Каким свойством обладают точки подвеса и центр качаний

Каким свойством обладают точки подвеса и центр качаний thumbnail

        Рассмотрим так называемый
математический маятник – материальную точку, подвешенную на невесомой нерастяжимой нити и совершающую колебания в вертикальной плоскости под действием силы тяжести.

Каким свойством обладают точки подвеса и центр качаний

Второй закон  для такого маятника запишется так:

,  
или  

        Сравнивая
его с дифференциальным уравнением гармонических
колебаний (2), увидим, что оно по виду будет совпадать, если sina заменить на
a,
что можно сделать при малых a. Следовательно, колебания математического маятника
можно считать гармоническими только при малых углах отклонения от положения
равновесия. 

       
Итак, гармонические колебания математического маятника описываются уравнением

       
Сравнивая его с уравнение (2), находим, что циклическая частота собственных колебаний математического маятника

       
Рассмотрим так называемый физический маятник, то есть реальное физическое тело, совершающее колебания относительно горизонтальной оси
O (оси качания), не проходящей через центр инерции тела C.

Каким свойством обладают точки подвеса и центр качаний

       
На рисунке обозначено:

               
ось качания маятника – неподвижная горизонтальная ось О, не проходящая через центр тяжести тела;

               
точка подвеса маятника О – пересечение оси качания с вертикальной плоскостью, проходящей через центр тяжести маятника и перпендикулярной оси качания;

               
приведенная длина физического маятника L пр – длина математического маятника, имеющего такой же период колебаний;

               
центр качания физического маятникаО1

        Согласно второму закону Ньютона, уравнение движения такого маятника запишется следующим образом:

где J – момент инерции маятника относительно точки О.

        Видно, что колебания физического маятника также будут гармоническими только при малых углах качания, то есть когда

sin
a

@

a. В этом случае уравнение движения (колебаний) маятника совпадает по виду с дифференциальным уравнением свободных колебаний:

       
Сравнивая это уравнение с уравнением свободных колебаний, найдем частоту колебаний физического маятника:

Из определения приведенной длины физического маятника найдем, что:

Здесь Jc – момент инерции относительно центра масс тела С.

        Центр качания О1 обладает тем свойством, что, если ось качания провести через
О1, частота колебаний маятника не изменится, а центр качания будет располагаться в точке
О. То есть точки О и О1 обладают свойством взаимозаменяемости. Проверить это утверждение следует следующим образом: необходимо вычислить частоту колебаний маятника, когда ось качания проходит через точки
О и О1 и сравнить эти формулы.

        Рассмотрим пружинный маятник (или в общем случае так называемый
линейный гармонический осциллятор), то есть материальную точку массой
m, совершающую линейные гармонические колебания под действием упругой силы
F:

F = – k x (для пружины это – закон Гука).
 

       
Второй закон Ньютона для такого маятника запишется так:

,  
или  

       
Последнее уравнение является уравнением свободных колебаний, откуда сразу находим период колебаний:

       

Источник

Физическим маятником называется твердое тело, спо­собное совершать колебания вокруг неподвижной точки, не совпадающей с его центром инерции (рис. 46а). В положении равновесия центр инерции С находится под точкой подвеса 0 маятника на одной с ней вертикали. При отклонении маятника от положения рав­новесия на угол j возникает вращательный момент сил, стремящийся вернуть маятник в положение равновесия. Этот момент равен

М = mglsinj,

где m –масса маятника, а l–расстояние между точ­кой подвеса ицентром масс маятника. Знак “–” означает, что момент сил направлен против углового смещения. Уравнение вращательной динамики принимает вид:

b = М / I = – (mgl/ I) sin j,

где I – момент  инерции   маятника  относительно оси, проходящей через точку подвеса. В случае малых колебаний (j≤ 5°) это уравнение переходит в дифференциальное урав­нение собственных незатухающих колебаний:

Каким свойством обладают точки подвеса и центр качаний,

решением  которого является функция:

j = А cos (w0t + a0),

где через w0 обозначена угловая частота колебаний:

w0 = (mgl/ I)1/2.

Таким образом, при малых отклонениях от положения равновесия физический маятник совершает гармонические колебания, угловая частота w0 ко­торых зависит от массы маятника, момента инерции маятника относительно оси вращения и расстояния ме­жду осью вращения и центром инерции маятника. Период колебаний физического маят­ника определяется выражением:

Каким свойством обладают точки подвеса и центр качаний.

Из сопоставления формул Каким свойством обладают точки подвеса и центр качаний и Каким свойством обладают точки подвеса и центр качаний следует, что математический маятник с длиной lпр = (I/ml) имеет такой же период колебаний, как и данный физический маятник. Величину lпр = (I/ml) называют приведенной длиной физического маятника. Итак, приведенная длина физического маятника – это длина такого математического маятника, период коле­баний которого совпадает с периодом данного физиче­ского маятника. Точка 0′ на прямой, соединяющей точку подвеса с цент­ром инерции, лежащая на расстоянии приведенной дли­ны от оси вращения, называется центром качания физического маятника. По теореме Штейнера момент инерции маятника I может быть представлен в виде

I = I0 + ml2,

где I0 – момент инерции относительно оси, параллельной оси вращения и проходящей через центр инерции маят­ника.

Подставив  I = I0 + ml2   в  lпр = (I/ml) , получаем:  lпр = (I0/ml) + l , откуда следует, что приведенная длина lпр всегда боль­ше длины l, так что точка подвеса 0 и центр качания 0′ лежат по разные стороны от центра инерции С (центра масс). Подвесим маятник в центре качания 0′.Приведенная длина в этом случае будет равна: lпр = (I0/ml‘) + l , где l– расстояние между первоначальным центром ка­чания и центром инерции маятника. Учитывая, что l= lпр – l, имеем:

lпр = I0/m(lпр – l) + lпр – l =  lпр + [(I0 + ml2)  – mlпрl] /m(lпр – l).

Выражение, стоящее в квадратных скобках, равно нулю, поскольку I0 + ml2 = I – это момент инер­ции относительно первоначальной оси вращения; этой же величине равно выражение mlпрl.Таким образом, мы приходим к выводу, что при подвешивании маятника в центре качания приведенная длина, а значит, и период колебаний будут теми же, что и вначале. Следовательно, точка подвеса 0 и центр кача­ния 0′ обладают свойством взаимности: при переносе точки подвеса в центр качания прежняя точка подвеса стано­вится новым центром качания.

На свойстве взаимности осно­вано определение ускорения силы тяжести с помощью, так называемого оборотного маятника (рис. 46б). Оборотным на­зывается такой маятник, у которого имеются две парал­лельные друг другу, закрепленные вблизи его концов опорные призмы П1 и П2, за которые он может поочередно подвешиваться. Вдоль маятника могут перемещаться и за­крепляться на нем тяжёлые грузы – чечевицы А и В. Перемещением гру­зов добиваются того, чтобы при подвешивании маятника за любую из призм период колебаний был одинаков. Тогда расстояние между опорными ребрами призм будет равно lпр. Измерив период колебаний маятника Т0 и определив lпр, при помощи формулы Каким свойством обладают точки подвеса и центр качаний можно найти ускорение силы тяжести g:

Каким свойством обладают точки подвеса и центр качаний.

Источник

Физическим маятником называется твердое тело, способное совершать
колебания вокруг неподвижной точки, не совпадающей с его центром инерции

Физическим маятником называется твердое тело, способное
совершать колебания вокруг неподвижной точки, не совпадающей с его центром
инерции. В положении равновесия центр инерции маятника С под точкой подвеса
маятника О, на одной с ней вертикали (рис. 170). При отклонении маятника от
положения равновесия на угол возникает вращательный момент,
стремящийся вернуть маятник в положение равновесия. Этот момент равен

Читайте также:  Какими свойствами обладает любой прямоугольник

(67.1)

где m— масса
маятника» а l-расстояние между точкой подвеса и центром инерции маятника. Знак
«-» имеет то же значение, что и в случае формулы (66.1). Обозначив момент
инерции маятника относительно оси, проходящей через точку подвеса, буквой lможно написать:

(67.2)

Каким свойством обладают точки подвеса и центр качаний

Рис.
170.

В случае малых колебаний (67.2) переходит в уже известное
нам уравнение:

(67.3)

Через обозначена в данном случае следующая
величина:

(67.4)

Из уравнений (67.3) и (67.4) следует, что при малых
отклонениях от положения равновесия физический маятник совершает гармонические
колебания, частота которых зависит от массы маятника, момента инерции маятника
относительно оси вращения и расстояния между осью вращения и центром инерции
маятника. В соответствии с (67.4) период колебания физического маятника
определяется выражением

(67.5)

Из сопоставления формул (66.6) и (67.5) получается, что
математический маятник с длиной

(67.6)

будет иметь такой период колебаний,
как и данный физический маятник. Величину (67.6) называют приведенной длиной
физического маятника. Таким образом, приведенная длина физического маятника —
это длина такого математического маятника, период колебаний которого совпадает
с периодом данного физического маятника

Точка на прямой, соединяющей точку подвеса с центром
инерции, лежащая на расстоянии приведенной длины от оси вращения, называется центром
качания физического маятника (см. точку О’ на рис.107).

По теореме Штейпера момент инерции маятника l может быть
представлен в виде

(67.7)

где l0 — момент инерции
относительно оси, параллельной оси вращений и проходящей через центр инерции
маятника. Подставив (67.7) в формулу (67.6), получаем:

(67.8)

Из (67.8) следует, что приведенная длина всегда больше 1,
так что точка подвеса и центр качания лежат по разные стороны от центра
инерции.

Подвесим маятник в точке, совпадающей с центром качания О’ В
соответствии с (67.8) приведенная длина в этом случае будет равна

(67.9)

где l’ — расстояние между
первоначальным центром качания и центром инерции маятника. Учитывая, что , выражение (07.9)
можно записать следующим образом:

Выражение, стоящее в квадратных скобках, равно нулю.
Действительно, равно
I—моменту инерции относительно первоначальной оси
вращения; этой же величине в соответствии с (67.6) равно выражение mllпр. Таким образом, мы приходим к выводу,
что при подвешивании маятника в центре качания приведенная длина, а значит, и
период колебаний будут теми же, что и вначале. Следовательно, точка подвеса и
центр качания обладают свойством взаимности при переносе точки подвеса в центр
качания прежняя точка подвеса .становится новым центром качания.

На установленном нами свойстве взаимности основано
определение ускорения силы тяжести с помощью так называемого оборотного
маятника. Оборотным называется такой маятник, у которого имеются две
параллельные друг другу, закрепленные вблизи его концов опорные призмы, за
которые он может поочередно подвешиваться. Вдоль маятника могут перемещаться и
закрепляться на нем тяжёлые грузы. Перемещением грузов добиваются того, чтобы
при подвешивании маятника за любую из призм период колебаний был одинаков.
Тогда расстояние между опорными ребрами призм будет равно lпр.
Измерив период колебаний маятника и зная l™, можно по Формуле

найти ускорение силы тяжести g.

Источник

Колебания — это процессы, которые имеют какую либо степень повторяемости во времени.

Свободные (собственные) колебания — это колебания, которые предоставляют сами себе системы, вызванные первоначальным кратковременным внешним возбуждением.

Колебательная система — это такая система, которая способная производить свободные колебания.

Колебательная система соответствует следующим условиям:

  • необходимо положение устойчивого равновесия;
  • необходим фактор, не позволяющий системе остановиться в положении равновесия в процессе колебаний;
  • трение в системе должно быть небольшим, а собственная частота колебательной системы обусловливается только параметрами системы.

Амплитуда колебаний — это максимальное значение величины (для механических колебаний это смещение), которая совершает колебания.

Период колебаний — это самый маленький отрезок времени, через который система совершает колебания, снова возвращается в исходное состояние, т. е. в начальный момент.

Частота колебаний — это физическая величина, равная числу колебаний, которые совершаются в единицу времени.

Циклическая частота — это характеристика гармонических колебаний, совершаемых за
fiz22.1

Фаза колебаний — это аргумент функции, который периодически изменяется.

Затухающие колебания — это собственные колебания, у которых амплитуда уменьшается со временем, что обусловлено потерями энергии колебательной системой.

Коэффициент затухания и логарифмический декремент затухания — это характеристика быстроты уменьшения амплитуды в случае механических колебаний, где энергия убывает за счет действия сил трения и других сил сопротивления.

Декремент затухания — это количественная характеристика быстроты затухания колебаний, которая определяется натуральным логарифмом отношения двух последовательных максимальных отклонений fiz22.2, колеблющейся величины в одну сторону: fiz22.3

Декремент затухания — величина, обратная числу колебаний, по истечении которых амплитуда убывает в: е раз е = 2,71828). Промежуток времени, необходимый для этого, называется временем релаксации.

Дифференциальное уравнение малых затухающих колебаний системы:
fiz22.4

Вынужденные колебания — это колебания, которые возникают под действием внешней периодической силы.

Дифференциальное уравнение вынужденных колебаний:
fiz22.5

Резонанс — это процесс резкого возрастания амплитуды вынужденных колебаний при приближении циклической частоты fiz22.6, вынуждающей силы к собственной циклической частоте fiz22.7 колебательной системы.

Автоколебания — это незатухающие колебания физической системы, которые способны существовать без воздействия на нее внешних сил.

Автоколебательная система — это физическая система, где имеет место существовать автоколебания.

Автоколебательная система состоит из следующих частей:

  • колебательная система, в которой параметры определяют частоту автоколебаний;
  • источник энергии, который способствует поддержанию колебаний;
  • клапан, который регулирует поступление энергии в колебательную систему;
  • положительная обратная связь, которая способна управлять клапаном в колебательной системе.

Обратная связь — это воздействие результатом какого-либо процесса на его протекание.

Обратная связь бывает:

  • положительная — это связь, которая приводит к увеличению отклонения;
  • отрицательная — это связь, которая приводит к уменьшению отклонения.

Периодические колебания — это колебания, которые имеют изменяющиеся значения физических величин, но которые повторяются через равные отрезки времени.

Смещение — это физическая величина, которая является характеристикой колебаний, равная отклонению тела от положения равновесия в данный момент времени.

Математический, физический, пружинный маятники.

Математический маятник — это тело малых размеров, подвешенное на тонкой нерастяжимой нити, масса которой ничтожно мала по сравнению с массой тела. В положении равновесия, когда маятник висит по отвесу, сила тяжести fiz22.8 уравновешивается силой натяжения нити fiz22.9.

Читайте также:  Какие полезные свойства цикория

Составляющая силы тяжести при отклонении маятника из положения равновесия на некоторый угол ф fiz22.10, где знак «минус» означает, что касательная составляющая на- правлена в сторону, противоположную отклонению маятника. Второй закон Ньютона для математического маятника запишется: fiz22.11, где x — линейное смещение маятника от положения равно- весия по дуге окружности, l — радиус.

Угловое смещение будет равно fiz22.12

Для малых колебаний математического маятника второй закон Ньютона записывается в виде:
fiz22.13

Если математический маятник совершает малые колебания, то он является гармоническим осциллятором. Собственная частота малых колебаний математического маятника:
fiz22.14

Период малых колебаний математического маятника определяется:
fiz22.15

Физический маятник — это тело, которое является твердым, производящее колебания в поле каких-либо сил относительно точки, которая не является центром масс этого тела, или горизонтальной оси.

Второй закон Ньютона для физического маятника принимает вид:
fiz22.16

Собственная частота малых колебаний физического маятника:
fiz22.17

Период малых колебаний физического маятника определяется:
fiz22.18

Круговая частота свободных колебаний физического маятника определяется выражением:
fiz22.19

Центр качания физического маятника — это точка, где необходимо сосредоточить всю массу физического маятника, чтобы его период колебаний оставался постоянным.

Физический маятник обладает следующим замечательным свойством: если физический маятник подвесить за центр качания, то его период колебаний будет постоянным, а прежняя точка подвеса станет новым центром качания.

Пружинный маятник — это колебательная система, которая состоит из груза, подвешенного к абсолютно упругой пружине.

Пружинный маятник совершает гармонические колебания с циклической частотой:
fiz22.20, где k — коэффициент жесткости.

Период пружинного маятника определяется:
fiz22.21

Уравнение движения пружинного маятника при этом имеет вид:
fiz22.22

Источник

Цель работы: изучение колебаний математического и физического маятников и измерение ускорения свободного падения.

Теоретическое введение

Колебательным движением называется процесс, при котором система, многократно отклоняясь от положения равновесия, каждый раз вновь возвращается к нему.

Существует общность закономерностей большого разнообразия колебательных процессов, поэтому все они могут быть сведены к совокупности простейших колебаний – гармонических.

Гармоническим колебательным движением называется такое колебательное движение, при котором колеблющаяся величина изменяется с течением времени по закону синуса или косинуса. Основные характеристики колебательных процессов можно рассмотреть на примере механических колебаний материальной точки.

Представим себе материальную точку М, равномерно вращающуюся по окружности радиуса А с угловой скоростью ω (рис.12.1). Тогда точка Мх – проекция точки М на ось х – будет совершать периодические колебания вдоль оси х. Смещение колеблющейся точки от положения равновесия вдоль оси х определяется по закону:

, (12.1)

где А – амплитуда колебаний (абсолютное значение максимального смещения), – фаза колебаний, которая определяет угловое смещение точки М в любой момент времени, α0 – начальная фаза, – круговая (циклическая) частота, равная

; (12.2)

ν – частота колебаний (число полных колебаний в единицу времени, , – число колебаний за время t), – период колебаний (время совершения одного полного колебания). Выражение (12.1) – кинематическое уравнение гармонического колебательного движения.

Скорость колеблющейся материальной точки получим, продифференцировав (12.1) по времени:

. (12.3)

Продифференцировав (12.3), получим ускорение а:

. (12.4)

Учитывая (12.1), имеем: , или:

. (12.5)

Выражение (12.5) описывает гармонические колебания величины x и называется дифференциальным уравнением гармонического осциллятора. Его решением является гармоническая функция (12.1). Если вторая производная по времени какой-либо физической величины (не обязательно смещения) пропорциональна самой величине с противоположным знаком, то данная физическая величина изменяется со временем по гармоническому закону.

Любое тело (рис. 12.2), подвешенное в поле силы тяжести так, что точка подвеса О не совпадает с центром тяжести С, называется физическим маятником. Пусть отклонение маятника от положения равновесия характеризуется углом φ. При отклонении маятника от положения равновесия возникает вращающий момент силы , стремящийся вернуть маятник в положение равновесия. Его величина , где m – масса маятника; – расстояние от центра тяжести маятника до точки подвеса, – плечо силы тяжести (кратчайшее расстояние от линии действия силы до оси вращения).

Направления вращающего момента и углового перемещения противоположны (момент силы возвращает маятник к положению равновесия), поэтому в проекциях на ось вращения

. (12.6)

По второму закону Ньютона для вращательного движения маятника:

, (12.7)

где – момент инерции маятника относительно оси, проходящей через точку подвеса; e – угловое ускорение маятника, равное второй производной угла поворота: .

Из уравнений (12.6) и (12.7) имеем:

, или . (12.8)

При малых углах , и уравнение (12.8) будет иметь вид:

. (12.9)

Сравнивая (12.9) и (12.5), устанавливаем, что j изменяется по гармоническому закону с круговой частотой ω, причем

, (12.10)

а период колебаний маятника

. (12.11)

Частным случаем физического маятника является маятник математический. Если вся масса маятника сосредоточена в одной точке (например, шарик, подвешенный на невесомой нерастяжимой нити), то такой маятник называют математическим (рис.12.3). Для математического маятника момент инерции рассчитывается как для материальной точки: , поэтому период его колебаний равен:

. (12.12)

Формулу (12.12) можно получить, непосредственно записав второй закон Ньютона для материальной точки. На шарик, подвешенный на нити (рис.12.3), действуют сила тяжести и сила натяжения нити , тогда

. (12.13)

Сила натяжения нити не имеет касательной составляющей, а проекция силы тяжести для малых углов φ равна , тогда касательное ускорение . Угол отклонения маятника из положения равновесия , где x – отклонение из положения равновесия. Наконец, касательное ускорение – это вторая производная координаты x, тогда

. (12.14)

Отсюда . Это дифференциальное уравнение гармонических колебаний идентично (12.5), если ; следовательно, (12.12) доказано.

Приведенной длиной физического маятника называется длина такого математического маятника, который имеет тот же период колебаний, что и данный физический маятник:

. (12.15)

В лабораторной работе используется физический маятник в виде кольца (рис.12.4) или в виде однородного тонкого стержня (рис.12.5). Момент инерции маятника относительно точки подвеса О можно найти по теореме Штейнера: момент инерции тела относительно произвольной оси равен сумме момента инерции тела относительно оси, проходящей через центр масс параллельно данной оси, и произведения массы тела на квадрат расстояния между осями. Для кольца получим:

. (12.16)

Здесь – момент инерции маятника относительно оси, проходящей через точку подвеса O, IC – момент инерции относительно оси, проходящей через центр масс – точку C, r – расстояние между осями. Момент инерции полого (толстостенного) цилиндра или кольца массой m с внутренним радиусом r и наружным R относительно оси, проходящей через центр масс, равен:

, (12.17)

Тогда из (12.16) и (12.17) получаем:

, (12.18)

где и – внешний и внутренний диаметры кольца соответственно. Из (12.11) выразим ускорение свободного падения с учетом, что длина физического маятника равна расстоянию от точки подвеса до центра масс, то есть для кольца , и из (12.18) подставим момент инерции:

Читайте также:  Какими свойствами обладает слива

,

и окончательно:

. (12.19)

Для стержня по теореме Штейнера получим:

, (12.20)

где – момент инерции стержня относительно точки подвеса О, – расстояние между центром масс (центром стержня) и точкой подвеса (длина физического маятника), – момент инерции стержня относительно центра масс:

, (12.21)

L – длина стержня, m – его масса. Можно показать, что для любого маятника приведенная длина lпр. больше, чем расстояние от центра масс до точки подвеса (длины физического маятника): из (12.15) и (12.20) следует, что

.

Точка О1, лежащая на прямой ОС на расстоянии lпр.от точки подвеса маятника (рис.12.5), называется центром качания маятника. Центр качания О1 и точка подвеса О обладают свойством взаимности: если маятник подвесить так, чтобы его ось качания проходила через точку О1, то точка О будет совпадать с новым положением центра качания маятника, то есть приведенная длина и период колебаний маятника останутся прежними. Покажем это. По теореме Штейнера момент инерции I1 маятника относительно оси, проходящей через точку О1, равен:

. (12.22)

Из (12.20) и (12.22) вычислим :

. (12.23)

Из (12.10) выразим момент инерции маятника и запишем аналогичную формулу для : . Здесь использовано условие, что частота колебаний маятника относительно оси, проходящей через точку О1, должна быть той же самой, что и для оси, проходящей через точку О. Подставив оба момента инерции в (12.23) получим уравнение:

.

Далее после преобразований: ; и после сокращения на получим: . По определению приведенной длины физического маятника (12.15): , то есть , что и требовалось показать.

Для физического маятника – стержня из (12.15), (12.20) и (12.21):

, или

. (12.24)

Экспериментальная часть

Математический маятник

Примечание: выполнять только по заданию преподавателя.

Приборы и оборудование: секундомер, математический маятник (шарик на нити на штативе).

1. Ознакомьтесь с установкой. Определите длину математического маятника . Отведите маятник от положения равновесия на небольшой угол (10÷150) и отпустите. Пропустив 2-3 колебания, включите секундомер и определите время t, за которое совершится N полных колебаний (взять N=50÷100). Вычислите период колебаний маятника по формуле (12.25):

. (12.25)

Таблица 12.1


опыта
,
м
,
м
N ,
с
,
с
,
с
,
с
,
м/с2
,
м/с2
,
%
,
м/с2
                     
               
               
               
               
           
           

2. Повторите опыт (можно установить другую длину маятника) не менее 3 раз. Вычислите значение ускорения свободного падения по формуле (12.26):

. (12.26)

3. Рассчитайте погрешности измерений.

4. Все результаты занесите в таблицу 12.1.

Замечание: Среднее значение периода рассчитывается только в том случае, если длина маятника одна и та же во всех опытах. Тогда ускорение свободного падения следует рассчитать один раз, исходя из среднего значения периода. В этом случае погрешность периода рассчитывается по стандартной методике расчета погрешностей случайной величины:

, (12.27)

где n – число опытов, – абсолютная погрешность i-го опыта, – коэффициент Стьюдента для доверительной вероятности α=0.95.

Далее погрешность рассчитывается по стандартной методике для расчета погрешностей при косвенных измерениях:

. (12.28)

Если длина маятника в опытах была неодинаковой, ускорение свободного падения рассчитывается в каждом опыте, затем усредняется, и его погрешность рассчитывается как при прямых измерениях случайной величины, то есть по формуле, аналогичной (12.27):

.

Физический маятниккольцо (обруч).

Приборы и оборудование: секундомер, физический маятник (кольцо или обруч на штативе с опорной призмой), линейка, штангенциркуль.

1. Измерьте внешний и внутренний диаметр кольца.

2. Определите при помощи секундомера время , за которое совершится N полных колебаний (N=30÷50). Вычислите период колебаний по формуле (12.25).

3. Повторите опыт не менее 3 раз (оптимально – 5).

4. Определите ускорение свободного падения по формуле (12.19), подставив в неё среднее значение периода колебаний.

5. Определите погрешность измерений:

, где производные равны:

; ; .

6. Все результаты измерений и вычислений занесите в таблицу 12.2.

Таблица 12.2

,
м
,
м
,
м
,
м
N ,
с
,
с
,
с
,
с
,
м/с2
,
м/с2
                         
       
       
       
       
                       

Физический маятникстержень

Приборы и оборудование: секундомер, физический маятник (стержень с опорной призмой), штатив, линейка.

1. Измерьте длину стержня .

2. Измерьте – расстояние от точки подвеса стержня до его центра. Величина не должна быть меньше 13 см.

3. Определите при помощи секундомера время t, за которое совершится N полных колебаний (30÷50). Вычислите период колебаний по формуле (12.25).

4. Повторите опыт 5 раз.

5. Рассчитайте погрешность периода по формуле (12.27).

6. Определите экспериментальное значение приведенной длины физического маятника (см. (12.15)), используя среднее значение периода колебаний:

. (12.29)

7. Рассчитайте погрешность приведенной длины:

8. Найдите точку качания физического маятника; для этого нужно вычислить l1=lпр–l и закрепить опорную призму маятника на расстоянии l1 от центра стержня.

9. Повторите измерения времени t1 для N колебаний и расчеты периода T1 и его погрешности (пункты 3-5). Результаты запишите в таблицу 12.3.

10. Сравните T1 и T, сделайте выводы.

11. По формуле (12.24) определите lпр.теор. – теоретическое значение приведенной длины, рассчитайте погрешность:

,

где производные равны ; (см. (12.24)).

12. Все полученные данные запишите в табл.12.3.

13. Сравните теоретическое и экспериментальное значения lпр, сделайте выводы.

Таблица 12.3

Контрольные вопросы

1. Дайте определение колебательного процесса.

2. Какие колебания называются гармоническими?

3. Выведите дифференциальное уравнение гармонических колебаний.

4. Что называется математическим маятником?

5. Дайте определение физического маятника.

6. Что называется угловым ускорением?

7. Дайте определение момента инерции твердого тела.

8. Что такое момент силы?

9. Сформулируйте основной закон динамики вращательного движения.

10. Получите дифференциальное уравнение колебаний физического маятника.

11. Получите формулу для круговой частоты и периода колебаний физического маятника.

12. Сформулируйте теорему Штейнера. Как в данной работе она используется?

13. Что такое приведенная длина физического маятника?

14. Как найти период и частоту колебаний математического маятника?

15. Выведите формулу (12.19).

16. Что такое точка качания? Чем она замечательна?

Используемая литература

[5] §2.8, 7.1, 7.3, 19.1, 19.2; [3] §4.1, 4.2, 4.3, 27.1, 27.2; [1] §38, 39, 49, 50, 53, 54; [6] §3.3; 3.6, 3.7, 3.8; [7] §16, 18, 140, 141, 142.

Лабораторная работа 1-13



Источник