Каким свойством обладает средняя линия треугольника трапеции

Каким свойством обладает средняя линия треугольника трапеции thumbnail

Средняя линия трапеции равна

Серединный отрезок

Трапеция — фигура (четырехугольник), что состоит из четырех сторон, две из которых лежат на параллельных прямых, а остальные нет. Параллельные — верхнее и нижнее основание, 2 другие имеют название боковых сторон. Из этого следует, что четырехугольник состоит из двух оснований.

Средняя линия — отрезок, который соединяет середины боков фигуры и обозначается буквой m. Интересно, что если в треугольнике таких отрезков можно провести 3, то в таком четырёхугольнике исключительно одну.

Свойство и формулы

Серединная линия равняется половине сумм длины двух оснований. Это определение является теоремой, доказательство и для того чтобы его сформулировать, необходимо обратить внимание на свойство срединного отрезка в треугольнике.

Средняя линия трапеции

Доказать теорему просто. Для этого в трапеции проводят серединный отрезок так, чтобы он опускался с верхней точки фигуры и пересекался с продленным нижним основанием. Такая линия делит четырёхугольник на два треугольника. Причем средняя линия фигуры также принадлежит треугольнику и выполняет те же функции. Она равна половине нижней стороны, которая состоит из двух отрезков, равных основаниям трапеции.

Свойство такого отрезка — в четырехугольнике он параллелен основаниям. Учитывая эти данные, их можно использовать как признак при решениях различных заданий для выявления этого понятия.

Формула для нахождения записывается так:

m = (a + b) / 2, где a, b — обозначение длины оснований.

Тригонометрия углов применима в формуле:

  • m = a — h (ctga +ctg b)/ 2;
  • m = b — h (ctga +ctg b)/ 2.

Как найти среднюю линию трапеции

Полусумма оснований трапеции вычисляется через диагонали и их угол пересечения и высоту. Итак, для этого находится:

  • m = d 1 d 2 /2 h * sina;
  • m = d 1 d 2 /2 h * sinb.

Углы а, b находятся при нижнем основании, а линия h является высотой, проведенной к этому отрезку.

Формула средней линии трапеции через площадь и высоту записывается так:

m = S / h.

Кроме этого, такой отрезок делит фигуру на две части и имеет место соотношение их площадей, которое выражается в виде:

S 1 /S 2 =3a+b/a+3b, где основания a<b.

Все эти формулы используются для решения задач и доказывания определённых утверждений.

Примеры заданий

Серединный отрезок трапеции равен 15 дм, а одно из оснований на 6 дм длиннее от другого. Определить длину параллельных сторон в трапеции.

Чтобы найти нужные стороны, нужно припустить, что на одну приходится х дм, соответственно на другую — (х+6) дм. Учитывая свойство серединного отрезка в этой фигуре, следует, что m = a + b /2.

Средняя линия трапеции формула

m =2х+6/2=15, от сюда следует, что х=12 дм.

В результате a =12 дм, b =18 дм.

Следующее задание, где требуется искать стороны, что лежат на параллельных прямых. При этом дано их соотношения 4:7 средняя линия равна 55 дм.

Итак, пусть k — коэффициент пропорциональности, основания относятся как 4 k :7 k. Получается уравнение (4k +7k)/2=55. Отсюда следует, что k =10, то есть на нужные отрезки приходится по 40 и 70 дм.

Таким образом, средняя линия треугольника и трапеции имеет одинаковое свойство. Темы между собой очень похожи. Следовательно, средняя линия трапеции равна половине сумм двух оснований.

Источник

Цели урока:

1. Изучить понятие средней линии трапеции, доказательство свойства средней линии, учить применять теорему в нестандартных ситуациях при решении задач.

2. Формировать умение учащихся анализировать, обобщать, использовать элементы исследования, сравнения.

3. Развивать логическое мышление, воспитывать культуру математической речи, эстетический вкус.

Оборудование:    

1. АРМ, экран, проектор
2. Презентация по теме урока. (Приложение 1)
3. Карточки
4. Учебник А.В. Погорелова «Геометрия»
5. Сборники ЕГЭ., 2004 г.

Ход урока

1. Для изучения темы урока  нам понадобятся следующие теоретические знания.

Продолжите предложения:

1) Трапеция – это четырёхугольник…

Рисунок 1

2) Средняя линия треугольника – это…

Рисунок 2

3) В любом треугольнике можно построить … средние линии.

Рисунок 3

4) Средняя линия треугольника обладает свойством …

Рисунок 4

5) Два треугольника равны, если …

Рисунок 5

6) При пересечении двух параллельных прямых третьей секущей …

Рисунок 6

7) Если две прямые параллельны третьей, то …

Рисунок 7

2. Введём понятие средней линии трапеции:

Средней линией трапеции называется отрезок, соединяющий середины её боковых сторон.

Рисунок 8

(В тетрадях учащиеся выполняют построения)

1) Верно ли определение: отрезок, соединяющий середины двух сторон трапеции, является средней линией? (Нет, отсутствует слово боковых сторон).

2) А сколько средних линий можно построить в трапеции? (Только одну).

3) Каким свойством обладает средняя линия трапеции? Измерьте основания трапеции и длину средней линии. Чему равна средняя линия? (Половине суммы оснований).

Попробуем доказать это свойство.

3. Доказательство теоремы.

(На доске и в тетрадях учеников чертёж и запись условия теоремы).

Рисунок 9

Доказательство

1) Мы знаем свойство средней линии треугольника. Как можно этим воспользоваться? (Нужен треугольник). Как его получить? (Выполнить дополнительное построение: через С и М проведём прямую до пересечения с прямой AD).

Читайте также:  Какие свойства у оснований

Рисунок 10

2) Далее: Δ EMA = Δ CMB, т.к.

а) AM=MB (по условию MN-средняя линия)
б) A = B (накрест лежащие при BC||AD и секущей AB)
в) AME = BMC (вертикальные углы)

Следовательно, EM=MC и EA=BC.

Рисунок 11

3) В Δ ECD: MN- средняя линия по определению, тогда по свойству

a) MN || AD и BC  || AD (по условию). Следовательно, MN || BC.
b) MN = ½ ED = ½ (EA+AD) = ½ (BC+AD).

Следует повторить всё доказательство, учащимся сделать записи в тетрадях.

Повторяем план доказательства:

1) Проводим через одну из вершин верхнего основания трапеции и противолежащий конец средней линии прямую до пересечения с продолжением нижнего основания.

2) Доказываем равенство полученных треугольников с общей вершиной.

3) Доказываем, что MN является средней линией Δ ECD и используем свойство средней линии треугольника

4. Где уже встречалось выражение «полусумма оснований трапеции»?

1) В формуле Sтр=h*(a+b)/2. Как можно иначе прочитать эту формулу? (Sтр=MN*h, где MN – средняя линия трапеции).

2) В свойстве равнобедренной трапеции: B1D = (a+b)/2.

Рисунок 12

Высота в равнобедренной трапеции делит большее основание трапеции на отрезки, больший из которых равен полусумме оснований. Следовательно, в равнобедренной трапеции B1D=MN.

5.

1) Закрепление. (Устно по готовым рисункам)

Рисунок 13

2) Выполнить письменно на доске

I. Погорелов №69, стр. 101
II. *ЕГЭ-2004, вариант №383, задание B9 , стр. 40

(Условие и решение задач см. в Приложении 2).

6. Самостоятельная работа по карточкам (дифференцированная)

№1 («3») В трапеции одно основание больше другого в 1,5 раза, а средняя линия равна 5 см. Найти основания трапеции.

(Решение: Рисунок 14)

Рисунок 14

№ 2 («4») В прямоугольной трапеции тупой угол равен 1200, большая боковая сторона равна 20 см., а средняя линия равна 14 см. Найти площадь трапеции.

(Решение: Рисунок 15)

Рисунок 15

№ 3 («5») В равнобедренной трапеции высота равна средней линии. Доказать, что диагонали взаимно перпендикулярны.

(Решение: Рисунок 16)

Рисунок 16

(Самостоятельную работу проверить по презентации по готовым слайдам №№ 18, 19, 20).

7. Задание на дом

1)Атанасян Л.С. «Геометрия», п. 85 (доказательство по тетради по уч. Погорелова, стр. 92); № 793, № 798, № 799

2)*Ершова А.Л., стр. 89 В-2 (№2)

Источник

Одним из важных понятий, с помощью которого легко решается целый класс задач по геометрии, является средняя линия треугольника. 

Разберём данное понятие, рассмотрим свойства, и научимся правильно решать задачи на эту тему.

Определение и признаки средней линии треугольника

Отрезок, соединяющий середины двух сторон треугольника, называется его средней линией.

Средняя линия треугольника

Отрезок, у которого один из концов совпадает с серединой одной из сторон, другой находится на второй стороне, проведённый параллельно третьей стороне, является средней линией треугольника.

Доказательство следует из теоремы Фалеса.

Теорема Фалеса

Теорема о средней линии треугольника

Средняя линия треугольника параллельна основанию (третьей стороне) и равна её половине.

Существует три вида доказательств этого положения. Каждое из них базируется на одной из ключевых позиций планиметрии.

Пусть дан треугольник ABC, M – середина стороны AB, N – середина BC.

По определению, MN – средняя линия ΔABC.

1

Необходимо доказать, что MN II AC, MN = ½AC.

Доказательства

Первый способ

Пусть прямая MK II AC. Тогда по теореме Фалеса MK пересекает сторону BC в её середине. В этом случае отрезок MN лежит на прямой MK. 

Следовательно, MN II AC.

Пусть NP II AB.

2

Тогда NP – средняя линия по теореме Фалеса, то есть AP = PC.

Так как AMNP – параллелограмм по определению, то AP = MN. Из этого и предыдущего утверждения следует, что длина MN равна ½AC.

Доказано.

Второй способ

Рассматриваются треугольники MBN и ABC. В них угол B является общим,  

3

По второму признаку подобия треугольников ΔMBN ∼ ΔABC. Следовательно, углы BMN и BAC равны.

Поскольку эти углы являются соответственными, то прямые MN и AC параллельны.

Формула MN = ½AC следует из условий 

3

поскольку пропорциональность двух пар сторон влечёт соответствующее отношение для третьей пары сторон.

Доказано.

Третий способ

Рассматривается сумма векторов

4

Поскольку в результате образуется замкнутая ломаная, то

5

Отсюда следует, что

6

Так как

7

то

8

9

Из последнего равенства следуют условия теоремы.

Доказано.

Следствия из теоремы с доказательствами

Следствие №1

Средняя линия отсекает треугольник, подобный данному, с коэффициентом подобия ½ и площадью, составляющий ¼ площади заданного треугольника.

Доказательство.

1

По определению стороны AB и BC делятся пополам, поэтому

10

Согласно теореме,

11

Из третьего признака подобия вытекает рассматриваемое свойство.

Поскольку площади подобных фигур относятся как квадрат коэффициента подобия, то получается вторая часть свойства, то есть площадь маленького треугольника относится к площади большого как

12

Доказано.

Следствие №2

Три средних линии треугольника разбивают его на четыре равных треугольника, подобные заданному, с коэффициентом подобия ½.

Читайте также:  Какое влияние оказывает хром и никель на свойства стали

Доказательство.

2_2

Поскольку MN – средняя линия, то MN II AC, поэтому ∠BMN = ∠BAP, ∠BNM = ∠BCA как соответственные при MN II AC и секущей AB или BC соответственно.

Поскольку MP – средняя линия, то MP II BC, поэтому ∠MPA = ∠BCA как соответственные при MP II BC и секущей AC.

Таким образом: ∠BNM = ∠BCA = ∠MPA.

Так как MN – средняя линия, то сторона MN = ½AC, поэтому MN = AP.

Следовательно, ΔAMP = ΔMBN по второму признаку равенства треугольников.

Равенство остальных пар треугольников доказывается аналогично.

По основному свойству ΔMBN ∼ ΔABC с коэффициентом подобия ½. Так как все полученные маленькие треугольники равны между собой, то каждый из них, следовательно, подобен большому с тем же коэффициентом.

Доказано.

Свойства средней линии треугольника

Теорема и следствия из неё составляют основные свойства средней линии треугольника.

g9

Согласно второму утверждению, вид большого треугольника такой же, как и у маленьких. То есть для равностороннего и равнобедренного треугольников средние линии отсекают равносторонние и равнобедренные треугольники.

Высоты тупоугольного треугольника, проведённые к тупому углу из вершин острых, располагаются вне треугольника. Поэтому часто рассматривают не саму среднюю линию, а её продолжение. Учитывая подобие получаемых фигур, можно утверждать, что точкой пересечения с продолжением средней линии высота делится на две равные части.

Биссектриса угла треугольника точкой пересечения со средней линией также делится пополам.

Средняя линия прямоугольного треугольника

Для прямоугольного треугольника две средние линии перпендикулярны катетам, а третья равна медиане, проведённой к гипотенузе.

Средняя линия прямоугольного треугольника

Остроугольный разносторонний треугольник не имеет средних линий, обладающих подобными характеристиками.

Пример решения задачи

20

Доказать, что середины сторон произвольного выпуклого четырёхугольника являются вершинами параллелограмма.

Решение.

Проводя диагональ четырёхугольника, получают разбиение на два треугольника, в каждом из которых построена средняя линия, параллельная по основной теореме диагонали, как основанию.

Так как две прямые, параллельные третьей, параллельны между собой, то противолежащие стороны образованного средними линиями четырёхугольника параллельны.

Аналогично доказывается параллельность двух других сторон нового четырёхугольника. По определению четырёхугольник, полученный соединением середин сторон заданного четырёхугольника, является параллелограммом.

Доказано.

Источник

Привет!

Перед тобой лучший гид по трапеции! Только то, что нужно. Без воды. 

Основные определения, формулы и свойства.

Помни о своей цели! 

Тебе нужно подготовиться к ЕГЭ по математике так, чтобы поступить в ВУЗ мечты! Будь уверен!

Приступим!

НАЧАЛЬНЫЙ УРОВЕНЬ

Что такое трапеция?

Определение трапеции

Трапеция – такой четырехугольник, у которого две стороны параллельны, а две другие – нет.

Параллельные стороны называются – основания, а непараллельные стороны называются боковые стороны.

Вот, смотри:

Каким свойством обладает средняя линия треугольника трапеции

Оказывается, трапеция (как и треугольник) бывает равнобедренная.

Каким свойством обладает средняя линия треугольника трапеции

Если боковые стороны трапеции равны, то она называется равнобедренной (или равнобокой).

И тут возникает вопрос: а могут ли у трапеции быть равными ОСНОВАНИЯ?

А вот и нет. Тогда это получится не трапеция, а параллелограмм, потому что две стороны окажутся параллельны и равны (вспоминаем признаки параллелограмма)

Свойства трапеции

Итак, что ты должен знать о свойствах трапеции…

Каким свойством обладает средняя линия треугольника трапеции

Сумма углов при каждой боковой стороне трапеции равна 180°.
(у нас на рисунке ( displaystyle angle 1+angle 2=180{}^circ ) и ( displaystyle angle 3+angle 4=180{}^circ ))

Почему так? Ну, конечно, просто потому, что основания – параллельны, а боковая сторона – секущая. Вот и получается, что ( displaystyle angle 1) и ( displaystyle angle 2) – внутренние односторонние углы при параллельных ( displaystyle AD) и ( displaystyle BC) и секущей ( displaystyle AB). Поэтому ( displaystyle angle 1+angle 2=180{}^circ ). И точно так же ( displaystyle angle 3) и ( displaystyle angle 4) – внутренние односторонние углы при тех же параллельных ( displaystyle AD) и ( displaystyle BC), но секущая теперь – ( displaystyle CD).

Видишь: главное, что играет роль – это параллельность оснований. Давай разберем еще некоторые свойства трапеции.

Как у всякого четырехугольника, у трапеции есть диагонали. Их две – посмотри на рисунки:

Каким свойством обладает средняя линия треугольника трапеции

Каким свойством обладает средняя линия треугольника трапеции

Снова порассуждаем об углах:

Каким свойством обладает средняя линия треугольника трапеции

Опять ( displaystyle AD) и ( displaystyle BC) – параллельные, а диагональ ( displaystyle AC) – секущая. Поэтому ( displaystyle angle 1=angle 2).

А теперь рассмотрим сразу 2 диагонали и 4 угла:

Каким свойством обладает средняя линия треугольника трапеции

( displaystyle angle 1=angle 2)

( displaystyle angle 3=angle 4)

Что из этого может следовать?

Очень важный факт:

Треугольники ( displaystyle BOC) и ( displaystyle AOD) – подобны по двум углам.
Их коэффициент подобия равен отношению оснований: ( displaystyle K=frac{a}{b}).

Средняя линия трапеции

Для начала – что же такое средняя линия трапеции?

Каким свойством обладает средняя линия треугольника трапеции

Средняя линия трапеции это отрезок, который соединяет середины боковых сторон трапеции.

Оказывается, длину этой средней линии можно выразить через длины оснований трапеции. А именно, имеет место такая формула:

Каким свойством обладает средняя линия треугольника трапеции

( displaystyle m=frac{a+b}{2}), то есть:

Длина средней линии трапеции равна полусумме (то есть половине суммы) длин оснований.

А ещё:

Средняя линия трапеции параллельна ее основаниям.

Трапеция, вписанная в окружность

Даже если ты ещё не изучал темы «Окружность. Вписанный угол» и «Вписанный четырехугольник», тебе будет полезно (и, надеюсь, интересно) узнать следующий удивительный факт:

Каким свойством обладает средняя линия треугольника трапеции

Если трапецию можно вписать в окружность, то она – равнобокая.

Доказывать это мы не будем (здесь, во всяком случае), а вот запомнить хорошо бы – пригодится!

Подведём итог – он короткий.
Самое важное, что есть в трапеции – две параллельные стороны и BCE свойства трапеции именно этим и определяются.

Так что, если у тебя в задаче трапеция, – используй параллельность и всё получится!

Определение трапеции

Трапеция – такой четырехугольник, у которого две стороны параллельны, а две другие – нет.

Каким свойством обладает средняя линия треугольника трапеции

Параллельные стороны называются основаниями, а непараллельные – боковыми сторонами.

Каким свойством обладает средняя линия треугольника трапеции

Если боковые стороны трапеции равны, то она называется равнобедренной (или равнобокой).

Каким свойством обладает средняя линия треугольника трапеции

Сумма углов при каждой боковой стороне трапеции равна 180°.
(у нас на рисунке ( displaystyle angle 1+angle 2=180{}^circ ) и ( displaystyle angle 3+angle 4=180{}^circ ))

Почему? ( displaystyle AD) и ( displaystyle BC) – параллельны, а ( displaystyle AB) и ( displaystyle CD) – секущие, поэтому:

  • ( angle 1+angle 2=180{}^circ );
  • ( angle 3+angle 4=180{}^circ ).

Каким свойством обладает средняя линия треугольника трапеции

Треугольники ( displaystyle BOC) и ( displaystyle AOD) подобны по двум углам.
(( displaystyle angle 1=angle 2) и ( displaystyle angle 3=angle 4) – как накрест лежащие)

Коэффициент подобия треугольников ( displaystyle BOC) и ( displaystyle AOD) равен отношению оснований:

( K=frac{a}{b})

Сначала сформулируем основное определение, которое тебе нужно знать для понимания этого свойства трапеции:

Каким свойством обладает средняя линия треугольника трапеции

Средняя линия трапеции – отрезок, соединяющий середины боковых сторон.

А теперь формула:

А вот и само третье свойство трапеции:

Средняя линия трапеции равна полусумме оснований и параллельна им.

А это почему? Ту чуть – чуть сложнее – потребуется провести аж одну лишнюю линию!

Каким свойством обладает средняя линия треугольника трапеции

Итак, проведём ( displaystyle CEparallel AB). Тогда четырехугольник ( displaystyle ABCE) – параллелограмм.

Возьмём середину ( displaystyle M) стороны ( displaystyle AB) и середину ( displaystyle K) стороны ( displaystyle CE).

Оба: ( displaystyle MBCK) и ( displaystyle AMKE) – снова параллелограммы (( displaystyle MBparallel CK) и ( displaystyle MB=CK); ( displaystyle AMparallel KE) и ( displaystyle AM=KE)).

Ну вот, значит ( displaystyle MKparallel AD), да ещё ( displaystyle MK=BC=a).

Поедем дальше.

Каким свойством обладает средняя линия треугольника трапеции

Проведём ( displaystyle KN) – среднюю линию в ( displaystyle Delta ECD).

Знаем, что ( displaystyle KNparallel ED) и ( KN=frac{1}{2}ED)

Что же из всего этого следует?

Каким свойством обладает средняя линия треугольника трапеции

  • ( displaystyle MNparallel AD) (так как через точку ( displaystyle K) можно провести лишь одну прямую параллельную ( displaystyle AD), поэтому ( displaystyle MK) и ( displaystyle KN) – одна прямая ( displaystyle MN))
  • ( displaystyle MN=MK+KN=a+frac{b-a}{2})
    ( displaystyle MN=frac{a+b}{2})

Вот и доказали!

Каким свойством обладает средняя линия треугольника трапеции

Если трапеция вписана в окружность, то она равнобокая.

Почему? Подробнее смотри в теме «Вписанный четырехугольник», а тут – двумя строчками:

( angle 1+angle 2=180{}^circ ) (трапеция же!)

( angle 3+angle 2=180{}^circ ) (вписанный четырехугольник)

( Rightarrow angle 1=angle 3). Ну, и так же ( angle 2=angle 4).

Это закрытый контент 

Оставьте E-mail и получите на почту доступ к нему 

Каким свойством обладает средняя линия треугольника трапеции

В любой трапеции следующие четыре точки лежат на одной прямой:

  • ( displaystyle E) – точка пересечения продолжений боковых сторон;
  • ( displaystyle F) и ( displaystyle H) – середины оснований;
  • ( displaystyle G) – точка пересечения диагоналей.

Эту теорему доказывать не будем – не пугайся.

Заметим только, что ВЕРНО и ОБРАТНОЕ:

Если в каком-нибудь четырехугольнике какие-нибудь три из перечисленных четырёх точек окажутся на одной прямой, то четырёхугольник этот – ТРАПЕЦИЯ.

Каким свойством обладает средняя линия треугольника трапеции

Биссектрисы углов при боковой стороне трапеции перпендикулярны. 

( left{ begin{array}{l}angle 1+angle 2+angle 3+angle 4=180{}^circ -так, как, трапеция\angle 1=angle 2\angle 3=angle 4 -так, как, биссектрисаend{array} right.Rightarrow 2cdot angle 2+2cdot angle 3=180{}^circ Rightarrow )

( angle 2+angle 3=90{}^circ Rightarrow angle AEB =90{}^circ )

Здесь мы ещё раз увидим, как полезно в трапеции бывает провести линию, параллельную или боковой стороне, или диагонали – сразу появляется новый взгляд. Один раз мы уже так делали – в пункте про среднюю линию. А теперь ты узнал новый факт, который относительно часто встречается в задачах.

Каким свойством обладает средняя линия треугольника трапеции

В трапеции с перпендикулярными диагоналями ( FH=frac{AD+BC}{2})

Давай докажем! Это уже целая задача, которая вполне может попасться прямо на экзамене!

Это закрытый контент 

Оставьте E-mail и получите на почту доступ к нему 

Ну вот, и ты теперь старайся с помощью новых знаний и методов решать задачки про трапецию – они обычно не слишком сложные. Главное, твёрдо помнить все свойства трапеции и не забывать о параллельности оснований и иногда (в задачах посложнее) бывает полезно провести что-то параллельное или соединить боковые стороны.