Каким свойством обладает поверхностный слой жидкости

Каким свойством обладает поверхностный слой жидкости thumbnail

Вещество, находящееся в жидком состоянии, характеризуется крайне плотным расположением молекул друг относительно друга. Отличаясь от твердых кристаллических тел, чьи молекулы формируют упорядоченные структуры по всему объему кристалла и ограничены в своих тепловых колебаниях фиксированными центрами, молекулы жидкости обладают значительной степенью свободы. Любая конкретная молекула жидкого вещества, как это происходит и в твердых телах, «зажата» соседними молекулами и может совершать тепловые колебания поблизости с некоторым положением равновесия. Несмотря на это, в какой-то момент, любая молекула может переместиться на соседнее вакантное место. Подобные перемещения в жидкостях происходят довольно часто, благодаря чему молекулы не привязаны к конкретным центрам, как в кристаллах, а имеют возможность перемещаться по всему объему жидкости. Именно на этом факте основывается текучесть жидкостей.

Определение 1

По причине сильного взаимодействия между близко расположенными молекулами они могут образовывать локальные, то есть неустойчивые, упорядоченные группы, включающие в себя несколько молекул. Данное явление носит название ближнего порядка (рис. 3.5.1).

Рисунок 3.5.1. Пример ближнего порядка молекул жидкости и дальнего порядка молекул кристаллического вещества: 1 – вода; 2 – лед.

Свойства жидкостей

На рисунке 3.5.2, на примере воды, проиллюстрировано различие между газообразным веществом и жидкостью. Молекула воды H2O включает в свой состав один атом кислорода и два атома водорода, которые расположены под углом 104°. В среднем, расстояние между молекулами пара в десятки раз больше, чем между молекулами воды. На рисунке 3.5.2, в отличие от рисунка 3.5.1, на котором молекулы воды представляют из себя шарики, дается представление о структуре молекулы воды.

Рисунок 3.5.2.Водяной пар (1) и вода (2). Молекулы воды увеличены примерно в 5·107 раз.

Сжимаемость жидкостей, то есть изменение объема вещества при изменении давления, по причине плотности расположения молекул в десятки и сотни тысяч раз меньше, чем сжимаемость газов. К примеру, чтобы изменить объем воды всего на 1 % необходимо повысить значение давления примерно в 200 раз. Подобное увеличение давления по сравнению с атмосферным достигается на глубине близкой к 2 км.

Подобно твердым телам, жидкости имеют свойство менять свой объем при изменении температуры. В случае не самых больших интервалов температур относительное изменение объема ΔVV0 пропорционально изменению температуры ΔT, что может быть записано в виде следующего соотношения: 

ΔVV0=β∆T.

В котором коэффициент β представляет собой температурный коэффициент объемного расширения. Данный коэффициент у жидкостей в десятки раз превышает значение такого же у твердых тел.

Пример 1

К примеру, у воды в случае, если температура равна 20 °С βв≈2·10–4 К–1, у стали βст≈3,6·10–5 К–1, у кварцевого стекла βкв≈9·10–6 К–1.

Тепловое расширение воды обладает важным для жизни на Земле эффектом. В условиях температуры ниже 4 °С вода начинает расширяется при снижении температуры β<0. Максимальную плотность ρв=103 кг/м3 вода приобретает при температуре 4 °С.

Замерзая, вода расширяется, из-за чего лед продолжает плавать на поверхности замерзающего водоема. Температура замерзающей воды подо льдом эквивалентна величине в 0 °С. У дна водоема, то есть слоях воды, обладающих большей плотностью, температура держится около 4 °С.

Поверхностное натяжение

Наличие свободной поверхности в жидкостях является одной из самых интересных ее особенностей. В отличие от газов, жидкость не заполняет весь объем сосуда, в котором она находится. Между жидкостью и газом, возможно паром, возникает граница раздела, находящаяся в особых условиях по сравнению с остальной массой жидкости. В отличие от молекул в глубине жидкости, молекулы, располагающиеся в пограничном ее слое, окружены другими молекулами этой же жидкости не со всех сторон. В среднем воздействующие на одну из молекул внутри жидкости со стороны соседних молекул силы межмолекулярного взаимодействия взаимно скомпенсированы. Каждая отдельно взятая молекула в пограничном слое притягивается находящимися внутри жидкости молекулами. При этом, силами, которые оказывают воздействие на такую молекулу жидкости со стороны молекул газа можно пренебречь. Вследствие этого возникает некая направленная вглубь жидкости равнодействующая сила. Поверхностные молекулы втягиваются внутрь жидкости, с помощью действия сил межмолекулярного притяжения. Однако все молекулы, в том числе и принадлежащие пограничному слою, должны находиться в состоянии равновесия. Оно достигается за счет сокращения расстояния между молекулами в пограничном слое и ближайшими их соседями в жидкости. Как проиллюстрировано на рисунке 3.1.2, в процессе уменьшения расстояния расстояния между молекулами появляются силы отталкивания. В случае, когда средняя величина расстояния между молекулами в жидкости равна r0, молекулы поверхностного слоя расположены плотнее, и по этой причине по сравнению с внутренними молекулами они имеют дополнительным запас потенциальной энергии, что можно увидеть на рисунке 3.1.2.

Замечание 1

Стоит обратить внимание на то, что более плотного поверхностного слоя не приводит к сколь-нибудь заметному изменению объема жидкости по причине чрезвычайно низкой сжимаемости.

Силы межмолекулярного взаимодействия совершают положительную работу, в случае, когда молекула перемещается с поверхности внутрь жидкости. И наоборот, чтобы достать некоторое количество молекул на поверхность из глубины жидкости, то есть повысить площадь поверхности жидкости, внешним силам необходимо произвести пропорциональную изменению ΔS площади поверхности положительную работу ΔAвнеш: 

ΔAвнеш=σ∆S,

где коэффициент σ носит название коэффициента поверхностного натяжения (σ>0).

Определение 2

Из всего вышесказанного следует, что коэффициент поверхностного натяжения – это величина равная работе, необходимой для увеличения площади поверхности жидкости при постоянной температуре на единицу.

Читайте также:  Какие свойства относятся к эстетическим

В СИ коэффициент поверхностного натяжения измеряется в джоулях на метр квадратный (Дж/м2) или же в ньютонах на метр (1 Н/м=1 Дж/м2).

Таким образом, по сравнению с молекулами внутри жидкости молекулы поверхностного слоя жидкости обладают избыточной потенциальной энергией. Потенциальная энергия Eр поверхности жидкости пропорциональна ее площади и выражается в виде следующей формулы: 

Eр=Aвнеш=σS.

Из раздела механики известно, что равновесным состояниям системы соответствует минимальное значение ее потенциальной энергии. Следовательно, свободная поверхность жидкости стремится уменьшить свою площадь. По данной причине свободная капля жидкости принимает шарообразную форму.

Определение 3

Жидкость ведет себя таким образом, будто по касательной к ее поверхности действуют сокращающие данную поверхность силы. Такие силы называются силами поверхностного натяжения.

Силы поверхностного натяжения влияют на поверхность жидкости таким образом, что она становится похожей на упругую растянутую пленку, с той лишь разницей, что упругие силы в пленке зависят от площади ее поверхности, то есть от степени деформированности пленки, а силы поверхностного натяжения, зависимости от площади поверхности жидкости не имеют.

Пример 2

Некоторые жидкости, например, мыльная вода, имеют способность формировать тонкие пленки. Хорошо известные каждому человеку мыльные пузыри обладают правильной сферической формой, в чем также проявляется воздействие сил поверхностного натяжения. В случае, когда в мыльный раствор опускают проволочную рамку с одной подвижной стороной, вся она затягивается пленкой жидкости, как это показано на рисунке 3.5.3.

Рисунок 3.5.3. Подвижная сторона проволочной рамки в равновесии под действием внешней силы Fвн→ и результирующей сил поверхностного натяжения Fн→.

Силы поверхностного натяжения действуют на уменьшение поверхности пленки. Ради равновесия подвижной стороны рамки к ней необходимо приложить внешнюю силу
Fвн→=-Fн→. Если воздействие силы Fвн→ спровоцирует перемещение перекладины на некоторое Δx, то будет произведена работа ΔAвн=FвнΔx=ΔEp=σΔS, где ΔS=2LΔx является увеличением площади поверхности обеих сторон мыльной пленки. По той причине, что модули сил Fвн→ и Fн→ эквивалентны, справедливой будет запись: 

Fн∆x=σ2L∆x или σ=Fн2L.

Определение 4

Исходя из этого, можно заявить, что коэффициент поверхностного натяжения σ может быть определен как модуль силы поверхностного натяжения, действующей на единицу длины линии, ограничивающей поверхность.

По причине воздействия сил поверхностного натяжения на капли жидкости и их действия внутри мыльных пузырей появляется некоторое избыточное давление Δp. При мысленном разрезании сферической капли с радиусом R на две равные части каждая из половин должна находиться в равновесии под действием приложенных к границе разреза длиной 2πR и сил избыточного давления, действующих на площадь πR2 сечения (рис. 3.5.4) сил поверхностного натяжения. Условие равновесия может быть записано в следующем виде:

σ2πR=∆pπR2.

Исходя из этого, можно заявить, что избыточное давление внутри капли эквивалентно: 

∆p=2σR(капля жидкости).

Рисунок 3.5.4.Сечение сферической капли жидкости.

Из-за того, что пленка обладает двумя поверхностями, величина избыточного давления внутри мыльного пузыря в два раза выше, чем в капле: 

∆p=4σR(мыльный пузырь).

Пренебрегая взаимодействием с молекулами газа, можно сказать, что поблизости с границей между твердым телом, жидкостью и газом форма свободной поверхности жидкости зависима от сил взаимодействия молекул жидкости с молекулами твердого тела. 

Определение 5

В случае, когда данные силы превышают силы взаимодействия между молекулами жидкости, жидкость смачивает поверхность твердого тела. В таком случае жидкость подходит к поверхности твердого тела под некоторым характерным для данной пары жидкость – твердое тело острым углом θ. Такой угол носит название краевого угла.

Краевой угол θ является тупым (рисунок 3.5.5), в случае, если силы взаимодействия между молекулами жидкости превосходят силы их взаимодействия с молекулами твердого тела. В подобном случае можно сказать, что поверхность твердого тела не смачивается жидкостью. В условиях полного смачивания θ=0, полного несмачивания θ=180°.

Поверхностное натяжение

Рисунок 3.5.5. Краевые углы смачивающей (1) и несмачивающей (2) жидкостей.

Капиллярные явления

Определение 6

Капиллярными явлениями называют процесс подъема или опускания жидкости в трубках малого диаметра, другими словами, в капиллярах.

Смачивающие жидкости поднимаются по капиллярам, несмачивающие – опускаются. На рисунке 3.5.6 проиллюстрирована опущенная нижним концом в смачивающую жидкость плотности ρ капиллярная трубка, обладающая некоторым радиусом r. При этом верхний конец капилляра является открытым. Подъем жидкости в капилляре будет происходить до тех пор, пока сила тяжести Fт→, оказывающая воздействие на столб жидкости в капилляре, не станет эквивалентна по модулю результирующей Fндействующих вдоль границы соприкосновения жидкости с поверхностью капилляра сил поверхностного натяжения: Fт=Fн, где Fт=mg=ρhπr2g, Fн=σ2πr cos θ.

Из этого следует: 

h=2σ cos θρgr.

Капиллярные явления

Рисунок 3.5.6. Подъем смачивающей жидкости в капилляре.

При полном смачивании θ=0, cos θ=1. В таком случае:

h=2σρgr.

При полном несмачивании θ=180°, cos θ=–1 и, соответственно, h<0. Уровень несмачивающей жидкости в капилляре опускается ниже уровня жидкости в сосуде, в которую опущен капилляр.

Вода почти полностью смачивает чистую поверхность стекла. Ртуть же, строго наоборот, полностью не смачивает стеклянную поверхность. По этой причине уровень ртути в стеклянном капилляре опускается ниже, чем уровень в сосуде.

Источник

Лекция 11.Характеристика жидкого состояния вещества. Поверхностный слой жидкости. Энергия поверхностного слоя. Явления на границе жидкости с твердым телом. Капиллярные явления.

ХАРАКТЕРИСТИКА ЖИДКОГО СОСТОЯНИЯ ВЕЩЕСТВА

Жидкость — это агрегатное состояние вещества, промежуточное между газообразным и твердым.

Вещество в жидком состоянии сохраняет свой объем, но принимает форму сосуда, в котором оно находится Сохранение объема у жидкости доказывает, что между ее молекулами действуют силы притяжения.

Если вокруг молекулы жидкости описать сферу молекулярного действия, то внутри этой сферы окажутся центры многих других молекул, которые будут взаимодействовать с нашей молекулой. Эти силы взаимодействия удерживают молекулу жидкости около ее временного положения равновесия примерно в течение 10-12-10-10 с, после чего она перескакивает в новое временное положение равновесия приблизительно на расстояние своего диаметра. Молекулы жидкости между перескоками совершают колебательное движение около временного положения равновесия.

Читайте также:  Какие свойства имеет крещенская вода

Время между двумя перескоками молекулы из одного положения в другое называется временем оседлой жизни.

Это время зависит от вида жидкости и от температуры. При нагревании жидкости среднее время оседлой жизни молекул уменьшается.

Итак, в небольшом объеме жидкости наблюдается упорядоченное расположение ее молекул, а в большом объеме оно оказывается хаотическим. В этом смысле говорят, что в жидкости существует ближний порядок в расположении молекул и отсутствует дальний порядок. Такое строение жидкости называют квазикристаллическим (кристаллоподобным).

СВОЙСТВА ЖИДКОСТИ

1.Если время действия силы на жидкость мало, то жидкость проявляет упругие свойства. Например, при резком ударе палкой о поверхность воды палка может вылететь из руки или сломаться; камень можно бросить так, что он при ударе о по­верхность воды отскакивает от нее, и лишь совершив несколько скачков, тонет в воде.

2. Если же время воздействия на жидкость велико, то вместо упругости проявляется текучесть жидкости. Например, рука легко проникает внутрь воды.

3. При кратковременном действии силы на струю жидкости последняя обнаруживает хрупкость. Прочность жидкости нд разрыв хотя и меньше, чем у твердых веществ, но мало уступает им по величине. Для воды она составляет 2,5-107 Н/м2.

4.Сжимаемость жидкости тоже очень мала, хотя она и больше, чем у этих же веществ в твердом состоянии. Например, при увеличении давления на 1 атм объем воды уменьшается на 50 миллионных долей.

Разрывы внутри жидкости, в которой нет посторонних веществ, например воздуха, могут получаться только при интенсивном воздействии на жидкость, например при вращении гребных винтов в воде, при распространении в жидкости ультразвуковых волн . Такого рода пустоты внутри жидкости долго существовать не могут и резко захлопываются, т. е. исчезают. Это явление называют кавитацией (от греческого «кавитас» – полость). Оно служит причиной быстрого износа гребных винтов.

ПОВЕРХНОСТНЫЙ СЛОЙ ЖИДКОСТИ

Среднее значение равнодействующей молекулярных сил притя­жения, приложенных к молекуле, которая находится внутри жидкости (рис. 2), близко к нулю. Случайные флуктуации этой равнодействующей заставляют молекулу совершать лишь хаотическое движение внутри жидкости. Несколько иначе обстоит дело с молекулами, находящимися в поверхностном слое жидкости.

Опишем вокруг молекул сферы молекулярного действия радиусом R(порядка 10-8 м). Тогда для верхней молекулы в нижней полусфере окажется много молекул, а в верхней – значительно меньше, так как снизу находится жидкость, а сверху – пар и воздух. Поэтому для верхней молекулы равнодействующая молекулярных сил притяжения в нижней полусфере много больше равнодействующей молекулярных сил в верхней полусфере.

Таким образом, все молекулы жидкости, находящиеся в поверхностном слое толщиной, равной радиусу молекулярного действия, втягиваются внутрь жидкости. Но пространство внутри жидкости занято другими молекулами, поэтому поверхностный слой создает давление на жидкость, которое называют молекулярным давлением.

Силы, действующие в горизонтальной плоскости, стягивают поверхность жидкости. Они называются силами поверхностного натяжения

Поверхностное натяжение — физическая величина, равная отношению силы F поверхностного натяжения, приложенной к границе поверхностного слоя жидкости и направленной по касательной к поверхности, к длине l этой границы:

Единица поверхностного натяжения – ньютон на метр (Н/м).

Поверхностное натяжение различно для разных жидкостей и зависит от температуры.

Обычно поверхностное натяжение уменьшается с возрастанием температуры и при критической температуре, когда плотность жидкости и пара одинаковы, поверхностное натяжение жидкости равно нулю.

Вещества, которые уменьшают поверхностное натяжение, называют поврхностно – активными (спирт, мыло, стиральный порошок)

Чтобы увеличить площадь поверхности жидкости требуется выполнить работу против поверхностного натяжения.

Имеется другое определение коэффициента поверхностного натяжения — энергетическое. Оно исходит из того, что если площадь поверхности жидкости увеличивается, то некоторое количество молекул из ее объема поднимается на слой поверхности. С этой целью внешние силы совершают работу против молекулярных сил сцепления молекул. Величина данной работы будет пропорциональна изменению площади поверхности жидкости:

Коэффициент пропорциональности σ и называется поверхностным натяжением жидкости.

Выведем единицу поверхностного, натяжения а в СИ: о=1 Дж/1 м2= 1 Дж/м2.

Источник

Коллоидная химия

Поверхностное натяжение жидкости.

Поверхностный слой жидкости.

Все жидкости и твёрдые тела ограничены внешней поверхностью, на которой они соприкасаются с фазами другого состава и
структуры, например, с паром, другой жидкостью или твёрдым телом.

Свойства вещества в этой межфазовой поверхности, толщиной в несколько поперечников атомов или молекул, отличаются
от свойств внутри объёма фазы.

Внутри объёма чистого вещества в твёрдом, жидком или газообразном состоянии любая молекула окружена себе подобными молекулами.

В пограничном слое молекулы находятся во взаимодействии или с другим числом молекул (другим в сравнении с взаимодействием
внутри объёма вещества). Это происходит, например, на границе жидкости с их паром.

Среднее значение равнодействующей молекулярных сил притяжения, приложенных к молекуле, которая находится внутри жидкости,
близко к нулю. На рисунке ниже эта молекула обозначена М1.

Читайте также:  Какими свойствами обладает кешью

Случайные флуктуации этой равнодействующей заставляют молекулу М1 совершать лишь хаотическое движение внутри жидкости.

Сила поверхностного натяжения

Иначе обстоит дело с молекулами, находящимися в поверхностном слое жидкости.

Рассмотрим молекулу, находящуюся непосредственно на границе раздела фаз. На рисунке обозначим её М2.

Если вокруг молекулы М2 описать сферу молекулярного действия, то внутри этой сферы окажутся центры многих
других молекул, которые будут взаимодействовать с нашей молекулой. Радиус такой сферы составляет примерно 10-9 м.

Для молекулы М2 в нижней полусфере окажется много молекул, а в верхней – значительно меньше, так как снизу находится жидкость,
а сверху – пар или воздух.

Поэтому для молекулы М2 равнодействующая молекулярных сил притяжения в нижней полусфере много больше
равнодействующей молекулярных сил в верхней полусфере. Силы, действующие в верхней полусфере так малы, что ими можно пренебречь.

Если рассмотреть ещё одну молекулу, которая, в сравнении с М2 будет немного больше «утоплена» в жидкость, но также
находится в поверхностном слое. Обозначим её М3.

Поскольку в верней полусфере М3 будут находиться другие молекулы жидкости, то они будут притягивать М3 к
себе и частично уравновешивать силы притяжение молекул, находящихся в нижней полусфере М3.

В результате общая равнодействующая сил, действующих на М3 окажется меньше общей равнодействующей М2.

Обе равнодействующие будут направлены внутрь жидкости перепендикулярно к её поверхности.

Таким образом, все молекулы жидкости, находящиеся в поверхностном слое толщиной, равной радиусу молекулярного действия,
втягиваются внутрь жидкости
.

Но пространство внутри жидкости занято другими молекулами, поэтому поверхностный слой создаёт давление на жидкость,
которое называют молекулярным давлением
.

Энергия поверхностного слоя жидкости.

Поскольку молекулы жидкости, находящиеся в её поверхностном слое, втягиваются внутрь жидкости, их потенциальная энергия больше,
чем у молекул внутри жидкости
.

Эту дополнительную потенциальную энергию молекул поверхностного слоя жидкости называют свободной энергией.
За счёт неё может быть произведена работа, связанная с уменьшением свободной поверхности жидкости.

И, наоборот, для того, чтобы вывести молекулы, находящиеся внутри жидкости, на её поверхность,
нужно преодолеть противодействие молекулярных сил, т.е. произвести работу, которая нужна для увеличения
свободной энергии поверхностного слоя жидкости.

При этом, изменение свободной энергии прямо пропорционально изменению площади поверхности жидкости.

Так как всякая система самопроизвольно переходит в состояние, при котором её потенциальная энергия минимальна,
то жидкость должна самопроизвольно переходить в такое состояние, при котором площадь её свободной поверхности имеет наименьшую величину.

Например, капля дождя или тумана в воздухе приобретают форму шара, форму, соответствующую наименьшему уровню свободной энергии.

Коэффициент поверхностного натяжения

Коэффициент поверхностного натяжения – это величина, характеризующая зависимость работы молекулярных сил,
идущих на изменение площади свободной поверхности жидкости и самой площади изменения этой поверхности.

σ = А/ΔS

σ – коэффициент поверхностного натяжения

А – работа молекулярных сил по изменению площади поверхности жидкости

ΔS – изменение площади поверхности жидкости

σ измеряется работой молекулярных сил при уменьшении площади свободной поверхности жидкости на единицу.

Коэффициент поверхностного натяжения зависит от рода жидкости и внешних условий, например, температуры.

Сила поверхностного натяжения

Молекула М1, которая расположена на поверхности жидкости, взаимодействует не только с молекулами,
находящимися внутри жидкости, но и с молекулами на поверхности жидкости, расположенными в пределах сферы молекулярного действия.

Сила поверхностного натяжения

Для молекулы М1 равнодействующая R молекулярных сил, направленных вдоль поверхности жидкости, равна нулю, а для молекулы М2,
расположенной у края поверхности, R отлична от нуля.

Из рисунка видно, что сила R направлена перпендикулярно к границе свободной поверхности и по касательной к самой поверхности.

Молекулярные силы, направленные вдоль поверхности жидкости, действуют на любую замкнутую линию на свободной
поверхности жидкости по нормали к этой линии таким образом, что стремятся сократить площадь поверхности жидкости, ограниченную замкнутой линией.

Это можно показать на следующем опыте.

На проволочном кольце укрепляется нитка длиной L.

Сила поверхностного натяжения

Если затянуть кольцо мыльной плёнкой, то нитка свободно расположится на этой плёнке (Рис. А).
Площадь поверхности мыльной плёнки будет определяться контуром рамки.

Если прорвать мыльную плёнку с нижней стороны нитки, то молекулярные силы сократят поверхность,
огрниченную теперь верхней частью контура и ниткой. При этом нитка натянется (Рис. В).

Сила, обусловленная взаимодействием молекул жидкости, вызывающая сокращение площади её свободной поверхности и
направленная по касательной к этой поверхности, называется силой поверхностного натяжения.

Силы молекулярного давления втягивают молекулы с поверхности внутрь жидкости, а силы поверхностного натяжения
сокращают площадь свободной поверхности, т.е. закрывают образовавшиеся «окна» на этой поверхности.

Итак, поверхностный слой жидкости всегда находится в состоянии натяжения. Однако, это состояние нельзя
сравнивать с натяжением упругой растянутой плёнки. Упругие силы возрастают по мере увеличения площади растянутой плёнки,
а силы поверхностного натяжения от площади поверхности жидкости не зависят.

Опыт показывает, что на на коэффициент поверхностного натяжения влияет среда и температура жидкости.
При повышении температуры жидкости её поверхностное натяжение уменьшается и при критической температуре становится равной нулю.

Источник