Какими физическими свойствами обладают щелочноземельные металлы

Какими физическими свойствами обладают щелочноземельные металлы thumbnail

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 21 августа 2019; проверки требуют 14 правок.

Группа →2
↓ Период
2
4

Бериллий

Be

9,0122

2s2
3
12

Магний

Mg

24,305

3s2
4
20

Кальций

Ca

40,078

4s2
5
38

Стронций

Sr

87,62

5s2
6
56

Барий

Ba

137,327

6s2
7
88

Радий

Ra

(226)

7s2

Щёлочноземе́льные мета́ллы — химические элементы 2-й группы[1]периодической таблицы элементов: бериллий (Be), магний (Mg), кальций (Ca), стронций (Sr), барий (Ba), радий (Ra)[2][3], унбинилий (Ubn).

Бериллий и магний[править | править код]

Раньше Be и Mg не относили к щёлочноземельным металлам, потому что их гидроксиды не являются щелочами.
Be(OH)2 — амфотерный гидроксид.
Mg(OH)2 — малорастворимое основание, которое дает слабощелочную реакцию и окрашивает индикатор.

Be не реагирует с водой, Mg — очень медленно (при обычных условиях) в отличие от всех остальных щёлочноземельных металлов.

Однако сегодня, согласно определению ИЮПАК, бериллий и магний относят к щёлочноземельным металлам.

Физические свойства[править | править код]

К щёлочноземельным металлам часто относят только кальций, стронций, барий и радий, реже магний и бериллий. Однако согласно номенклатуре ИЮПАК щёлочноземельными металлами следует считать все элементы 2-й группы[2]. Первый элемент этой группы, бериллий, по большинству свойств гораздо ближе к алюминию, чем к высшим аналогами группы, в которую он входит (диагональное сходство). Второй элемент этой группы, магний, уже обладает некоторыми химическими свойствами, общими для щелочноземельных металлов, но в остальном заметно отличается от них, в частности, значительно меньшей активностью, и рядом свойств напоминает всё тот же алюминий.

Все щёлочноземельные металлы серые, твёрдые при комнатной температуре вещества. В отличие от щелочных металлов, они существенно более твёрдые, и ножом преимущественно не режутся (исключение — стронций). Рост плотности
щёлочноземельных металлов наблюдается только начиная с кальция. Самый тяжёлый — радий, по плотности сравнимый с германием (ρ= 5,5 г/см3).

Некоторые атомные и физические свойства щелочноземельных металлов

Атомный
номер
Название,
символ
Число изотопов (природных + искусственных)Атомная массаЭнергия ионизации, кДж·моль−1Сродство к электрону, кДж·моль−1ЭОМеталл. радиус, нм (По Полингу)Ионный радиус, нм

(По Полингу)

tпл,
°C
tкип,
°C
ρ,
г/см³
ΔHпл, кДж·моль−1ΔHкип, кДж·моль−1
4Бериллий Be1+11а9,012182898,80,191,570,1690,031127829701,84812,21309
12Магний Mg3+19а24,305737,30,321,310,245130,06565011051,7379,2131,8
20Кальций Ca5+19а40,078589,40,401,000,2790,09983914841,559,20153,6
38Стронций Sr4+35а87,62549,01,510,950,3040,11376913842,549,2144
56Барий Ba7+43а137,327502,513,950,890,2510,13572916373,57,66142
88Радий Ra46а226,0254509,30,90,25740,14370017375,58,5113
120Унбинилий Ubn

а Радиоактивные изотопы

Химические свойства[править | править код]

Щёлочноземельные металлы имеют электронную конфигурацию внешнего энергетического уровня ns², и являются s-элементами, наряду с щелочными металлами, водородом и гелием. Имея два валентных электрона, щёлочноземельные металлы легко их отдают, и в большинстве соединений имеют степень окисления +2 (очень редко +1).

Химическая активность щёлочноземельных металлов растёт с ростом порядкового номера. Бериллий в компактном виде не реагирует ни с кислородом, ни с галогенами даже при температуре красного каления (до 600 °C, для реакции с кислородом и другими халькогенами нужна ещё более высокая температура, фтор — исключение). Магний защищён оксидной плёнкой при комнатной температуре и более высоких (до 650 °C) температурах и не окисляется дальше. Кальций медленно окисляется и при комнатной температуре вглубь (в присутствии водяных паров), и сгорает при небольшом нагревании в кислороде, но устойчив в сухом воздухе при комнатной температуре. Стронций, барий и радий быстро окисляются на воздухе, давая смесь оксидов и нитридов, поэтому их, подобно щелочным металлам и кальцию, хранят под слоем керосина.

Озониды и надпероксиды щёлочноземельных металлов детально не изучены, они являются неустойчивыми соединениями. Они не находят широкого применения.

Оксиды и гидроксиды щёлочноземельных металлов имеют тенденцию к усилению основных свойств с ростом порядкового номера.

Простые вещества[править | править код]

Бериллий реагирует со слабыми и сильными растворами кислот с образованием солей:

однако пассивируется холодной концентрированной азотной кислотой.

Реакция бериллия с водными растворами щелочей сопровождается выделением водорода и образованием гидроксобериллатов:

При проведении реакции с расплавом щелочи при 400—500 °C образуются диоксобериллаты:

Магний, кальций, стронций, барий и радий реагируют с водой с образованием щелочей (магний с холодной водой реагирует очень медленно, но при внесении раскалённого порошка магния в воду, а также в горячей воде — бурно):

Также кальций, стронций, барий и радий реагируют с водородом, азотом, бором, углеродом и другими неметаллами с образованием соответствующих бинарных соединений:

Оксиды[править | править код]

Оксид бериллия — амфотерный оксид, растворяется в концентрированных минеральных кислотах и щелочах с образованием солей:

но с менее сильными кислотами и основаниями реакция уже не идет.

Оксид магния не реагирует с разбавленными и концентрированными основаниями, но легко реагирует с кислотами и водой:

Оксиды кальция, стронция, бария и радия — основные оксиды, реагируют с водой, сильными и слабыми растворами кислот и амфотерными оксидами и гидроксидами:

Гидроксиды[править | править код]

Гидроксид бериллия амфотерен, при реакциях с сильными основаниями образует бериллаты, с кислотами — бериллиевые соли кислот:

Гидроксиды магния, кальция, стронция, бария и радия — основания, сила увеличивается от слабого Mg(OH)2 до очень сильного Ra(OH)2, являющегося сильнейшим коррозионным веществом, по активности превышающим гидроксид калия. Хорошо растворяются в воде (кроме гидроксидов магния и кальция). Для них характерны реакции с кислотами и кислотными оксидами и с амфотерными оксидами и гидроксидами:

Нахождение в природе[править | править код]

Все щёлочноземельные металлы имеются (в разных количествах) на Земле. Ввиду своей высокой химической активности все они в свободном состоянии не встречаются. Самым распространённым щёлочноземельным металлом является кальций, содержание которого равно относительно массы земной коры оценивается по-разному: от 2 % до 13,3 %[4]. Немногим ему уступает магний, содержание которого равно 2,35 %. Распространены в природе также барий и стронций, содержание которых соответственно равно 0,039 % и 0,0384 % от массы земной коры. Бериллий является редким элементом, количество которого составляет 2⋅10−4% от массы земной коры. Радиоактивный радий — это самый редкий из всех щёлочноземельных металлов, но он в небольшом количестве всегда содержится в урановых рудах. В частности, он может быть выделен оттуда химическим путём. Его содержание равно 1⋅10−10% (от массы земной коры)[5][неавторитетный источник?][6].

Читайте также:  Свойства каких химических элементов были предсказаны менделеевым

Биологическая роль[править | править код]

Магний содержится в тканях животных и растений (например, в хлорофилле), является кофактором многих ферментативных реакций, необходим при синтезе АТФ, участвует в передаче нервных импульсов, активно применяется в медицине (бишофитотерапия и др.).
Кальций — распространенный макроэлемент в организме растений, животных и человека. В организме человека и других позвоночных большая его часть находится в скелете и зубах. В костях кальций содержится в виде гидроксиапатита. Из различных форм карбоната кальция состоят минеральные «скелеты» некоторых представителей многих групп беспозвоночных (губки, кишечнополостные, моллюски и др.). Ионы кальция участвуют в процессах свертывания крови, а также служат одним из универсальных вторичных посредников внутри клеток и регулируют самые разные внутриклеточные процессы: мышечное сокращение, экзоцитоз, в том числе секрецию гормонов и нейромедиаторов.
Стронций может замещать кальций в природных тканях[прояснить], так как схож с ним по свойствам. В организме человека масса стронция составляет около 1 % от массы кальция.

На данный момент о биологической роли бериллия, бария и радия ничего не известно. Все соединения бария (кроме сульфата ввиду его чрезвычайно малой растворимости) и бериллия ядовиты. Радий чрезвычайно радиотоксичен. В организме он ведёт себя подобно кальцию — около 80 % поступившего в организм радия накапливается в костной ткани. Большие концентрации радия вызывают остеопороз, самопроизвольные переломы костей и злокачественные опухоли костей и кроветворной ткани. Опасность представляет также радон — газообразный радиоактивный продукт распада радия.

Примечания[править | править код]

Ссылки[править | править код]

Источник

Щёлочноземельные металлы получили свое название за счет своих оксидов, которые сообщают воде щелочные реакции. Изучая химию, очень часто приходится взаимодействовать со сложными и непонятными названиями. Но если разобраться и понять что к чему, то изучать предмет легко и интересно.

Однако при написании формул стоит быть внимательным, не забывая про коэффициенты и признаки реакций.

Положение в периодической системе Менделеева

Щелочноземельные металлы

Щелочноземельные металлы – это химические элементы второй группы периодической системы химических элементов таблицы Менделеева:

  • бериллий Be;

  • магний Mg;

  • кальций Ca;

  • стронций Sr;

  • барий Ba;

  • радий Ra.

Электронное строение и закономерности изменения свойств

Атомы данных металлов на внешнем энергетическом уровне имеют 2 s-электрона. Отсюда следует, что максимальная степень окисления +2.

Также могут иметь нулевую степень окисления, но не отрицательную, так как металлы не могут иметь данную степень.

Общая конфигурация внешнего энергетического уровня nS2:

3000

В периоде от Be до Ra металлические свойства, восстановительные, электроотрицательные увеличиваются, а неметаллические, окислительные свойства и радиус атома уменьшается.

Физические свойства щелочноземельных металлов

Физические свойства данной группы имеют следующие характеристики: светло-серый — темно-серый цвет, твердые вещества, не растворимые и нелетучие, без запаха, тепло-электропроводимые, имеют характерный металлический блеск.

Показатели плотности и температуры плавления представлены в таблице:

3001

Химические свойства

Оксиды и гидроксиды щёлочноземельных металлов усиливают основные свойства при движении вниз по второй группе. Следовательно, бериллий имеет меньшие основные свойства, чем радий.

Эти вещества взаимодействуют с любыми растворами кислот от сильной до слабой, а также с образованием солей, образуя белый осадок.

4Ca + 5H2SO4 (конц) = 4CaSO4 + H2S + 4H2O.

С кислородом образуют реакцию горения и оксид:

2Mg + O2 = 2MgO.

Металлы, стоящие в главной подгруппе второй группы (кроме бериллия) реагируют с водой. При проведении данных реакций выделяется водород (H2):

Mg + 2H2O = Mg(OH)2
+ H2,

Вa + 2H2O = Вa(OH)2
+ H2.

Также реагируют с неметаллами:

Bа + Cl2 = BаCl2
— хлорид бериллия;

Ca + Br2 = CaBr2
— бромид кальция;

Sr + H2 = SrH2
— гидрид стронция.

Химические свойства щелочноземельных металлов показаны на картинке:

3003

Нахождение в природе

Все металлы данного типа встречаются на земле, но не в чистом виде. Часто они представлены в виде минеральных солей. Самый распространённый считается кальций, магний немного уступает, затем идет барий и стронций. 

Бериллий и радий являются самыми редкими, однако последний металл в больших количествах находится в урановых рудах.

3004

Способ получения

Магний, кальций и стронций получают электролизом расплавов солей.

Барий получают с помощью восстановления оксида.

При нагревании фторида бария получают сам металл.

Качественные реакции

Одна из качественных реакций-окрашивание пламени.

Список возможных цветов пламени при нагревании данных элементов:

Ca — темно-оранжевый;

Sr — насыщенный красный;

Ba – светло-зеленый или классический зеленый.

3005

Металлы данного типа при взаимодействии с щелочами, оксидами или растворами солей выпадают в белый осадок.

Применение щелочноземельных металлов

D2R

Бериллий из-за своей прочности добавляют в различные сплавы металлов, также препятствует коррозии. Используется в изготовлении рентгеновских аппаратов.

Магний и кальций активно использует для лекарственных средств, поскольку данные металлы играют большую роль в жизнедеятельности организма. Также в медицине используют радий, но для облучения кожи и злокачественных образований.

Стронций и барий добавляют в различный сплавы, которые работают в агрессивной среде и имеют сверхсильную проводимость.

Данные металлы играют огромную роль в жизни человека, выполняют различные функции и имеют ряд определенных свойств. Они содержатся в земной коре, поэтому довольно широко используются. Однако это не говорит о том, что их нужно расходовать безгранично.

Источник

К щелочноземельным металлам относятся металлы IIA группы Периодической системы Д.И. Менделеева – кальций (Ca), стронций (Sr), барий (Ba) и радий (Ra). Кроме них в главную подгруппу II группы входят бериллий (Be) и магний (Mg). На внешнем энергетическом уровне щелочноземельных металлов находится два валентных электрона. Электронная конфигурация внешнего энергетического уровня щелочноземельных металлов – ns2. В своих соединениях они проявляют
единственную степень окисления равную +2. В ОВР являются восстановителями, т.е. отдают электрон.

Читайте также:  Какие полезные свойства лимонника

С увеличением заряда ядра атомов элементов, входящих в группу щелочноземельных металлов, энергия ионизации атомов уменьшается, а радиусы атомов и ионов увеличиваются, металлические признаки химических элементов усиливаются.

Физические свойства щелочноземельных металлов

В свободном состоянии Be – металл серо-стального цвета, обладающий плотной гексагональной кристаллической решеткой, достаточно твердый и хрупкий. На воздухе Be покрывается оксидной пленкой, что придает ему матовый оттенок и снижает его химическую активность.

Магний в виде простого вещества представляет собой белый металл, который, также, как и Be, при нахождении на воздухе приобретает матовый оттенок за счет образующейся оксидной пленки. Mg мягче и пластичнее бериллия. Кристаллическая решетка Mg – гексагональная.

Ca, Ba и Sr в свободном виде – серебристо-белые металлы. При нахождении на воздухе мгновенно покрываются желтоватой пленкой, которая представляет собой продукты их взаимодействия с составными частями воздуха. Кальций – достаточно твердый металл, Ba и Sr – мягче.

Ca и Sr имею кубическую гранецентрированную кристаллическую решетку, барий – кубическую объемоцентрированную кристаллическую решетку.

Все щелочноземельные металлы характеризуются наличием металлического типа химической связи, что обуславливает их высокую тепло- и электропроводность. Температуры кипения и плавления щелочноземельных металлов выше, чем щелочных металлов.

Получение щелочноземельных металлов

Получение Be осуществляют по реакции восстановления его фторида. Реакция протекает при нагревании:

BeF2 + Mg = Be + MgF2

Магний, кальций и стронций получают электролизом расплавов солей, чаще всего – хлоридов:

CaCl2 = Ca + Cl2↑

Причем, при получении Mg электролизом расплава дихлорида для понижения температуры плавления в реакционную смесь добавляют NaCl.

Для получения Mg в промышленности используют металло- и углетермические методы:

2(CaO×MgO) (доломит) + Si = Ca2SiO4 + Mg

Основной способ получения Ba – восстановление оксида:

3BaO + 2Al = 3Ba + Al2O3

Химические свойства щелочноземельных металлов

Поскольку в н.у. поверхность Be и Mg покрыта оксидной пленкой – эти металлы инертны по отношению к воде. Ca, Sr и Ba растворяются в воде с образованием гидроксидов, проявляющих сильные основные свойства:

Ba + H2O = Ba(OH)2 + H2↑

Щелочноземельные металлы способны реагировать с кислородом, причем все они, за исключением бария, в результате этого взаимодействия образуют оксиды, барий
– пероксид:

2Ca + O2 = 2CaO

Ba + O2 = BaO2

Оксиды щелочноземельных металлов, за исключением бериллия, проявляют основные свойства, Be – амфотерные свойства.

При нагревании щелочноземельные металлы способны к взаимодействию с неметаллами (галогенами, серой, азотом и др.):

Mg + Br2 =2MgBr

3Sr + N2 = Sr3N2

2Mg + 2C = Mg2C2

Ca +S = CaS

2Ba + 2P = Ba3P2

Ba + H2 = BaH2

Щелочноземельные металлы реагируют с кислотами – растворяются в них:

Ca + 2HCl = CaCl2 + H2↑

Mg + H2SO4 = MgSO4 + H2↑

Бериллий реагирует с водными растворами щелочей – растворяется в них:

Be + 2NaOH + 2H2O = Na2[Be(OH)4] + H2↑

Качественные реакции

Качественной реакцией на щелочноземельные металлы является окрашивание пламени их катионами: Ca2+ окрашивает пламя в темно-оранжевый цвет, Sr 2+ — в темно-красный, Ba2+ — в светло-зеленый.

Качественной реакцией на катион бария Ba2+ являются анионы SO42-, в результате чего образуется белый осадок сульфата бария
(BaSO4), нерастворимый в неорганических кислотах.

Ba2+ + SO42- = BaSO4↓

Примеры решения задач

Источник

Элементы II группы главной подгруппы

1. Положение в Периодической системе химических элементов
2. Электронное строение и закономерности изменения свойств
3. Физические свойства
 4. Нахождение в природе
 5. Способы получения
 6. Качественные реакции
 7. Химические свойства
7.1. Взаимодействие с простыми веществами
7.1.1. Взаимодействие с галогенами
7.1.2. Взаимодействие с серой и фосфором
7.1.3. Взаимодействие с водородом
7.1.4. Взаимодействие с азотом
7.1.5. Взаимодействие с углеродом
7.1.6. Горение
7.2. Взаимодействие со сложными веществами
7.2.1. Взаимодействие с водой
7.2.2. Взаимодействие с минеральными кислотами
7.2.3. Взаимодействие с серной кислотой
7.2.4. Взаимодействие с азотной кислотой
7.2.5. Взаимодействие с оксидами неметаллов
7.2.6. Взаимодействие с солями и оксидами металлов

Оксиды щелочноземельных металлов
1. Способы получения
2. Химические свойства
2.1. Взаимодействие с кислотными и амфотерными оксидами
2.2. Взаимодействие с кислотами
2.3. Взаимодействие с водой
2.4. Амфотерные свойства оксида бериллия

Гидроксиды щелочноземельных металлов
1. Способы получения
2. Химические свойства
2.1. Взаимодействие с кислотами
2.2. Взаимодействие с кислотными оксидами
2.3. Взаимодействие с амфотерными оксидами и гидроксидами
2.4. Взаимодействие с кислыми солями
2.5. Взаимодействие с неметаллами
2.6. Взаимодействие с металлами
2.7. Взаимодействие с солями
2.8. Разложение при нагревании
2.9. Диссоциация
2.10. Амфотерные свойства гидроскида бериллия

Соли щелочноземельных металлов
Жесткость
1. Постоянная и временная жесткость
2. Способы устранения жесткости

Элементы II группы главной подгруппы

Положение в периодической системе химических элементов

Щелочноземельные металлы расположены во второй группе главной подгруппе периодической системы химических элементов Д.И. Менделеева (или просто во 2 группе в длиннопериодной форме ПСХЭ). На практике к щелочноземельным металлам относят только кальций Ca, стронций Sr, барий Ba и радий Ra. Бериллий Be по свойствам больше похож на алюминий, магний Mg проявляет некоторые свойства щелочноземельных металлов, но в целом отличается от них. Однако, согласно номенклатуре ИЮПАК, щелочноземельными принято считать все металлы II группы главной подгруппы.

Какими физическими свойствами обладают щелочноземельные металлы

Электронное строение и закономерности изменения свойств 

Электронная конфигурация внешнего энергетического уровня щелочноземельных металлов: ns2, на внешнем энергетическом уровне в основном состоянии находится 2 s-электрона. Следовательно, типичная степень окисления щелочноземельных металлов в соединениях +2.

Рассмотрим некоторые закономерности изменения свойств щелочноземельных металлов.

В ряду BeMgCaSrBaRa, в соответствии с Периодическим законом, увеличивается атомный радиус, усиливаются металлические свойства, ослабевают неметаллические свойства, уменьшается электроотрицательность.

Читайте также:  Какие свойства элементов называют неметаллическими свойствами

Какими физическими свойствами обладают щелочноземельные металлы

Физические свойства 

Все щелочноземельные металлы — вещества серого цвета и гораздо более твердые, чем щелочные металлы.

Какими физическими свойствами обладают щелочноземельные металлы

Бериллий Be устойчив на воздухе. Магний  и кальций (Mg и Ca) устойчивы в сухом воздухе. Стронций Sr и барий Ba хранят под слоем керосина.

Кристаллическая решетка щелочноземельных металлов в твёрдом состоянии — металлическая. Следовательно, они обладают высокой тепло- и электропроводимостью. Кипят и плавятся при высоких температурах.

Какими физическими свойствами обладают щелочноземельные металлы

Нахождение в природе

Как правило, щелочноземельные металлы в природе присутствуют в виде минеральных солей: хлоридов, бромидов, йодидов, карбонатов, нитратов и др. Основные минералы, в которых присутствуют щелочноземельные металлы:

Доломит — CaCO3 · MgCO3 — карбонат кальция-магния.

Какими физическими свойствами обладают щелочноземельные металлы

Магнезит MgCO3 – карбонат магния.

Какими физическими свойствами обладают щелочноземельные металлы

Кальцит CaCO3 – карбонат кальция.

Какими физическими свойствами обладают щелочноземельные металлы

Гипс CaSO4 · 2H2O – дигидрат сульфата кальция.

Какими физическими свойствами обладают щелочноземельные металлы

Барит BaSO4 — сульфат бария.

Какими физическими свойствами обладают щелочноземельные металлы

Витерит BaCO3 – карбонат  бария.

Какими физическими свойствами обладают щелочноземельные металлы

Способы получения 

Магний получают электролизом расплавленного карналлита или хлорида магния с добавками хлорида натрия при 720–750°С:

MgCl2 → Mg + Cl2

или восстановлением прокаленного доломита в электропечах при 1200–1300°С:

2(CaO · MgO) + Si → 2Mg + Ca2SiO4

Кальций получают электролизом расплавленного хлорида кальция с добавками фторида кальция:

CaCl2 → Ca + Cl2

Барий получают восстановлением оксида бария алюминием в вакууме при 1200 °C:

4BaO+ 2Al → 3Ba + Ba(AlO2)2

Качественные реакции

Качественная реакция на щелочноземельные металлы — окрашивание пламени солями щелочноземельных металлов.

Какими физическими свойствами обладают щелочноземельные металлы

Цвет пламени:
Caкирпично-красный
Sr — карминово-красный (алый)
Baяблочно-зеленый

Качественная реакция на ионы магния:  взаимодействие с щелочами. Ионы магния осаждаются щелочами с образованием белого осадка гидроксида магния:

Mg2+ + 2OH— → Mg(OH)2↓

Какими физическими свойствами обладают щелочноземельные металлы

Качественная реакция на ионы кальция, стронция, бария:  взаимодействие с карбонатами. При взаимодействии солей кальция, стронция и бария с карбонатами выпадает  белый осадок карбоната кальция, стронция или бария:

Ca2+ + CO32- → CaCO3↓

Ba2+ + CO32- → BaCO3↓

Какими физическими свойствами обладают щелочноземельные металлы

Качественная реакция на ионы стронция и бария: взаимодействие с карбонатами. При взаимодействии солей  стронция и бария с сульфатами выпадает  белый осадок сульфата бария и сульфата стронция:

Ba2+ + SO42- → BaSO4↓

Sr2+ + SO42- → SrSO4↓

Какими физическими свойствами обладают щелочноземельные металлы

Также осадки белого цвета образуются при взаимодействии солей кальция, стронция и бария с сульфитами и фосфатами.

Какими физическими свойствами обладают щелочноземельные металлы

Например, при взаимодействии хлорида кальция с фосфатом натрия образуется белый осадок фосфата кальция:

3CaCl2 + 2Na3PO4 → 6NaCl + 2Ca3(PO4)2↓

Химические свойства

1. Щелочноземельные металлы — сильные восстановители. Поэтому они реагируют почти со всеми неметаллами.

1.1. Щелочноземельные металлы реагируют с галогенами с образованием галогенидов при нагревании.

Например, бериллий взаимодействует с хлором с образованием хлорида бериллия:

Be + Cl2 → BeCl2

1.2. Щелочноземельные металлы реагируют при нагревании с серой и фосфором с образованием сульфидов и фосфоридов.

Например, кальций взаимодействует с серой при нагревании:

Ca + S → CaS

Кальций взаимодействует с фосфором с образованием фосфидов:

3Ca + 2P → Ca3P2

1.3. Щелочноземельные металлы реагируют с водородом при нагревании. При этом образуются бинарные соединения — гидридыБериллий с водородом не взаимодействует, магний реагирует лишь при повышенном давлении.

Mg + H2 → MgH2

1.4. С азотом магний взаимодействует при комнатной температуре с образованием нитрида:

6Mg + 2N2 → 2Mg3N2

Остальные щелочноземельные металлы реагируют с азотом при нагревании.

1.5. Щелочноземельные металлы реагируют с углеродом с образованием карбидов, преимущественно ацетиленидов.

Например, кальций взаимодействует с углеродом с образованием карбида кальция:

Ca +  2C → CaC2

Бериллий реагирует с углеродом  при нагревании с образованием карбида — метанида:

2Be + C → Be2C

1.6. Бериллий сгорает на воздухе при температуре около 900°С:

2Be + O2 → 2BeO

Магний горит на воздухе при 650°С с выделением большого количества света. При этом образуются оксиды и нитриды:

2Mg + O2 → 2MgO

3Mg + N2 → Mg3N2

Какими физическими свойствами обладают щелочноземельные металлы

Щелочноземельные металлы горят на воздухе при температуре около 500°С, в результате также образуются оксиды и нитриды.

Видеоопыт: горение кальция на воздухе можно посмотреть здесь.

2. Щелочноземельные металлы взаимодействуют со сложными веществами:

2.1. Щелочноземельные металлы реагируют с водой. Взаимодействие с водой приводит к образованию щелочи и водорода. Бериллий с водой не реагирует. Магний реагирует с водой при кипячении. Кальций, стронций и барий реагируют с водой при комнатной температуре.

Например, кальций реагирует с водой с образованием гидроксида кальция и водорода:

2Ca0 + 2H2+O = 2Ca+(OH)2 + H20

2.2. Щелочноземельные металлы взаимодействуют с минеральными кислотами (с соляной, фосфорной, разбавленной серной кислотой и др.). При этом образуются соль и водород.

Например, магний реагирует с соляной кислотой:

2Mg  +  2HCl →  MgCl2  +  H2↑

2.3. При взаимодействии щелочноземельных металлов с концентрированной серной кислотой образуется сера.

Например, при взаимодействии кальция с концентрированной серной кислотой образуется сульфат кальция, сера и вода:

4Ca  +  5H2SO4(конц.)  → 4CaSO4  +  S  +  5H2O

2.4. Щелочноземельные металлы реагируют с азотной кислотой. При взаимодействии кальция и магния с концентрированной или разбавленной азотной кислотой образуется оксид азота (I):

4Ca + 10HNO3 (конц) → N2O + 4Сa(NO3)2 + 5H2O

При взаимодействии щелочноземельных металлов с очень разбавленной азотной кислотой образуется нитрат аммония:

4Ba  +  10HNO3  → 4Ba(NO3)2  +  NH4NO3  +  3H2O

2.5. Щелочноземельные металлы могут восстанавливать некоторые неметаллы (кремний, бор, углерод) из оксидов.

Например, при взаимодействии кальция с оксидом кремния (IV) образуются кремний и оксид кальция:

2Ca + SiO2 → 2CaO + Si

 Магний горит в атмосфере углекислого газа. При этом образуется сажа и оксид магния:

2Mg + CO2 → 2MgO + C

2.6. В расплаве щелочноземельные металлы могут вытеснять менее активные металлы из солей и оксидов. Обратите внимание! В растворе щелочноземельные металлы будут взаимодействовать с водой, а не с солями других металлов.

Например, кальций вытесняет медь из расплава хлорида меди (II):

Ca + CuCl2 → CaCl2 + Cu

Оксиды щелочноземельных металлов

Способы получения

1. Оксиды щелочноземельных металлов можно получить из простых веществ — окислением металлов