Каким свойством обладают графики обратных функций

Понятие обратной функции

Допустим, что у нас есть некая функция y=f(x), которая является строго монотонной (убывающей или возрастающей) и непрерывной на области определения x∈a; b; область ее значений y∈c; d, а на интервале c; d при этом у нас будет определена функция x=g(y) с областью значений a; b. Вторая функция также будет непрерывной и строго монотонной. По отношению к y=f(x) она будет обратной функцией. То есть мы можем говорить об обратной функции x=g(y) тогда, когда y=f(x) на заданном интервале будет либо убывать, либо возрастать.

Две этих функции, f и g, будут взаимно обратными.

Для чего вообще нам нужно понятие обратных функций?

Это нужно нам для решения уравнений y=f(x), которые записываются как раз с помощью этих выражений.

Нахождение взаимно обратных функций

Допустим, нам нужно найти решение уравнения cos(x)=13. Его решениями будут все точки: x=±arсcos13+2π·k, k∈Z 

Обратными по отношению друг к другу будут, например, функции арккосинуса и косинуса.

Разберем несколько задач на нахождение функций, обратных заданным.

Пример 1

Условие: какая функция будет обратной для y=3x+2?

Решение

Область определений и область значений функции, заданной в условии, – это множество всех действительных чисел. Попробуем решить данное уравнение через x, то есть выразив  x через y.

Мы получим x=13y-23. Это и есть нужная нам обратная функция, но y здесь будет аргументом, а x – функцией. Переставим их, чтобы получить более привычную форму записи:

y=13x-23 

Ответ: функция y=13x-23 будет обратной для y=3x+2.

Обе взаимно обратные функции можно отобразить на графике следующим образом:

Мы видим симметричность обоих графиков относительно y=x. Эта прямая является биссектрисой первого и третьего квадрантов. Получилось доказательство одного из свойств взаимно обратных функций, о котором мы поговорим далее.

Возьмем пример, в котором нужно найти логарифмическую функцию, обратную заданной показательной.

Пример 2

Условие: определите, какая функция будет обратной для y=2x.

Решение

Для заданной функции областью определения являются все действительные числа. Область значений лежит в интервале 0; +∞. Теперь нам нужно выразить x через y, то есть решить указанное уравнение через x. Мы получаем x=log2y. Переставим переменные и получим y=log2x.

В итоге у нас вышли показательная и логарифмическая функции, которые будут взаимно обратными друг другу на всей области определения.

Ответ: y=log2x.

На графике обе функции будут выглядеть так:

Основные свойства взаимно обратных функций

В этом пункте мы перечислим основные свойства функций y=f(x) и x=g(y), являющихся взаимно обратными.

Определение 1

  1. Первое свойство мы уже вывели ранее: y=f(g(y)) и x=g(f(x)).
  2. Второе свойство вытекает из первого: область определения y=f(x) будет совпадать с областью значений обратной функции x=g(y), и наоборот.
  3. Графики функций, являющихся обратными, будут симметричными относительно y=x.
  4. Если y=f(x) является возрастающей, то и x=g(y) будет возрастать, а если y=f(x) убывает, то убывает и x=g(y).

Советуем внимательно отнестись к понятиям области определения и области значения функций и никогда их не путать. Допустим, что у нас есть две взаимно обратные функции y=f(x)=ax и x=g(y)=logay. Согласно первому свойству, y=f(g(y))=alogay. Данное равенство будет верным только в случае положительных значений y, а для отрицательных логарифм не определен, поэтому не спешите записывать, что alogay=y. Обязательно проверьте и добавьте, что это верно только при положительном y.

А вот равенство x=f(g(x))=logaax=x будет верным при любых действительных значениях x.

Не забывайте про этот момент, особенно если приходится работать с  тригонометрическими и обратными тригонометрическими функциями.  Так, arcsinsin7π3≠7π3, потому что область значений арксинуса -π2; π2 и 7π3 в нее не входит. Верной будет запись

arcsinsin7π3=arcsinsin2π+π3==по формулепривидения=arcsinsinπ3=π3

А вот sinarcsin13=13 – верное равенство, т.е. sin(arcsin x)=x при x∈-1; 1 и arcsin(sin x)=x при x∈-π2; π2. Всегда будьте внимательны с областью значений и областью определений обратных функций!

Графики взаимно обратных функций

  • Основные взаимно обратные функции: степенные

Если у нас есть степенная функция y=xa, то при x>0 степенная функция x=y1a также будет обратной ей. Заменим буквы и получим соответственно y=xa и x=y1a.

На графике они будут выглядеть следующим образом (случаи с положительным и отрицательным коэффициентом a):

  • Основные взаимно обратные функции: показательные и логарифмические

Возьмем a,которое будет положительным числом, не равным 1.

Графики для функций с a>1 и a<1 будут выглядеть так:

  • Основные взаимно обратные функции: тригонометрические и обратные тригонометрические

Если нам нужно построить график главной ветви синуса и арксинуса, он будет выглядеть следующим образом (показан выделенной светлой областью):

График главной ветви косинуса и арккосинуса выглядит так:

График главной ветви арктангенса и тангенса:

График главной ветви арккотангенса и котангенса будет таким:

Если же вам требуется построить обратные ветви, отличные от главных, то обратную тригонометрическую функцию при этом мы сдвигаем вдоль оси Oy на нужное число периодов. Так, если требуется обратная функция для ветви тангенса на π2; 3π2, то мы можем сдвинуть ее на величину π вдоль оси абсцисс. График будет представлять собой ветвь арктангенса, которая сдвинута на π вдоль оси ординат.

Это все свойства обратных функций, о которых мы хотели бы вам рассказать.

Источник

Определение и свойства

Определение обратной функции
Пусть функция имеет область определения X и множество значений Y. И пусть она обладает свойством:
для всех .
Тогда для любого элемента из множества Y можно поставить в соответствие только один элемент множества X, для которого . Такое соответствие определяет функцию, которая называется обратной функцией к . Обратная функция обозначается так:
.

Из определения следует, что
;
  для всех  ;
  для всех  .

Теорема о существовании и монотонности обратной функции
Если функция f строго возрастает (убывает), то существует обратная функция , которая также строго возрастает (убывает).
Доказательство

Свойство о симметрии графиков прямой и обратной функций
Графики прямой и обратной функций симметричны относительно прямой .
Доказательство ⇓

Теорема о существовании и непрерывности обратной функции на отрезке
Пусть функция непрерывна и строго возрастает (убывает) на отрезке . Тогда на отрезке определена и непрерывна обратная функция , которая строго возрастает (убывает).
Доказательство ⇓

Для возрастающей функции . Для убывающей – .

Теорема о существовании и непрерывности обратной функции на интервале
Пусть функция непрерывна и строго возрастает (убывает) на открытом конечном или бесконечном интервале . Тогда на интервале определена и непрерывна обратная функция , которая строго возрастает (убывает).
Доказательство ⇓

Для возрастающей функции .
Для убывающей: .

Аналогичным образом можно сформулировать теорему о существовании и непрерывности обратной функции на полуинтервале.

Если функция непрерывна и строго возрастает (убывает) на полуинтервале или , то на полуинтервале или определена обратная функция , которая строго возрастает (убывает). Здесь .

Если строго возрастает, то интервалам и соответствуют интервалы и . Если строго убывает, то интервалам и соответствуют интервалы и .
Эта теорема доказывается тем же способом, что и теорема о существовании и непрерывности обратной функции на интервале.

Примеры обратных функций

Арксинус

Графики sin(x) и arcsin(x)

Графики y = sin x и обратной функции y = arcsin x.

Рассмотрим тригонометрическую функцию синус: . Она определена и непрерывна для всех значений аргумента , но не является монотонной. Однако, если сузить область определения, то можно выделить монотонные участки. Так, на отрезке , функция определена, непрерывна, строго возрастает и принимает значения от –1 до +1. Поэтому имеет на нем обратную функцию, которую называют арксинусом. Арксинус имеет область определения и множество значений .

Логарифм

Графики 2 в степени x и логарифм по основанию 2

Графики y = 2x и обратной функции y = log2 x.

Показательная функция определена, непрерывна и строго возрастает при всех значений аргумента . Множеством ее значений является открытый интервал . Обратной функцией является логарифм по основанию два. Он имеет область определения и множество значений .

Квадратный корень

Графики x в квадрате и корень из x

Графики y = x2 и обратной функции .

Степенная функция определена и непрерывна для всех . Множеством ее значений является полуинтервал . Но она не является монотонной при всех значений аргумента. Однако, на полуинтервале она непрерывна и строго монотонно возрастает. Поэтому если, в качестве области определения, взять множество , то существует обратная функция, которая называется квадратным корнем. Обратная функция имеет область определения и множество значений .

Пример. Доказательство существования и единственности корня степени n

Докажите, что уравнение , где n – натуральное, – действительное неотрицательное число, имеет единственное решение на множестве действительных чисел, . Это решение называется корнем степени n из числа a. То есть нужно показать, что любое неотрицательное число имеет единственный корень степени n.

Решение

Рассмотрим функцию от переменной x:
(П1)   .

Докажем, что она непрерывна.
Используя определение непрерывности, покажем, что
.
Применяем формулу бинома Ньютона:
(П2)  
.
Применим арифметические свойства пределов функции. Поскольку , то отлично от нуля только первое слагаемое:
.
Непрерывность доказана.

Докажем, что функция (П1) строго возрастает при .
Возьмем произвольные числа , связанные неравенствами:
, , .
Нам нужно показать, что . Введем переменные . Тогда . Поскольку , то из (П2) видно, что . Или
.
Строгое возрастание доказано.

Найдем множество значений функции при .
В точке , .
Найдем предел .
Для этого применим неравенство Бернулли. При имеем:
.
Поскольку , то и .
Применяя свойство неравенств бесконечно больших функций находим, что .
Таким образом, , .

Согласно теореме об обратной функции, на интервале определена и непрерывна обратная функция . То есть для любого существует единственное , удовлетворяющее уравнению . Поскольку у нас , то это означает, что для любого , уравнение имеет единственное решение, которое называют корнем степени n из числа x:
.

Доказательства свойств и теорем

Свойство о симметрии графиков прямой и обратной функций

Все свойства ⇑ Графики прямой и обратной функций симметричны относительно прямой .

Доказательство

Пусть – произвольная точка графика прямой функции :
(2.1)   .
Покажем, что точка , симметричная точке A относительно прямой , принадлежит графику обратной функции :
.
Из определения обратной функции следует, что
(2.2)   .
Таким образом, нам нужно показать (2.2).

Симметрия графиков прямой и обратной функций

График обратной функции y = f  –1(x) симметричен графику прямой функции y = f(x) относительно прямой y = x.

Из точек A и S опустим перпендикуляры на оси координат. Тогда
,   .

Через точку A проводим прямую, перпендикулярную прямой . Пусть прямые пересекаются в точке C. На прямой строим точку S так, чтобы . Тогда точка S будет симметрична точке A относительно прямой .

Рассмотрим треугольники и . Они имеют две равные по длине стороны: и , и равные углы между ними: . Поэтому они конгруэнтны. Тогда
.

Рассмотрим треугольник . Поскольку , то
.
Тоже самое относится к треугольнику :
.
Тогда
.

Теперь находим и :
;
.

Итак, уравнение (2.2):
(2.2)  
выполняется, поскольку , и выполняется (2.1):
(2.1)   .

Так как мы выбрали точку A произвольно, то это относится ко всем точкам графика :
все точки графика функции , симметрично отраженные относительно прямой , принадлежат графику обратной функции .
Далее мы можем поменять и местами. В результате получим, что
все точки графика функции , симметрично отраженные относительно прямой , принадлежат графику функции .
Отсюда следует, что графики функций и симметричны относительно прямой .

Свойство доказано.

Теорема о существовании и непрерывности обратной функции на отрезке

Все свойства ⇑ Пусть функция непрерывна и строго возрастает (убывает) на отрезке . Тогда на отрезке определена и непрерывна обратная функция , которая строго возрастает (убывает).

Доказательство

Пусть обозначает область определения функции – отрезок .

1. Покажем, что множеством значений функции является отрезок :
,
где .

Действительно, поскольку функция непрерывна на отрезке , то по теореме Вейерштрасса она достигает на нем минимума и максимума . Тогда по теореме Больцано – Коши функция принимает все значения из отрезка . То есть для любого существует , для которого . Поскольку и есть минимум и максимум, то функция принимает на отрезке только значения из множества .

2. Поскольку функция строго монотонна, то согласно теореме о существовании и монотонности обратной функции ⇑, существует обратная функция , которая также строго монотонна (возрастает, если возрастает ; и убывает, если убывает ). Областью определения обратной функции является множество , а множеством значений – множество .

3. Теперь докажем, что обратная функция непрерывна.

3.1. Пусть есть произвольная внутренняя точка отрезка : . Докажем, что обратная функция непрерывна в этой точке.

Пусть ей соответствует точка . Поскольку обратная функция строго монотонна, то есть внутренняя точка отрезка :
.
Согласно определению непрерывности нам нужно доказать, что для любого имеется такая функция , при которой
(3.1)   для всех .

Заметим, что мы можем взять сколь угодно малым. Действительно, если мы нашли такую функцию , при которой неравенства (3.1) выполняются при достаточно малых значениях , то они будут автоматически выполняться и при любых больших значениях , если положить при .

Возьмем настолько малым, чтобы точки и принадлежали отрезку :
.
Введем и упорядочим обозначения:

.

Преобразуем первое неравенство (3.1):
(3.1)   для всех .
;
;
;
(3.2)   .
Поскольку строго монотонна, то отсюда следует, что
(3.3.1)   , если возрастает;
(3.3.2)   , если убывает.
Поскольку обратная функция также строго монотонна, то из неравенств (3.3) следуют неравенства (3.2).

Теорема о непрерывности обратной функции

Для любого ε > 0 существует δ, так что |f  -1(y) – f  -1(y0)| < ε для всех |y – y0| < δ.

Неравенства (3.3) определяют открытый интервал, концы которого удалены от точки на расстояния и . Пусть есть наименьшее из этих расстояний:
.
В силу строгой монотонности , , . Поэтому и . Тогда интервал будет лежать в интервале, определяемом неравенствами (3.3). И для всех значений , принадлежащих ему будут выполняться неравенства (3.2).

Итак, мы нашли, что для достаточно малого , существует , так что
при .
Теперь изменим обозначения.
Для достаточно малого , существует такое , так что
при .
Это означает, что обратная функция непрерывна во внутренних точках .

3.2. Теперь рассмотрим концы области определения. Здесь все рассуждения остаются теми же самыми. Только нужно рассматривать односторонние окрестности этих точек. Вместо точки будет или , а вместо точки – или .

Так, для возрастающей функции , . Обратная функция непрерывна в точке , поскольку для любого достаточно малого имеется , так что
при .
Обратная функция непрерывна в точке , поскольку для любого достаточно малого имеется , так что
при .

Для убывающей функции , .
Обратная функция непрерывна в точке , поскольку для любого достаточно малого имеется , так что
при .
Обратная функция непрерывна в точке , поскольку для любого достаточно малого имеется , так что
при .

Теорема доказана.

Теорема о существовании и непрерывности обратной функции на интервале

Все свойства ⇑ Пусть функция непрерывна и строго возрастает (убывает) на открытом конечном или бесконечном интервале . Тогда на интервале определена и непрерывна обратная функция , которая строго возрастает (убывает).

Доказательство

Пусть обозначает область определения функции – открытый интервал . Пусть – множество ее значений. Согласно теореме о существовании и монотонности обратной функции ⇑, существует обратная функция , которая имеет область определения , множество значений и является строго монотонной (возрастает если возрастает и убывает если убывает ). Нам осталось доказать, что
1) множеством является открытый интервал , и что
2) обратная функция непрерывна на нем.
Здесь .

1. Покажем, что множеством значений функции является открытый интервал :
.

Как и всякое непустое множество, элементы которого имеют операцию сравнения, множество значений функции имеет нижнюю и верхнюю грани:
.
Здесь и могут быть конечными числами или символами и .

1.1. Покажем, что точки и не принадлежат множеству значений функции. То есть множество значений не может быть отрезком .

Если или является бесконечно удаленной точкой: или , то такая точка не является элементом множества. Поэтому она не может принадлежать множеству значений.

Пусть (или ) является конечным числом. Допустим противное. Пусть точка (или ) принадлежит множеству значений функции . То есть существует такое , для которого (или ). Возьмем точки и , удовлетворяющие неравенствам:
.
Поскольку функция строго монотонна, то
, если f возрастает;
, если f убывает.
То есть мы нашли точку, значение функции в которой меньше (больше ). Но это противоречит определению нижней (верхней) грани, согласно которому
для всех .
Поэтому точки и не могут принадлежать множеству значений функции .

1.2. Теперь покажем, что множество значений является интервалом , а не объединением интервалов и точек. То есть для любой точки существует , для которого .

Согласно определениям нижней и верхней граней, в любой окрестности точек и содержится хотя бы один элемент множества . Пусть – произвольное число, принадлежащее интервалу : . Тогда для окрестности существует , для которого
.
Для окрестности существует , для которого
.

Поскольку и , то . Тогда
(4.1.1)   если возрастает;
(4.1.2)   если убывает.
Неравенства (4.1) легко доказать от противного. Но можно воспользоваться теоремой о существовании и монотонности обратной функции ⇑, согласно которой на множестве существует обратная функция , которая строго возрастает, если возрастает и строго убывает, если убывает . Тогда сразу получаем неравенства (4.1).

Итак, мы имеем отрезок , где если возрастает;
если убывает.
На концах отрезка функция принимает значения и . Поскольку , то по теореме Больцано – Коши, существует точка , для которой .

Поскольку , то тем самым мы показали, что для любого существует , для которого . Это означает, что множеством значений функции является открытый интервал .

2. Теперь покажем, что обратная функция непрерывна в произвольной точке интервала :  . Для этого применим предыдущую теорему ⇑ к отрезку . Поскольку , то обратная функция непрерывна на отрезке , в том числе и в точке .

Теорема доказана.

Использованная литература:
О.И. Бесов. Лекции по математическому анализу. Часть 1. Москва, 2004.
С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.

Автор: Олег Одинцов.     Опубликовано: 27-10-2018   Изменено: 24-10-2020

Источник

ПЗ. Обратные функции и их графики. Обратные тригонометрические функции.

Задание:

1)А)Опорный конспект.

Определение обратной функции.

Пусть функция  строго монотонная (возрастающая или убывающая) и непрерывная на области определения , область значений этой функции , тогда на интервале  определена непрерывная строго монотонная функция  с областью значений , которая является обратной для.

Другими словами, об обратной функции  для функции  на конкретном промежутке имеет смысл говорить, если на этом интервале  либо возрастает, либо убывает.

Функции f и g называют взаимно обратными.

Пример1.Найти функцию обратную для .

Решение.

Областью определения и областью значений этой функции является все множество действительных чисел. Выразим x через y (другими словами, решим уравнение  относительно x ).

 – это и есть обратная функция, правда здесь y – аргумент, а x – функция этого аргумента. Чтобы не нарушать привычки в обозначениях (это не имеет принципиального значения), переставив буквы x и y , будем писать .

Таким образом,  и  – взаимно обратные функции.

Приведем графическую иллюстрацию взаимно обратных линейных функций.

Очевидно, что графики симметричны относительно прямой y=x (биссектрисы первого и третьего квадрантов).

Пример2. Найти функцию обратную для .

Решение.

Областью определения этой функции является все множество действительных чисел, областью значений является интервал . Выразим x через y (другими словами, решим уравнение  относительно x).  – это и есть обратная функция. Переставив буквы x и y , имеем .hello_html_m61499e94.png

Таким образом,  и  – показательная и логарифмическая функции есть взаимно обратные функции на области определения.

График взаимно обратных показательной и логарифмической функций.
Перечислим свойства взаимно обратных функций  и .

 и .

Из первого свойства видно, что область определения функции совпадает с областью значений функции  и наоборот.

Графики взаимно обратных функций симметричны относительно прямой y=x.

Если  возрастает, то и  возрастает, если  убывает, то и  убывает.

Примеры нахождения взаимнообратных функций.

1)Для степенной функции  при  обратной является также степенная функция  Если заменить буквы, то получим пару взаимно обратных функций  и 

Графики для положительных а и отрицательных а.

2) Взаимно обратные показательная и логарифмическая функции  и , графики.

Подразумеваем, что а положительное и не равное единице число.

Графики для  и для 

3) Взаимно обратные тригонометрические и обратные тригонометрические функции.

а)График главной ветви синуса и арксинуса (светлая область).
hello_html_47303997.pngy = arcsin x

б)График главной ветви косинуса и арккосинуса (светлая область).
hello_html_m5cdd44d0.png y = arccos x

в) График главной ветви тангенса и арктангенса (светлая область).
hello_html_m50d8df33.png y = arctg x

г) График главной ветви котангенса и арккотангенса (светлая область).
hello_html_67f26bab.png y=arcctgx

Если Вам потребуются обратные функции для ветвей тригонометрических функций, отличных от главных, то соответствующую обратную тригонометрическую функцию нужно будет сдвинуть вдоль оси ординат на необходимое количество периодов.

Например, если Вам потребуется обратная функция для ветви тангенса на промежутке  (эта ветвь получается из главной ветви сдвигом на величину вдоль оси ох ), то ей будет являться ветвь арктангенса, сдвинутая вдоль оси oy на .

Б) Построить таблицы:

Табличные значения обратных тригонометрических функций.

hello_html_4c5b70ac.jpg

hello_html_m6baf672f.jpg

В) Преобразование выражений. (Перепишите и заполните пропуски)

4) Вычислить без калькулятора

2)Решить задание ( по примерам):

3)Решить задание :

В)1. Найдите значение выражения: а) arcsin1; б) arccos; в) arctg(); г)arcctg0.

2. Найдите значение выражения: а) arcsin; б) arccos0; в) arctg; г) arcctg.

3. Построить графики функций:

а) y =2 arcsin x ,б) y = 3arccos x,в) y = 2arctg x

Источник