Каким свойством обладают диоды

Каким свойством обладают диоды thumbnail

Диод полупроводниковый

Полупроводниковый диод — прибор, обладающий способностью хорошо пропускать через себя электрический ток одного направления и плохо — ток противоположного направления. Это свойство диода используют, например, в выпрямителях для преобразования переменного тока в постоянный.
Слово «диод» образовалось от греческой приставки «ди»— «дважды» и сокращения слова «электрод» .
Полупроводниковый диод (см. Полупроводники) представляет собой полупроводниковую пластинку с двумя областями разной проводимости: электронной (л-типа) и дырочной (р-типа) . Между ними — разделяющая граница, называемая р-п переходом.
Область л-типа называют отрицательным электродом, а область р-типа — положительным электродом полупроводникового диода. Диод хорошо пропускает ток, когда его отрицательный электрод соединен с отрицательным полюсом источника напряжения (батареи) , а положительный с положительным полюсом, т. е. когда на диод подается напряжение прямой полярности, или, короче, прямое напряжение. В этом случае электроны в л-области полупроводниковой пластинки будут двигаться к положительному полюсу батареи, т. е. к границе с р-областью, в то же время «дырки» в р-области будут двигаться к отрицательному полюсу батареи и, следовательно, к границе с «-областью. . В результате вблизи р-п перехода произойдет накопление положительных и отрицательных зарядов, и поэтому сопротивление перехода уменьшится. При напряжении противоположной (обратной) полярности, когда положительный полюс батареи соединен с п-областью, а отрицательный с р-областью, электроны в п-области и «дырки» в р-области движутся от границы р-п перехода. Вследствие этого происходит уменьшение положительных и отрицательных зарядов вблизи р-п перехода, и его сопротивление увеличивается. Это и означает, что при переменном напряжении ток через диод в одном направлении будет большей силы, чем в другом, т. е. в нагрузке появится практически ток одного направления — произойдет выпрямление переменного тока.

Наряду с выпрямительными свойствами р-п переход обладает емкостью, зависящей от значения и полярности приложенного напряжения. При прямом напряжении емкость диода больше, чем при обратном.
Один из способов изготовления диода состоит в следующем. На пластинку полупроводника, например германия, обладающего электронной проводимостью, накладывают небольшой кусочек индия и помещают в печь. При высокой температуре (около 500° С) индий вплавляется в пластинку германия, образуя в ней область дырочной проводимости. К самой пластинке германия и к затвердевшей «капле» индия припаивают два проволочных вывода электродов и прибор заключают в герметический и непрозрачный корпус, чтобы защитить р-п переход от воздействия влажности и света.
Существует много разновидностей полупроводниковых диодов, обладающих специальными свойствами. Стабилитрон — диод, у которого сопротивление в обратном направлении уменьшается с увеличением силы тока так, что дает возможность стабилизировать меняющееся напряжение. Варикап — диод, емкость р-п перехода которого зависит от приложенного к нему напряжения. Он может быть использован в качестве конденсатора, емкостью которого управляют постоянным напряжением. Фотодиод — полупроводниковый диод, в корпусе которого имеется окно для освещения р-п перехода. Под действием света изменяется сила тока в цепи, значение сопротивления диода и возникает электродвижущая сила, так что освещенный фотодиод является источником электрической энергии.
Полупроводниковые диоды применяют для выпрямления переменного тока, для детектирования слабых сигналов, например, в радиоприемниках, для выделения и обработки сигналов в различных автоматических устройствах и электронных вычислительных машинах (ЭВМ).

Источник

Что такое диод

Полупроводниковый диод или просто диод представляет из себя радиоэлемент, который пропускает электрический ток только в одном направлении и блокирует его прохождение в другом направлении. По аналогии с гидравликой диод можно сравнить с обратным клапаном: устройством, которое пропускает жидкость только в одном направлении.

обратный клапанобратный клапан

Диод – это радиоэлемент с двумя выводами. Некоторые  диоды выглядят почти также как и резисторы:

диод 1N4007диод

А некоторые выглядят чуточку по-другому:

д226б диодд214 диод

Есть также и SMD исполнение диодов:

смд диодsmd диод

Выводы диода называются – анод и катод. Некоторые по ошибке называют их “плюс” и “минус”. Это неверно. Так говорить нельзя.

На схемах диод обозначается так

диод обозначение на схеме

Он может пропускать электрический ток только от анода к катоду.

Из чего состоит диод

В нашем мире встречаются вещества, которые отлично проводят электрический ток. Сюда в основном можно отнести металлы, например, серебро, медь, алюминий, золото и так далее. Такие вещества называют проводниками. Есть вещества, которые ну очень плохо проводят электрический ток – фарфор, пластмассы, стекло и так далее. Их называют диэлектриками или изоляторами. Между проводниками и диэлектриками находятся полупроводники. Это в основном германий и кремний.

После того, как германий или кремний смешивают с мельчайшей долей мышьяка или индия, образуется полупроводник N-типа, если смешать с мышьяком; или полупроводник P-типа, если смешать с индием.

Теперь если эти два полупроводника P и N -типа приварить вместе, на их стыке образуется PN-переход. Это и есть строение диода. То есть диод состоит из PN-перехода.

строение диодастроение диода

Полупроводник P-типа в диоде является анодом, а полупроводник N-типа – катодом.

Давайе вскроем советский диод Д226 и посмотрим, что у него внутри, сточив часть корпуса на наждачном круге.

диод Д226диод Д226

Вот это и есть тот самый PN-переход

PN-переход диодаPN-переход диода

Как определить анод и катод диода

1) на некоторых диодах катод обозначают полоской, отличающейся от цвета корпуса

катод диодакатод диодакатод смд smd диода

2) можно проверить диод с помощью мультиметра и узнать, где у него катод, а где анод.  Заодно проверить его работоспособность. Этот способ железный ;-). Как проверить диод с помощью мультиметра можно узнать в этой статье.

Где находится анод, а где катод очень легко запомнить, если вспомнить воронку для наливания жидкостей в узкие горлышки бутылок. Воронка очень похожа на схему диода. Наливаем в воронку, и жидкость у нас очень хорошо бежит, а если ее перевернуть, то попробуй налей-ка через узкое горлышко воронки ;-).

воронка диоддиод обозначение на схеме

Диод в цепи постоянного тока

Как мы уже говорили, диод пропускает электрический ток только в одном направлении. Для того, чтобы это показать, давайте соберем простую схему.

Читайте также:  Каким свойством обладает лимонное масло

прямое включение диодапрямое включение диода

Так как наша лампа накаливания на 12 Вольт, следовательно, на блоке питания тоже выставляем значение в 12 В и собираем всю электрическую цепь по схеме выше. В результате, лампочка у нас прекрасно горит. Это говорит о том, что через диод проходит электрический ток. В этом случае говорят, что диод включен в прямом направлении.

диод в прямом включениидиод в прямом включении

Давайте теперь поменяем выводы диода. В результате, схема примет такой вид.

обратное включение диодаобратное включение диода

Как вы видите, лампочка не горит, так как диод не пропускает электрический ток, то есть блокирует его прохождение, хотя источник питания и выдает свои честные 12 Вольт.

обратное включениеобратное включение диода

Какой вывод можно из этого сделать? Диод проводит постоянный ток только в одном направлении.

Диод в цепи переменного тока

Кто забыл, что такое переменный ток, читаем эту статью. Итак, для того, чтобы рассмотреть работу диода в цепи переменного тока, давайте составим схему. Здесь мы видим генератор частоты G, диод и два клеммника Х1 и Х2, с которых мы будем снимать сигнал с помощью осциллографа.

диод в цепи переменного тока

Мой генератор частоты выглядит вот так.

генератор частотыгенератор частот

Осциллограмму будем снимать с помощью цифрового осциллографа

цифровой осциллограф OWON

Генератор выдает переменное синусоидальное напряжение.

синусоидальный сигналсинусоидальный сигнал

Что же будет после диода? Цепляемся к клеммам X1 и X2 и видим вот такую осциллограмму.

переменное напряжение после диодапеременное напряжение после диода

Диод вырезал нижнюю часть синусоиды, оставив только верхнюю часть.

А что будет, если мы поменяем выводы диода? Схема примет такой вид.

переменый ток после диодапеременый ток после диода

Что же получим на клеммах Х1 и Х2 ? Смотрим на осциллограмму.

переменный ток после диодапеременный ток после диода

Ничего себе! Диод срезал только положительную часть синусоиды!

Характеристики диода

Давайте рассмотрим характеристику диода КД411АМ. Ищем его характеристики в интернете, вбивая в поиск “даташит КД411АМ”

параметры диода КД411

Для объяснения параметров диода, нам также потребуется его ВАХ

1) Обратное максимальное напряжение Uобр – это  такое напряжение диода, которое он выдерживает при подключении в обратном направлении, при этом через него будет протекать ток Iобр – сила тока  при обратном подключении диода. При превышении обратного напряжения в диоде возникает так называемый лавинный пробой, в результате этого резко возрастает ток, что может привести  к полному тепловому разрушению диода.  В нашем исследуемом диоде это напряжение равняется 700 Вольт.

2) Максимальный прямой ток Iпр – это  максимальный ток, который может течь через диод в прямом направлении.  В нашем случае это 2 Ампера.

3) Максимальная частота Fd , которую нельзя превышать. В нашем случае максимальная частота диода будет 30 кГц. Если частота будет больше, то наш диод будет работать неправильно.

Виды диодов

Стабилитроны

Стабилитроны  представляют из себя те же самые диоды. Даже из названия понятно, чтоб стабилитроны что-то стабилизируют. А стабилизируют они напряжение.  Но  чтобы стабилитрон выполнял стабилизацию, требуется одно  условие.  Они должны подключатся противоположно, чем диоды. Анод на минус, а катод на плюс. Странно не правда ли? Но почему так? Давайте разберемся.  В Вольт амперной характеристике (ВАХ) диода используется положительная ветвь – прямое направление, а вот в стабилитроне другая часть ветки ВАХ – обратное направление.

Снизу на графике мы видим стабилитрон на 5 Вольт. Сколько бы у нас не изменялась сила тока, мы все равно будем получать 5 Вольт ;-). Круто, не правда ли? Но есть и подводные камни. Сила тока не должны быть больше, чем в описании на диод, иначе он выйдет из строя от высокой температуры – Закон Джоуля-Ленца. Главный параметр стабилитрона – это напряжение стабилизации (Uст). Измеряется в Вольтах. На графике вы видите стабилитрон с напряжением стабилизации 5 Вольт. Также есть диапазон силы тока, при котором будет работать стабилитрон – это минимальный и максимальный ток (Imin, Imax). Измеряется в Амперах.

вах стабилитрона

Выглядят стабилитроны точно также, как и обычные диоды:

ДиодДиод

На схемах обозначаются вот так:

стабилитрон обозначение на схеме

Светодиоды

Светодиоды – особый класс диодов, которые излучают видимый и невидимый свет. Невидимый свет – это свет в инфракрасном или ультрафиолетовом диапазоне.  Но для промышленности все таки большую роль играют светодиоды с видимым светом. Они используются для индикации, оформления вывесок, светящихся баннеров, зданий а также для освещения. Светодиоды имеют такие же параметры, как и любые другие диоды, но обычно их максимальный ток значительно ниже.

Предельное обратное напряжение (Uобр) может достигать 10 Вольт. Максимальный ток (Imax) будет ограничиваться для простых светодиодов порядка 50 мА.  Для осветительных больше. Поэтому при подключении обычного диода нужно вместе с ним последовательно подключать резистор. Резистор можно рассчитать по нехитрой формуле, но в идеале лучше использовать переменный резистор, подобрать нужное свечение, замерять  номинал переменного резистора и поставить туда постоянный резистор с таким же номиналом.

светодиодыосветительные светодиоды

Лампы освещения из светодиодов потребляют копейки электроэнергии и стоят дешево.

Диодсветодиодные лампочки

Очень большим спросом пользуются светодиодные ленты, состоящие из множества SMD светодиодов. Смотрятся очень красиво.

светодиодная лента

На схемах светодиоды обозначаются так:

обозначение на схеме светодиода

Не забываем, что светодиоды делятся на индикаторные и осветительные. Индикаторные светодиоды обладают слабым свечением и используются для индикации каких-либо процессов, происходящих в электронной цепи. Для них характерно слабое свечение и малый ток потребления

светодиоды

Ну и осветительные светодиоды – это те, которые используются в ваших китайских фонариках, а также в LED-лампах

Диод

Светодиод – это токовый прибор, то есть для его нормальной работы требуется номинальный ток, а не напряжение. При номинальном токе на светодиоде падает некоторое напряжение, которое зависит от типа светодиода (номинальной мощности, цвета, температуры). Ниже табличка, показывающая какое падение напряжения бывает на светодиодах разных цветов свечения при номинальном токе:

Читайте также:  Укажите какое из перечисленных свойств птк позволяет противостоять

Как проверить светодиод  можно узнать из этой статьи.

Тиристоры

Тиристоры представляют собой диоды, проводимость которых управляется с помощью третьего вывода – управляющего электрода (УЭ). Основное применение тиристоров – это управление мощной нагрузкой с помощью слабого сигнала, подаваемого на управляющий электрод. Выглядят тиристоры  примерно как диоды или транзисторы. У тиристоров параметров столько, что не хватит статьи для их описания. Главный параметр – Iос,ср. – среднее значение тока, которое должно протекать через тиристор  в прямом направлении без вреда для его здоровья. Немаловажным параметром является напряжение открытия тиристор –  (), которое подается на управляющий электрод  и при котором тиристор полностью открывается.

тиристорДиод

а вот так примерно выглядят силовые тиристоры, то есть тиристоры, которые работают с  большой силой тока:

силовой тиристор

На схемах  триодные тиристоры  выглядят вот таким образом:

обозначение тиристора на схеме

Существуют также  разновидности тиристоров – динисторы и симисторы. У динисторов нет управляющего электрода и он выглядит, как обычный диод. Динисторы начинают пропускать через себя электрический ток в прямом включении, когда напряжение на нем превысит какое-то значение. Симисторы – это те же самые триодные тиристоры, но при включении пропускают через себя электрический ток в двух направлениях, поэтому они используются в цепях с переменным током.

Диодный мост и диодные сборки

Производители также  несколько диодов заталкивают в один корпус и соединяют их между собой в определенной последовательности. Таким образом получаются диодные сборки.  Диодные мосты  – одна из разновидностей диодных сборок.

маломощный диодный мостдиодные мосты

 На схемах диодный мост обозначается вот так:

диодный мост обозначение на схемедиодный мост обозначение на схеме

Существуют также и другие виды диодов, такие как варикапы, диод Ганна, диод Шоттки  и тд. Для того, чтобы их всех описать, нам не хватит и вечности.

Очень интересное видео про диод

Похожие статьи по теме “диод”

Как работает стабилитрон

Диод Шоттки

Диодный мост

Как проверить диод и светодиод мультиметром

Как проверить тиристор

Схема для проверки тиристоров

Источник

Полупроводниковый диод самый простой полупроводниковый прибор, состоящий из одного PN перехода. Основная его функция – это проводить электрический ток в одном направлении, и не пропускать его в обратном. Состоит диод из двух слоев полупроводника типов N и P (Рисунок 1.2.1)

Рисунок 1.2.1 Строение диода

На стыке соединения P и N образуется PN-переход. Электрод, подключенный к P, называется анод. Электрод, подключенный к N, называется катод. Диод проводит ток в направлении от анода к катоду, и не проводит обратно.

Диод в состоянии покоя.

Диод находится в состоянии покоя, когда ни к аноду, ни к катоду не подключено напряжения (Рисунок 1.2.2).

Рисунок 1.2.2 Диод в состоянии покоя

В части N имеются в наличии свободные электроны – отрицательно заряженные частицы. В части P находятся положительно заряженные ионы – дырки. В результате, в том месте, где есть частицы с зарядами разных знаков, возникает электрическое поле, притягивающее их друг к другу.

Под действием этого поля свободные электроны из части N дрейфуют через PN переход в часть P и заполняют некоторые дырки. В итоге получается очень слабый электрический ток, измеряемый в наноамперах. В результате, плотность вещества в P части повышается и возникает диффузия (стремление вещества к равномерной концентрации), толкающая частицы обратно на сторону N.

Обратное включение диода.

Теперь рассмотрим, как у полупроводникового диода получается выполнять свою основную функцию – проводить ток только в одном направлении. Подключим источник питания – плюс к катоду, минус к аноду (рисунок 1.2.3)

Рисунок 1.2.3 Обратное включение диода

В соответствии с силой притяжения, возникшей между зарядами разной полярности, электроны из N начнут движение к плюсу и отдалятся от PN перехода. Аналогично, дырки из P будут притягиваться к минусу, и также отдалятся от PN перехода. В результате, плотность вещества у электродов повышается. В действие приходит диффузия и начинает толкать частицы обратно, стремясь к равномерной плотности вещества.

Как мы видим, в этом состоянии диод не проводит ток. При повышении напряжения, в PN переходе будет все меньше и меньше заряженных частиц.

Прямое включение диода.

Меняем полярность источника питания – плюс к аноду, минус к катоду.

(Рисунок 1.2.4)

Рисунок 1.2.4 Прямое включения диода

В таком положении, между зарядами одинаковой полярности возникает сила отталкивания. Отрицательно заряженные электроны отдаляются от минуса и двигаются сторону pn перехода. В свою очередь, положительно заряженные дырки отталкиваются от плюса и направляются навстречу электронам. PN переход обогащается заряженными частицами с разной полярностью, между которыми возникает электрическое поле – внутреннее электрическое поле PN перехода. Под его действием электроны начинают дрейфовать на сторону P. Часть из них рекомбинируют с дырками (заполняют место в атомах, где не хватает электрона). Остальные электроны устремляются к плюсу батарейки. Через диод пошел ток ID.

1.2.1 Выпрямительные диоды

Выпрямительный диод — это полупроводниковый диод, предназначенный для преобразования переменного тока в постоянный.

В основе работы выпрямительных диодов лежит свойство односторонней проводимости рn-перехода, которое заключается в том, что последний хорошо проводит ток (имеет малое сопротивление) при прямом включении и практически не проводит ток (имеет очень высокое сопротивление) при обратном включении.

Основными параметрами выпрямительных полупроводниковых диодов являются:

  • прямой ток диода Iпр, который нормируется при определенном прямом напряжении (обычно Uпр=1…2В);
  • максимально допустимый прямой ток Iпр.мах диода;
  • максимально допустимое обратное напряжение диода Uобр.мах, при котором диод еще может нормально работать длительное время;
  • постоянный обратной ток Iобр, протекающий через диод при обратном напряжении, равном Uобр.мах;
  • средний выпрямленный ток Iвп.ср, который может длительно проходить через диод при допустимой температуре его нагрева;
  • максимально допустимая мощность Pмах, рассеиваемая диодом, при которой обеспечивается заданная надежность диода.

Для сохранения работоспособности германиевого диода его температура не должна превышать +85°С, кремниевые диоды могут работать при температуре до +150°С.

Читайте также:  Какими свойствами обладают хим вещества

Вольт-амперная характеристика германиевого и кремниевого диода представлена на рисунке 1.2.1.1

Рисунок 1.2.1.1 Вольт-амперная характеристика германиевого и кремниевого диода: а−германиевый диод; б−кремниевый диод

Падение напряжения при пропускании прямого тока у германиевых диодов составляет Uпр=0,3…0,6В, у кремниевых диодов Uпр=0,8…1,2В.

Большие падения напряжения при прохождении прямого тока через кремниевые диоды по сравнению с прямым падение напряжения на германиевых диодах связаны с большей высотой потенциального барьера рn- переходов, сформированных в кремнии. С увеличением температуры прямое падение напряжения уменьшается, что связано с уменьшением высоты потенциального барьера. При подаче на полупроводниковый диод обратного напряжения в нем возникает незначительный обратный ток, обусловленный движением не основных носителей заряда через рn-переход. При повышении температуры рn-перехода число не основных носителей заряда увеличивается за счет перехода части электронов из валентной зоны в зону проводимости и образования пар носителей заряда электрон-дырка. Поэтому обратный ток диода возрастает. В случае приложения к диоду обратного напряжения в несколько сотен вольт внешнее электрическое поле в запирающем слое становится настолько сильным, что способно вырвать электроны из валентной зоны в зону проводимости (эффект Зенера). Обратный ток при этом резко увеличивается, что вызывает нагрев диода, дальнейшей рост тока и, наконец, тепловой пробой (разрушение) рn-перехода.

Большинство диодов может надежно работать при обратных напряжениях, не превышающих (0,7…0,8) Uпроб. Допустимое обратное напряжение германиевых диодов достигает − 100…400В, а кремниевых диодов − 1000…1500В.

Выпрямительные диоды применяются для выпрямления переменного тока (преобразования переменного тока в постоянный); используются в схемах управления и коммутации для ограничения паразитных выбросов напряжений, в качестве элементов электрической развязки цепей и т.д.

1.2.2 Полупроводниковый стабилитрон

Полупроводниковый стабилитрон — это полупроводниковый диод, напряжение на котором в области электрического пробоя слабо зависит от тока и который используется для стабилизации напряжения.

В полупроводниковых стабилитронах используется свойство незначительного изменения обратного напряжения на рn-переходе при электрическом (лавинном или туннельном) пробое. Это связано с тем, что небольшое увеличение напряжения на рn-переходе в режиме электрического пробоя вызывает более интенсивную генерацию носителей заряда и значительное увеличение обратного тока.

Низковольтные стабилитроны изготовляют на основе сильнолегированного (низкоомного) материала. В этом случае образуется узкий плоскостной переход, в котором при сравнительно низких обратных напряжениях (менее 6В) возникает туннельный электрический пробой. Высоковольтные стабилитроны изготавливают на основе слаболегированного (высокоомного) материала. Поэтому их принцип действия связан с лавинным электрическим пробоем.

Основные параметры стабилитронов:

  • Напряжение стабилизации Uст (Uст=1…1000В);
  • минимальный Iст.міn и максимальный Iст.мах токи стабилизации (Iст.міn»1,0…10мА, Iст.мах»0,05…2,0А);
  • максимально допустимая рассеиваемая мощность Рмах;
  • дифференциальное сопротивление на участке стабилизации
  • температурный коэффициент напряжения на участке стабилизации:

TKU стабилитрона показывает на сколько процентов изменится стабилизирующее напряжение при изменении температуры полупроводника на 1°С (TKU=−0,5…+0,2)

Условно графическое обозначение стабилитрона представлена на рисунке 1.2.2.1.

Рисунок 1.2.2.1 Условно графическое обозначение стабилитрона а) не симметричный стабилитрон б) симметричный стабилитрон

Вольт-амперная характеристика стабилитрона на рисунке 1.2.2.2

Рисунок 1.2.2.2 Вольт-амперная характеристика стабилитрона

Стабилитроны используют для стабилизации напряжений источников питания, а также для фиксации уровней напряжений в различных схемах.

Существуют также двухсторонние (симметричные) стабилитроны, имеющие симметричную ВАХ относительно начала координат. Стабилитроны допускают последовательное включение, при этом результирующее стабилизирующее напряжение равно сумме напряжений стабилитронов: Uст = Uст1 + Uст2 +…

1.2.3 Туннельный диод

Туннельный диод — это полупроводниковый диод на основе вырожденного полупроводника, в котором туннельный эффект приводит к появлению на вольт-амперной характеристике при прямом напряжении участка отрицательного дифференциального сопротивления.

Туннельный диод изготовляется из германия или арсенида галлия с очень большой концентрацией примесей, т.е. с очень малым удельным сопротивлением. Такие полупроводники с малым сопротивлением называют вырожденными. Это позволяет получить очень узкий рn-переход. В таких переходах возникают условия для относительно свободного туннельного прохождения электронов через потенциальный барьер (туннельный эффект). Туннельный эффект приводит к появлению на прямой ветви ВАХ диода участка с отрицательным дифференциальным сопротивлением.

Основные параметры туннельных диодов:

  • Пиковый ток Iп – прямой ток в точке максимума ВАХ;
  • ток впадины Iв − прямой ток в точке минимума ВАХ;
  • отношение токов туннельного диода Iп/Iв;
  • напряжение пика Uп – прямое напряжение, соответствующее пиковому току;
  • напряжение впадины Uв − прямое напряжение, соответствующее току впадины;

Туннельные диоды используются для генерации и усиления электромагнитных колебаний, а также в быстродействующих переключающих и импульсных схемах.

Вольт-амперная характеристика туннельного диода и его УГО представлена на рисунке 1.2.3.1

Рисунок 1.2.3.1 Вольт-амперная характеристика туннельного диода и его УГО

1.2.4 Обращенный диод

Обращенный диод — диод на основе полупроводника с критической концентрацией примесей, в котором проводимость при обратном напряжении вследствие туннельного эффекта значительно больше, чем при прямом напряжении.

Принцип действия обращенного диода основан на использовании туннельного эффекта. Но в обращенных диодах концентрацию примесей делают меньше, чем в обычных туннельных. Поэтому контактная разность потенциалов у обращенных диодов меньше, а толщина рn-перехода больше. Это приводит к тому, что под действием прямого напряжения прямой туннельный ток не создается. Прямой ток в обращенных диодах создается инжекцией не основных носителей зарядов через рn-переход, т.е. прямой ток является диффузионным. При обратном напряжении через переход протекает значительный туннельный ток, создаваемый перемещение электронов сквозь потенциальный барьер из р-области в n-область. Рабочим участком ВАХ обращенного диода является обратная ветвь. Таким образом, обращенные диоды обладают выпрямляющим эффектом, но пропускное (проводящее) направление у них соответствует обратному включению, а запирающее (непроводящее) – прямому включению.

Вольт-амперная характеристика обращенного диода и его УГО представлена на рисунке 1.2.4.1

Рисунок 1.2.4.1 Вольт-амперная характеристика обращенного диода и УГО

Обращенные диоды применяют в импульсных устройствах, а также в качестве преобразователей сигналов (смесителе?