остальное — в больницу. Сколько килограммов фруктов Матроскин отдал в больницу?

84. Укажите наименьшее натуральное число, сумма цифр которого равна 101.

Источник

Прямая — это линия, не имеющая ни начала, ни конца.

Прямая может обозначаться двумя заглавными латинскими буквами. Например, $AB$. Читается так: «прямая $AB$».

Также прямая может обозначаться строчной латинской буквой. Например, $a$. Читается так: «прямая $a$». 

Если на листе бумаги отметить две точки и соединить их прямой линией, то получим отрезок.

Через любые две точки можно провести только одну прямую.

$blacktriangleright$ Пример 1. Через произвольные точки $A$ и $B$ проведите прямую. На этой прямой между точками $A$ и $B$ отметьте точку $C$. Запишите все возможные обозначения этой прямой.

Решение: Отметим произвольные точки $A$ и $B$. Между точками $A$ и $B$ на прямой отметим точку $C$. 

Так как точка $C$ построена на прямой $AB$, то говорят, что она принадлежит этой прямой. Проведённую прямую мы можем назвать, используя обозначения любых двух точек, лежащих на ней. Порядок букв в названии прямой не важен. 

Тогда построенную прямую можно назвать так: $AB$, $BA$, $AC$, $CA$, $BC$ или $CB$.

Ответ: $AB$, $BA$, $AC$, $CA$, $BC$, $CB$.

$blacktriangleright$ Пример 2. Какие точки принадлежат прямой $EC$, а какие не принадлежат? 

Решение: На прямой $EC$ лежат точки $E$, $C$ и $F$. Значит, про них можно сказать, что они принадлежат прямой $EC$. Точки $D$ и $A$ не лежат на прямой $EC$, значит, они не принадлежат этой прямой.

Ответ: $E$, $C$ и $F$ принадлежат прямой $EC$, а $D$ и $A$ — не принадлежат.

Отрезок — часть прямой, ограниченная с двух сторон точками.

Отрезок имеет начало и конец.

Читайте также:  Какие свойства пластмассы хорошие

На рисунке изображён отрезок. Точки $A$ и $B$ называются его концами. 

Отрезок с концами $A$ и $B$ ещё называют «отрезок $AB$» или «отрезок $BA$».

Луч — часть прямой, имеющая начало, но не имеющая конца. Любая точка разбивает прямую на два луча.

Луч, как и прямая, обозначается двумя заглавными латинскими буквами. На первом месте всегда пишется буква, обозначающая начало луча, а на втором — любая другая точка, принадлежащая лучу. Видим, что луч на рисунке имеет начало в точке $A$. Его можно назвать как «луч $AB$» или «луч $AC$».  

 

$blacktriangleright$ Пример 3. Пересекаются ли луч $EC$ и прямая $AB$?  

 

Решение: Для получения ответа необходимо продолжить луч $EC$.  

 

Видим, что прямая $AB$ и луч $EC$ пересекаются.

Ответ: Луч $EC$ и прямая $AB$ пересекаются.

$blacktriangleright$ Пример 4. Сколько отрезков, лучей и прямых нарисовано?

Решение: На рисунке три отрезка: $AC$, $CB$, $AB$.

Из точки $A$ выходит два луча: один влево (мы не можем дать ему название, если не возьмём слева от $A$ ещё одну точку), другой вправо (его можно назвать $AB$ или $AC$, главное, чтобы на первом месте стояло название точки, из которой выходит луч, а на втором месте название точки, через которую луч точно проходит).

Из точки $C$ выходит два луча: один влево (назовём его $CA$), один вправо (луч $CB$).

Из точки $B$ выходит также два луча: один влево (его можно назвать $BA$ или $BC$), другой вправо (мы не можем дать ему название, если не возьмём слева от $B$ ещё одну точку).

Всего $6$ лучей.

На рисунке изображена одна прямая. Её можно назвать по-разному, назовём её $AB$.

Ответ: На рисунке изображено $3$ отрезка, $6$ лучей и $1$ прямая.

Если несколько отрезков расположить таким образом, что конец первого отрезка будет совпадать с началом второго, а конец второго отрезка — с началом третьего и так далее, то получится линия, которую называют ломаной.

Ломаная линия — это геометрическая фигура, состоящая из отрезков, последовательно соединенных своими концами. 

Пример ломаной приведен на рисунке. Точки $A$, $B$, $C$, $D$, $E$ называются “вершинами” ломаной. Вершины $A$ и $E$ — концы ломаной. Отрезки $AB$, $BC$, $CD$, $DE$ называются звеньями ломаной.

Чтобы найти длину ломаной, нужно сложить длину всех её звеньев.

Если оба конца ломаной совпадают, то такая ломаная называется замкнутой. Пример замкнутой ломаной приведен ниже. Замкнутую ломаную также называют многоугольником.

Если звенья ломаной пересекаются, то такая ломаная называется самопересекающейся.

 

Представление о плоскости можно получить, глядя на поверхность стола, школьной доски, тетрадного листа и так далее. Все описанные примеры имеют края.

У плоскости края нет.

Плоскость безгранично простирается в любом заданном направлении.

Если две различные прямые не пересекаются, сколько бы их ни продолжали, то они называются параллельными.

Если прямые $AB$ и $CD$ параллельны, то обозначается это так: $AB|CD$. 

Если прямые $a$ и $b$ параллельны, то обозначается это так: $a|b$. 

 Прямые, пересекающиеся под прямым углом, называются перпендикулярными.

На рисунке изображены перпендикулярные прямые $AB$ и $CD$. Записывается это так: $ABperp CD$.

Источник