Каким свойством обладают стороны описанного четырехугольника

Каким свойством обладают стороны описанного четырехугольника thumbnail

Опубликовано 7 месяцев назад по предмету
Геометрия
от miilo

  1. Ответ

    Ответ дан
    Аккаунт удален

    Суммы противоположных сторон равны: 
    a+c=b+d 

  2. Ответ

    Ответ дан
    Хеда15

    в описанном четырехугольнике суммы противолежащих сторон равны

    1. Ответ

      Ответ дан
      Хеда15

      ну ладно , в учебнике поищу

Не тот ответ, который вам нужен?

Найди нужный

Самые новые вопросы

Никита081

Математика – 6 месяцев назад

Сколько здесь прямоугольников

Alinashastova

История – 1 год назад

Какое управление было в древнейшем риме? как звали первого и последнего из царей рима?

diankayusupova3

Литература – 1 год назад

Уроки французского ответе на вопрос : расскажите о герое по следующему примерному плану: 1.почему мальчик оказался в райцентре ? 2.как он чувствовал себя на новом месте? 3.почему он не убежал в деревню? 4.какие отношения сложились у него с товарищами? 5.почему он ввязался в игру за деньги? 6.как характеризуют его отношения с учительницей ? ответе на эти вопросы пожалуйста ! сочините сочинение пожалуйста

tegysigalpa2012

Русский язык – 1 год назад

Помогите решить тест по русскому языку тест по русскому языку «местоимение. разряды местоимений» для 6 класса
1. укажите личное местоимение:
1) некто
2) вас
3) ни с кем
4) собой
2. укажите относительное местоимение:
1) кто-либо
2) некоторый
3) кто
4) нам
3. укажите вопросительное местоимение:
1) кем-нибудь
2) кем
3) себе
4) никакой
4. укажите определительное местоимение:
1) наш
2) который
3) некий
4) каждый
5. укажите возвратное местоимение:
1) свой
2) чей
3) сам
4) себя
6. найдите указательное местоимение:
1) твой
2) какой
3) тот
4) их
7. найдите притяжательное местоимение:
1) самый
2) моего
3) иной
4) ничей
8. укажите неопределённое местоимение:
1) весь
2) какой-нибудь
3) любой
4) этот
9. укажите вопросительное местоимение:
1) сколько
2) кое-что
3) она
4) нами
10. в каком варианте ответа выделенное слово является притяжательным местоимением?
1) увидел их
2) её нет дома
3) её тетрадь
4) их не спросили

pakhotnov228

Русский язык – 1 год назад

Переделай союзное предложение в предложение с бессоюзной связью.
1. океан с гулом ходил за стеной чёрными горами, и вьюга крепко свистала в отяжелевших снастях, а пароход весь дрожал.
2. множество темноватых тучек, с неясно обрисованными краями, расползались по бледно-голубому небу, а довольно крепкий ветер мчался сухой непрерывной струёй, не разгоняя зноя
3. поезд ушёл быстро, и его огни скоро исчезли, а через минуту уже не было слышно шума

ggg3288

Русский язык – 1 год назад

помогите прошу!перепиши предложения, расставляя недостающие знаки препинания. объясни, что соединяет союз и. если в предложении один союз и, то во втором выпадающем списке отметь «прочерк».пример:«я шёл пешком и,/поражённый прелестью природы/, часто останавливался».союз и соединяет однородные члены.ночь уже ложилась на горы (1) и туман сырой (2) и холодный начал бродить по ущельям.союз и соединяет:1) части сложного предложенияоднородные члены,2) однородные членычасти сложного предложения—.поэт — трубач зовущий войско в битву (1) и прежде всех идущий в битву сам (ю. янонис).союз и соединяет:1) части сложного предложенияоднородные члены,2) ​

Аккаунт удален

Физика – 1 год назад

Вокруг прямого проводника с током (смотри рисунок) существует магнитное поле. определи направление линий этого магнитного поля в точках a и b.обрати внимание, что точки a и b находятся с разных сторон от проводника (точка a — снизу, а точка b — сверху). рисунок ниже выбери и отметь правильный ответ среди предложенных.1. в точке a — «от нас», в точке b — «к нам» 2. в точке a — «к нам», в точке b — «от нас» 3. в обеих точках «от нас»4. в обеих точках «к нам»контрольная работа по физике.прошу,не наугад важно

Информация

Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.

Источник

      Определение 1. Окружностью, вписанной в четырёхугольник, называют окружность, которая касается касается каждой из сторон четырёхугольника (рис.1). В этом случае четырёхугольник называют четырёхугольником, описанным около окружности или описанным четырёхугольником.

Описанные четырехугольники свойства

Рис.1

      Замечание. В настоящем разделе мы рассматриваем только выпуклые четырёхугольники.

      Теорема 1. Если четырёхугольник описан около окружности, то суммы длин его противоположных сторон равны.

      Доказательство. Рассмотрим четырёхугольник ABCD, описанный около окружности, и обозначим буквами E, F, G, H – точки касания сторон четырёхугольника с окружностью (рис.2).

Описанные четырехугольники свойства

Рис.2

      В силу теоремы об отрезках касательных, проведённых к окружности из одной точки, справедливы равенства

AH = AE,       BF = BE,       CF = CG,       DH = DG,

      Складывая эти равенства, получим:

AH + BF + CF + DH =
= AE + BE + CG + DG,

      Поскольку

AH + BF + CF + DH =
= AD + BC,      
AE + BE + CG + DG =
= AB + CD,

то справедливо равенство

AD + BC = AB + CD,

что и требовалось доказать.

      Теорема 2 (обратная теорема к теореме 1). Если у четырёхугольника суммы длин противоположных сторон равны, то в этот четырёхугольник можно вписать окружность.

      Доказательство. Рассмотрим четырёхугольник ABCD, длины сторон которого удовлетворяют равенству

AD +BC = AB + CD,

и проведём биссектрисы углов BAD и CDA. Обозначим точку пересечения этих биссектрис буквой O, и опустим из точки O перпендикуляры OH, OE и OG на стороны AD, AB и CD соответственно (рис.3).

Описанные четырехугольники свойства

Рис.3

      Поскольку точка O лежит на биссектрисе угла BAD, то справедливо равенство

OH = OE,

      Поскольку точка O лежит на биссектрисе угла ADC, то справедливо равенство

Читайте также:  Какими целебными свойствами обладает чай

OH = OG,

      Следовательно, справедливы равенства

OH = OE = OG,

из которых вытекает, что точки H, E и G лежат на окружности с центром в точке O и радиусом OH, касающейся сторон четырёхугольника AD, AB и CD в точках H, E и G соответственно. При этом возможны два случая:

  1. Окружность касается касается стороны BC (рис.4).

    Описанные четырехугольники свойства

    Рис.4

          В этом случае четырёхугольник ABCD описан около окружности, и теорема доказана.

  2. Окружность не касается стороны BC.

    В этом случае касательная, проведенная к окружности из точки B, пересекает прямую DC в точке K, и возможны два случая:

    1. Точка K лежит между точками C и D (рис.5)
    2. Описанные четырехугольники свойства

      Рис.5

    3. Точка C лежит между точками K и D (рис.6)
    4. Описанные четырехугольники свойства

      Рис.6

      Рассмотрим случай 2а и приведём его к противоречию. В этом случае в силу того, что четырёхугольник ABKD является описанным, а также по условию теоремы справедливы равенства:

      Последнее равенство утверждает, что в треугольнике BKC сумма двух сторон равна третьей стороне, что противоречит неравенству треугольниканеравенству треугольниканеравенству треугольника. Полученное противоречие доказывает, что случай 2а невозможен.

      Совершенно аналогичные рассуждения позволяют заключить, что случай 2b также невозможен.

      Итак, возможен и реализуется лишь случай 1.

      Теорема доказана.

      Из доказательства теоремы 2 непосредственно вытекает

      Теорема 3. Биссектрисы всех внутренних углов описанного четырёхугольника пересекаются в одной точке – центре вписанной окружности.

      В следующей таблице приводятся примеры четырёхугольников, в которые можно вписать окружность. Доказательства утверждений непосредственно вытекают из теорем 1 и 2 и предоставляются читателю в качестве несложных упражнений.

      Примеры описанных четырёхугольников

      На сайте можно также ознакомиться с нашими учебными материалами для подготовки к ЕГЭ и ОГЭ по математике.

Источник

Сегодня ты узнаешь некоторые теоремы, которые помогут тебе в решении, казалось бы, сложных задач по геометрии…

Но после прочтения этой статьи они станут легкими!

Ведь ты будешь знать все об описанном четырехугольнике!

Поехали!

Посмотри – сперва нарисуем:

Каким свойством обладают стороны описанного четырехугольника

А теперь напишем:

Четырехугольник называется описанным, если существует окружность, касающаяся всех его сторон.

А что, разве не всегда существует такая окружность? Ведь вон треугольник-то всегда является описанным – потому что во всякий треугольник можно вписать окружность. Чем же четырехугольник-то хуже? И вот оказывается, что чем-то, да хуже.

Представь себе, например, длинный прямоугольник.

Каким свойством обладают стороны описанного четырехугольника

Как вот в него, спрашивается, можно вписать окружность? Конечно, никак. И это лишь один из примеров четырехугольника, в которой НЕЛЬЗЯ вписать окружность.

А в какие же можно? Вот, оказывается есть такая теорема (утверждение то есть).

В четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин его противоположных сторон равны.

Вот как это записывается в буквах:

Каким свойством обладают стороны описанного четырехугольника

( displaystyle a+c=b+d)
или (то же самое)
( displaystyle AB+CD=AD+BC)

Для лучшего понимания давай в буквальном смысле разберём на кусочки описанный четырехугольник. Смотри: пусть в четырехугольнике ( displaystyle ABCD) «сидит» окружность.

Каким свойством обладают стороны описанного четырехугольника

Но тогда у нас есть огромное количество касательных! Ты ещё помнишь, что отрезки касательных, проведённых из одной точки, равны? Ну, вот, значит

( displaystyle BK=BN) (обозначим ( displaystyle x))

( displaystyle CK=CL) (обозначим ( displaystyle y))

( displaystyle DL=DM) (обозначим ( displaystyle z))

( displaystyle AM=AN) (обозначим ( displaystyle u))

А теперь получилось, что

( displaystyle left| begin{array}{l}AB=x+u\CD=y+zend{array} right.Rightarrow AB+CD=x+y+z+u)

и

( displaystyle left| begin{array}{l}BC=x+y\AD=u+zend{array} right.Rightarrow BC+AD=x+y+z+u)

То есть ( displaystyle AB+CD=AD+BC)! Здорово, правда?

А теперь получим простое, но красивое следствие из этой теоремы.

Следствие.Если в параллелограмм можно вписать окружность, то это ромб.

Почему? Давай разберёмся. Пусть есть параллелограмм ( displaystyle ABCD).

Каким свойством обладают стороны описанного четырехугольника

Раз параллелограмм, то ( displaystyle AB=CD,~AD=BC) (вспоминаем свойства параллелограмма). Обозначим ( displaystyle text{AB}=text{CD}) буквой ( displaystyle a), а ( displaystyle text{AD}=text{BC}) буквой ( displaystyle b).

А теперь применим теорему. ( displaystyle ABCD) описанный ( displaystyle Rightarrow a+a=b+b), то есть ( displaystyle a=b) – вот и получился ромб.

Каким свойством обладают стороны описанного четырехугольника

Видишь, как сработала теорема?

Вот и ты, если видишь в задачке надпись «в четырёхугольник вписана окружность» или, конкретнее, скажем, «в трапецию вписана окружность», то сразу вспоминай, что ( displaystyle AB+CD=AD+BC), – и задача решится!

Ну… или не сразу решится, но этот факт непременно тебе поможет.

Каким свойством обладают стороны описанного четырехугольника

Четырехугольник называется описанным, если существует окружность, касающаяся всех его сторон.

Давай прежде всего осознаем, что, в отличие от треугольника, далеко не во всякий четырехугольник можно поместить окружность так, чтобы она касалась всех его сторон.

Ну, вот пример:

Каким свойством обладают стороны описанного четырехугольника

А раз так, то математики, конечно же, не могли успокоиться, пока не придумали теорему, которая сообщит нам, что же такое нужно требовать от четырехугольника, чтобы в него можно было поместить окружность, касающуюся всех сторон.

И вот эта теорема:

В четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин его противоположных сторон равны.

Каким свойством обладают стороны описанного четырехугольника

В буквах:

( large a+c=b+d)
или (в других буквах)
( large AB+CD=AD+BC)

Заметь, что (как всегда) слова «тогда и только тогда» означают сразу два утверждения: «туда» и «обратно». Итак, если подробнее, то теорема утверждает

  1. 1

    Если в четырехугольник можно вписать окружность, то ( AB+CD=AD+BC)

  2. 2

    Если в четырехугольнике есть ( AB+CD=AD+BC), то в него можно вписать окружность.

(Вспоминаем Алису с безумным шляпником и их «ем то, что вижу» и «вижу то, что ем»)

А теперь – доказательство!

Пункт 1 вообще ОЧЕНЬ лёгкий. Смотри:

Каким свойством обладают стороны описанного четырехугольника

Пусть в ( ABCD) вписана окружность. Тогда получается из точек ( A,B,C,) и ( D) проведено по две касательных, которые равны!

(Вспоминаем о равенстве отрезков касательных проведённых из одной точки)

Итак, у нас

( displaystyle BK=BN) (обозначим ( x))

( displaystyle CK=CL) (обозначим ( y))

( displaystyle DL=DM) (обозначим ( z))

( displaystyle AM=AN) (обозначим ( u))

И теперь получается, что

( begin{array}{*{20}{c}}{AB = x + u}\{CD = y + z}end{array} Rightarrow AB + CD = x + y + z + u)

и

( begin{array}{*{20}{c}}{BC = x + u}\{AD = u + z}end{array} Rightarrow AD + BC = x + y + z + u)

( displaystyle Rightarrow AB+CD=AD+BC!)

Обе этих суммы состоят из одинаковых кусочков, просто взятых в разном порядке.

Готово: пункт 1 доказали.

А теперь, наоборот, пункт 2.

Этот контент доступен после регистрации

Вы также получите доступ к 15 статьям YouClever без ограничений, видеоурокам и другим бесплатным материалам по тарифу “Репетитор”.

Пусть в ( displaystyle ABCD) выполняется ( displaystyle AB+CD=AD+BC)

Чтобы что-то понять, впишем окружность сперва в такую «кастрюлю» – ( displaystyle ABCD) без стороны ( displaystyle AD).

Каким свойством обладают стороны описанного четырехугольника

Обрати внимание, что это всегда можно сделать – центром ( displaystyle O) такой окружности будет пересечение биссектрис углов ( displaystyle B) и ( displaystyle C).

Ну вот, в «кастрюле» сидит окружность. При этом сторона ( displaystyle AD), если она НЕ касается этой окружности, может либо пересекать её, либо вовсе не иметь с ней общих точек.

Разберём эти случаи и убедимся, что оба они ведут к противоречию.

Каким свойством обладают стороны описанного четырехугольника

Пусть ( displaystyle AD) пересекает окружность. Давай тогда проведём ( displaystyle A{{D}_{1}}), которая будет касаться окружности.

По пункту 1 для четырехугольника ( displaystyle ABC{{D}_{1}}) должно быть

( displaystyle AB+C{{D}_{1}}=A{{D}_{1}}+BC),

а по условию для четырехугольника ( displaystyle ABCD)

( displaystyle AB+CD=AD+BC).

Значит (вычитаем нижнее равенство из верхнего)

( displaystyle C{{D}_{1}}-CD=A{{D}_{1}}-AD)

То есть ( displaystyle D{{D}_{1}}+AD=A{{D}_{1}})

Но так СОВСЕМ не может быть – нарушается неравенство треугольника для ( Delta AD{{D}_{1}}):

должно быть ( D{{D}_{1}}+AD>A{{D}_{1}}), а у нас ( D{{D}_{1}}+AD=A{{D}_{1}}).

Вот и противоречие. Поэтому точно выяснили, что ( AD) НЕ МОЖЕТ пересекать окружность.

Пусть теперь ( AD) «не дотягивается» до окружности.

Каким свойством обладают стороны описанного четырехугольника

Снова проведём ( A{{D}_{1}}), которая этой окружности каснется.

И опять ( AB+C{{D}_{1}}=A{{D}_{1}}+BC) и ( AB+CD=AD+BC). 

Теперь вычитаем из нижнего верхнее.

( CD-C{{D}_{1}}=AD-A{{D}_{1}})

То есть ( displaystyle D{{D}_{1}}+A{{D}_{1}}=AD) – опять нарушаем неравенство треугольника для ( displaystyle Delta AD{{D}_{1}}) – значит, опять имеем противоречие и заключаем, что ( displaystyle AD) НЕ МОЖЕТ вовсе не иметь общих точек с окружностью.

И что же этой бедной ( displaystyle AD) остаётся?

Только касаться окружности.

Вот и доказали пункт 2, а с ним и всю теорему.

А теперь посмотрим, как работает эта теорема. Докажем следующее следствие из теоремы.

Следствие. Если в параллелограмм можно вписать окружность, то это – ромб.

Доказываем: пусть есть параллелограмм ( displaystyle ABC{{D}}).

Каким свойством обладают стороны описанного четырехугольника

По свойству параллелограмма ( displaystyle AB=CD~) (обозначим ( displaystyle a)) и ( displaystyle BC=AD~) (обозначим ( displaystyle b)).

Раз в ( displaystyle ABCD) можно вписать окружность, то ( displaystyle AB+CD=AD+BC), то есть ( displaystyle 2a=2b); ( displaystyle a=b).

Каким свойством обладают стороны описанного четырехугольника

Вот и получился ромб. Понравилось?

Вот и прими на вооружение: если в задаче сказано, что окружность вписана в какой-нибудь четырехугольник, то постарайся применить то, что тогда ( displaystyle AB+CD=AD+BC) или даже прямо структуру из кусочков касательных – обязательно поможет!

Четырехугольник называется описанным, если существует окружность, касающаяся всех его сторон.

Каким свойством обладают стороны описанного четырехугольника

  • В четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин его противоположных сторон равны. В буквах: ( large AB+CD=AD+BC)

Каким свойством обладают стороны описанного четырехугольника

  • Если в параллелограмм можно вписать окружность, то это – ромб.

P.S. Последний бесценный совет ????

Ну вот, тема закончена. Если ты читаешь эти строки, значит, ты очень крут.

Почему?

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ОГЭ или ЕГЭ, для поступления в 10 класс или в институт на бюджет и, самое главное, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это не главное.

Главное то, что они более счастливы (есть такие исследования). Возможно, потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю…

Но думай сам…

Что нужно, чтобы быть наверняка лучше других на ОГЭ или ЕГЭ и быть в конечном итоге… более счастливым?

Набить руку, решая задачи.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время. И, если ты не решал их (много!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь. Это как в спорте: нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можешь воспользоваться нашим сборником задач с подробным разбором, и мы их всячески рекомендуем, потому что они разбиты по темам, по типам и даже собраны в целую программу подготовки.

Если решишь набить руку с помощью наших задач, зайди на сайт 100gia и приобрети одну из программ.

А еще можешь зарегистрироваться и получить доступ к огромному количеству бесплатных материалов, видеоуроков, тестов.

После регистрации ты сможешь:

  • проверить свою готовность к каждому типу задач на ЕГЭ (пройдя тест);
  • подтянуть слабые места с помощью видеоуроков, вебинаров;
  • понять тему с помощью статей учебника YouClever;
  • набить руку, решая задачи и получая проверку и решения;
  • сдать пробный ЕГЭ и получить сразу оценку и разбор ошибок.

Бонус: информатика и физика.

И в заключение…

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” – это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

Расскажи нам…

Описанные четырехугольники – легкотня, не так ли?

Выглядит странно, но на деле это довольно просто и полезно. Особенно часто помощь от них придет в задачах на трапецию.

Мы будем очень рады услышать твое мнение об этой статье! Как тебе? Понравилось? ????

Все ли было понятно? 

Напиши в комментариях внизу!

И еще можешь задать любые вопросы, если такие есть!

Мы обязательно ответим.

Удачи!

Источник

Каким свойством обладают стороны описанного четырехугольника

Четырёхугольником называется фигура, которая состоит из четырёх точек (вершин) и четырёх отрезков (сторон), которые последовательно соединяют вершины. При этом никакие три из данных точек не должны лежать на одной прямой, а соединяющие их отрезки не должны пересекаться.

Четырёхугольник называется выпуклым, если он расположен в одной полуплоскости относительно прямой, которая содержит любую из его сторон.

Сумма углов выпуклого четырёхугольника равна 360°:

∠A+∠B+∠C+∠D=360°.

Не существует четырёхугольников, у которых все углы острые или все углы тупые.

Каждый угол четырёхугольника всегда меньше суммы трёх остальных углов:

∠A < ∠B+∠C+∠D,   ∠B < ∠A+∠C+∠D,

∠C < ∠A+∠B+∠D,   ∠D < ∠A+∠B+∠D.

Каждая сторона четырёхугольника всегда меньше суммы трёх остальных сторон:

a < b+c+d,   b < a+c+d,

c < a+b+d,   d < a+b+c.

Площадь произвольного выпуклого четырёхугольника равна:

Каким свойством обладают стороны описанного четырехугольника

Каким свойством обладают стороны описанного четырехугольника

Диагоналями четырёхугольника называются отрезки, соединяющие его противолежащие вершины.

Диагонали выпуклого четырёхугольника пересекаются, а невыпуклого – нет.

Площадь произвольного выпуклого четырёхугольника:

Каким свойством обладают стороны описанного четырехугольника

Каким свойством обладают стороны описанного четырехугольникаКаким свойством обладают стороны описанного четырехугольникаКаким свойством обладают стороны описанного четырехугольника

Если M, N, P, Q – середины сторон выпуклого четырёхугольника ABCD, а  R, S – середины его диагоналей, то четырёхугольники MNPQ, MRPS, NSQR являются параллелограммами и называются параллелограммами Вариньона.

Форма и размеры параллелограммов Вариньона связаны с формой и размерами данного четырёхугольника ABCD. Так MNPQ – прямоугольник, если диагонали четырёхугольника ABCD перпендикулярны;  MNPQ – ромб, если диагонали четырёхугольника ABCD равны;  MNPQ – квадрат, если диагонали четырёхугольника ABCD перпендикулярны и равны;

SABCD = 2SMNPQ .

Каким свойством обладают стороны описанного четырехугольника

Отрезки  MP, NQ и RS называются первой, второй и третьей средними линиями выпуклого четырёхугольника.

В параллелограмме, и только в нём, середины диагоналей совпадают, и потому третья средняя линия вырождается в точку. Для других четырёхугольников средние линии – отрезки.

Все средние линии четырёхугольника пересекаются в одной точке и делятся ею пополам:

MG=GP,   NG=GQ,   RG=GS .

Сумма квадратов средних линий четырёхугольника равна четверти суммы квадратов всех его сторон и диагоналей:

MP2+ NQ2+ RS 2 = ¼(AB2+BC2+CD2+AD2+AC2+BD2).

Если β – угол между первой и второй средними линиями четырёхугольника, то его площадь:

SABCD = MP·NQ·sinβ.

Каким свойством обладают стороны описанного четырехугольника

Каким свойством обладают стороны описанного четырехугольника 

Равными плитками, которые имеют форму произвольного, не обязательно выпуклого, четырёхугольника можно замостить плоскость так, чтобы не было наложений плиток друг на друга и не осталось непокрытых участков плоскости. 

Каким свойством обладают стороны описанного четырехугольника

Четырёхугольник называется описанным около окружности (описанным), если существует такая окружность, которая касается всех его сторон, тогда сама окружность называется вписанной.

Четырёхугольник является описанным тогда и только тогда, кода суммы его противолежащих сторон равны:

a+c = b+d.

Для сторон описанного четырёхугольника и радиуса вписанной в него окружности верно:

a+c ≥ 4r,   b+d ≥ 4r.

Площадь описанного четырёхугольника:

= pr,

где r – радиус вписанной окружности, p – полупериметр четырёхугольника.

Площадь описанного четырёхугольника:

Каким свойством обладают стороны описанного четырехугольника

Каким свойством обладают стороны описанного четырехугольника

Центр вписанной в четырёхугольник окружности является точкой пересечения биссектрис всех четырёх углов этого четырёхугольника.

Точки касания вписанной окружности отсекают равные отрезки от углов четырёхугольника:

AK=AN,   BK=BL,   CL=CM,   DM=DN.

Если O – центр окружности, вписанной в четырёхугольник ABCD, то

∠AOB+∠COD=∠BOC+∠AOD=180°.

Для описанного четырёхугольника ABCD со сторонами AB=a, BC=b, CD=c и AD=d верны соотношения:

Каким свойством обладают стороны описанного четырехугольника

Каким свойством обладают стороны описанного четырехугольника

Четырёхугольник называется вписанным в окружность (вписанным), если существует окружность, проходящая через все его вершины, тогда сама окружность называется описанной около четырёхугольника.

Выпуклый четырёхугольник является описанным тогда и только тогда, когда сумма его противолежащих углов равна 180°:

∠A+∠C=∠B+∠D=180°.

Центр описанной около четырёхугольника окружности является точкой пересечения всех четырёх серединных перпендикуляров сторон этого четырёхугольника.

Каким свойством обладают стороны описанного четырехугольника

Первая теорема Птолемея. Выпуклый четырёхугольник тогда и только тогда является вписанным, когда выполняется равенство:

Каким свойством обладают стороны описанного четырехугольника

Вторая теорема Птолемея. Выпуклый четырёхугольник тогда и только тогда является вписанным, когда выполняется равенство:

Каким свойством обладают стороны описанного четырехугольника

Радиус окружности, описанной около четырёхугольника:

Каким свойством обладают стороны описанного четырехугольника

Площадь вписанного четырёхугольника:

Каким свойством обладают стороны описанного четырехугольника

Каким свойством обладают стороны описанного четырехугольника

Диагонали выпуклого четырёхугольника разбивают каждый его угол на два угла. Углы, опирающиеся на одну сторону, называются связанными углами.

Выпуклый четырёхугольник является вписанным тогда и только тогда, когда у него есть хотя бы одна пара равных связанных углов.

У вписанного четырёхугольника любые два связанных угла равны.

Каким свойством обладают стороны описанного четырехугольника

Если четырёхугольник одновременно является описанным и вписанным, то его площадь:

Каким свойством обладают стороны описанного четырехугольника

Каким свойством обладают стороны описанного четырехугольника

Для радиусов описанной и вписанной окружностей данного четырёхугольника и расстояния между центрами этих окружностей выполняется соотношение:

Каким свойством обладают стороны описанного четырехугольника

Каким свойством обладают стороны описанного четырехугольника

Параллелограммом называется четырёхугольник, противолежащие стороны которого попарно параллельны:

AB||CD,   BC||AD.

У параллелограмма противолежащие стороны равны и противолежащие углы равны:

AB=CD,   BC=AD;

∠A=∠C,   ∠B=∠D.

Сумма любых двух соседних углов параллелограмма равна 180°:

∠A+∠B=∠B+∠C=∠C+∠D=∠A+∠D=180°.

Каким свойством обладают стороны описанного четырехугольника

Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам:

AO=OC;   BO=OD.

Каждая диагональ делит параллелограмм на два равных треугольника:

∠ABC=∠CDA;   ∠ABD=∠CDB.

Две диагонали параллелограмма делят его на четыре равновеликих треугольника:

SΔABO=SΔBCO=SΔCDO=SΔADO.

Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон:

e2+f2 = a2+b2+a2+b2 = 2(a2+b2). 

Признаки параллелограмма:

  • Если у четырёхугольника противолежащие стороны попарно равны, то этот ?