Какими из нижеприведенных свойств обладает магнитное поле

Какими из нижеприведенных свойств обладает магнитное поле thumbnail

Подобно тому, как в пространстве, окружающем электрические заряды, возникает электрическое поле, так и в пространстве окружающем токи, возникает особого вида поле, называемое магнитным полем.

Магнитное поле проявляется по силам, действующим на проводники с током, на движущиеся заряды или постоянные магниты.

Неподвижные электрические заряды не создают магнитное поле и постоянное магнитное поле не действует на неподвижные электрические заряды.

Опыт показывает, что неподвижный заряд и магнитная стрелка не влияют друг на друга.

При прохождении электрического тока по проводнику вокруг него возникает магнитное поле, действующее на магнитную стрелку, которая стремится занять положение поперек проводника при взгляде сверху.

Опыт Эрстеда (1820 г.), показывающий действие магнитного поля проводника с током на магнитную стрелку.

Характеристики магнитного поля

I. Вектор магнитной индукции (В) – совпадает по направлению с силой, действующей на северный полюс магнитной стрелки.

II. Линии магнитной индукции – кривые, в каждой точке которых, вектор магнитной индукции В направлен по касательной.

Свойства линий магнитной индукции

1. Линии магнитной индукции всегда замкнуты и охватывают проводники стоком.

2. Вблизи проводника линии магнитной индукции лежат в плоскости перпендикулярной проводнику с током.

3. Направление линий магнитной индукции определяется по правилу буравчика: если ввинчивать буравчик по направлению тока, то направление вращения его рукоятки укажет направление линий магнитной индукции.

Магнитное поле прямолинейного проводника с током.

Правило буравчика обратимо и для круговых токов его удобно применять в следующей формулировке: если вращать рукоятку буравчика по направлению кругового тока, то поступательное движение острия буравчика укажет направление линий магнитной индукции.

Линии магнитной индукции полей постоянного магнита, прямого тока, кругового тока и катушки с током.

Обратите внимание на аналогию магнитных полей постоянного магнита и катушки с током. Линии магнитной индукции всегда замкнуты, они нигде не обрываются. Это означает, что магнитное поле не имеет источников – магнитных зарядов. Силовые поля, обладающие этим свойством, называются вихревыми. Картину магнитной индукции можно наблюдать с помощью мелких железных опилок, которые в магнитном поле намагничиваются и, подобно маленьким магнитным стрелкам, ориентируются вдоль линий индукции.

III. Вектор напряженности магнитного поля H.

Согласно предположению французского физика А. Ампера, в любом теле существуют микроскопические (молекулярные) токи, обусловленные движением электронов в атомах и молекулах. Эти токи создают свое магнитное поле и могут поворачиваться в магнитных полях макроскопических токов (токов, текущих в проводниках). Так, если вблизи какого-то тела (среды) поместить проводник с током, то под действием его магнитного поля микротоки в атомах тела определенным образом ориентируются, создавая тем самым дополнительное магнитное поле. Поэтому вектор магнитной индукции B характеризует результирующее магнитное поле, создаваемое всеми макро- и микротоками, т.е. при одном и том же токе I и прочих равных условиях вектор B в различных средах будет иметь разные значения.

Магнитное поле, создаваемое макротоками, характеризуется вектором напряженности H. Для однородной изотропной среды связь между векторами индукции B и напряженности H магнитного поля определяется выражением

В =μ₀μН, где

магнитная постоянная, μ – магнитная проницаемость среды (безразмерная величина), показывающая, во сколько раз магнитное поле макротоков усиливается за счет поля микротоков данной среды.

Единица напряженности магнитного поля: 1 А/м – напряженность такого поля, магнитная индукция которого в вакууме равна 4π·10-7 Тл.

Источник

Магнитное поле это материя, которая возникает вокруг источников электрического тока, а также вокруг постоянных магнитов. В пространстве магнитное поле отображается как совокупление сил, которые способны оказать воздействие на намагниченные тела. Это действие объясняется наличием движущих разрядов на молекулярном уровне.
магнитное поле и его свойства
Магнитное поле формируется только вокруг электрических зарядов, которые находятся в движении. Именно поэтому магнитное и электрическое поле являются, неотъемлемыми и вместе формируют электромагнитное поле. Компоненты магнитного поля взаимосвязаны и воздействуют друг на друга, изменяя свои свойства.

Свойства магнитного поля:
1. Магнитное поле возникает под воздействие движущих зарядов электрического тока.
2. В любой своей точке магнитное поле характеризуется вектором физической величины под названием магнитная индукция, которая является силовой характеристикой магнитного поля.
3. Магнитное поле может воздействовать только на магниты, на токопроводящие проводники и движущиеся заряды.
4. Магнитное поле может быть постоянного и переменного типа
5. Магнитное поле измеряется только специальными приборами и не может быть воспринятым органами чувств человека.
6. Магнитное поля является электродинамическим, так как порождается только при движении заряженных частиц и оказывает влияние только на заряды, которые находятся в движении.

7. Заряженные частицы двигаются по перпендикулярной траектории.

Размер магнитного поля зависит от скорости изменения магнитного поля. Соответственно этому признаку существуют два вида магнитного поля: динамичное магнитное поле и гравитационное магнитное поле. Гравитационное магнитное поле возникает только вблизи элементарных частиц и формируется в зависимости от особенностей строения этих частиц.

Магнитный момент
возникает в том случае, когда магнитное поле воздействует на токопроводящую раму. Другими словами, магнитный момент это вектор, который расположен на ту линию, которая идет перпендикулярно раме.

Магнитное поле можно изобразить графически с помощью магнитных силовых линий. Эти линии проводятся в таком направлении, так чтобы направление сил поля совпало с направлением самой силовой линии. Магнитные силовые линии являются непрерывными и замкнутыми одновременно.

Направление магнитного поля определяется с помощью магнитной стрелки. Силовые линии определяют также полярность магнита, конец с выходом силовых линий это северный полюс, а конец, с входом этих линий, это южный полюс.

Очень удобно наглядно оценить магнитное поле с помощью обычных железных опилок и листка бумаги.
Если мы на постоянный магнит положим лист бумаги, а сверху насыпим опилок, то частички железа выстроятся соответственно силовым линиям магнитного поля.

Направление силовых линий для проводника удобно определять по знаменитому правилу буравчика или правилу правой руки. Если мы обхватим проводник рукой так, чтобы большой палец смотрел по направлению тока(от плюса к минусу), то 4 оставшиеся пальцы покажут нам направление силовых линий магнитного поля.
правило правой руки для магнитного поля
А направление силы Лоренца – силы, с которой действует магнитное поле на заряженную частицу или проводник с током, по правилу левой руки.
Если мы расположим левую руку в магнитном поле так, что 4 пальца смотрели по направлению тока в проводнике , а силовые линии входили в ладонь, то большой палец укажет направление силы Лоренца, силы действующей на проводник помещенный в магнитное поле.
правило левой руки для магнитного поля

На этом собственно всё. Появившиеся вопросы обязательно задавайте в комментариях.

Заметка: учите инглиш? – рейтинг школ английского языка (https://www.schoolrate.ru/) будет вам полезен при выборе.

Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:

Источник

Определение

Магнитное поле — особая форма материи, посредством которой осуществляется взаимодействие между движущимися электрическими частицами.

Основные свойства магнитного поля

  • Магнитное поле порождается электрическим током (движущимися зарядами).
  • Магнитное поле обнаруживается по действию на электрический ток (движущиеся заряды).
  • Магнитное поле существует независимо от нас, от наших знаний о нем.

Вектор магнитной индукции

Определение

Вектор магнитной индукции — силовая характеристика магнитного поля. Она определяет, с какой силой магнитное поле действует на заряд, движущийся в поле с определенной скоростью. Обозначается как→B. Единица измерения — Тесла (Тл).

За единицу магнитной индукции можно принять магнитную индукцию однородного поля, котором на участок проводника длиной 1 м при силе тока в нем 1 А действует со стороны поля максимальная сила, равна 1 Н. 1 Н/(А∙м) = 1 Тл.

Модуль вектора магнитной индукции — физическая величина, равная отношению максимальной силы, действующей со стороны магнитного поля на отрезок проводника с током, к произведению силы тока и длины проводника:

B=FAmaxIl

За направление вектора магнитной индукции принимается направление от южного полюса S к северному N магнитной стрелки, свободно устанавливающейся в магнитном поле.

Наглядную картину магнитного поля можно получить, если построить так называемые линии магнитной индукции. Линиями магнитной индукции называют линии, касательные к которым направлены так же, как и вектор магнитной индукции в данной точке поля.

Особенность линий магнитной индукции состоит в том, что они не имеют ни начала, ни конца. Они всегда замкнуты. Поля с замкнутыми силовыми линиями называют вихревыми. Поэтому магнитное поле — вихревое поле.

Замкнутость линий магнитной индукции представляет собой фундаментальное свойство магнитного поля. Оно заключается в том, что магнитное поле не имеет источников. Магнитных зарядов, подобным электрическим, в природе нет.

Напряженность магнитного поля

Определение

Вектор напряженности магнитного поля — характеристика магнитного поля, определяющая густоту силовых линий (линий магнитной индукции). Обозначается как →H. Единица измерения — А/м.

→H=→Bμμ0

μ — магнитная проницаемость среды (у воздуха она равна 1), μ0 — магнитная постоянная, равная 4π·10−7 Гн/м.

Внимание! Направление напряженности всегда совпадает с направлением вектора магнитной индукции: →H↑↑→B.

Направление вектора магнитной индукции и способы его определения

Чтобы определить направление вектора магнитной индукции, нужно:

  1. Расположить в магнитном поле компас.
  2. Дождаться, когда магнитная стрелка займет устойчивое положение.
  3. Принять за направление вектора магнитной индукции направление стрелки компаса «север».

В пространстве между полюсами постоянного магнита вектор магнитной индукции выходит из северного полюса:

При определении направления вектора магнитной индукции с помощью витка с током следует применять правило буравчика:

При вкручивании острия буравчика вдоль направления тока рукоятка будет вращаться по направлению вектора →B магнитной индукции.

Отсюда следует, что:

  • Если по витку ток идет против часовой стрелки, то вектор магнитной индукции →B направлен вверх.
  • Если по витку ток идет по часовой стрелке, то вектор магнитной индукции →B направлен вниз.

Способы обозначения направлений векторов:

Пример №1. На рисунке изображен проводник, по которому течет электрический ток. Направление тока указано стрелкой. Как направлен (вверх, вниз, влево, вправо, от наблюдателя, к наблюдателю) вектор магнитной индукции в точке С?

Если мысленно начать вкручивать острие буравчика по направлению тока, то окажется, что вектор магнитной индукции в точке С будет направлен к нам — к наблюдателю.

Магнитное поле прямолинейного тока

Линии магнитной индукции представляют собой концентрические окружности, лежащие в плоскости, перпендикулярной проводнику. Центр окружностей совпадает с осью проводника.

Вид сверху:

Если ток идет вверх, то силовые линии направлены против часовой стрелки. Если вниз, то они направлены по часовой стрелке. Их направление можно определить с помощью правила буравчика или правила правой руки:

Правило буравчика (правой руки)

Если большой палец правой руки, отклоненный на 90 градусов, направить в сторону тока в проводнике, то остальные 4 пальца покажут направление линий магнитной индукции.

Модуль вектора магнитной индукции на расстоянии r от оси проводника:

B=μμ0I2πr

Модуль напряженности:

H=I2πr

Магнитное поле кругового тока

Силовые линии представляют собой окружности, опоясывающие круговой ток. Вектор магнитной индукции в центре витка направлен вверх, если ток идет против часовой стрелки, и вниз, если по часовой стрелке.

Определить направление силовых линий магнитного поля витка с током можно также с помощью правила правой руки:

Если расположить четыре пальца правой руки по направлению тока в витке, то отклоненный на 90 градусов большой палец, покажет направление вектора магнитной индукции.

Модуль вектора магнитной индукции в центре витка, радиус которого равен R:

B=μμ0I2R

Модуль напряженности в центре витка:

H=I2R

Пример №2. На рисунке изображен проволочный виток, по которому течет электрический ток в направлении, указанном стрелкой. Виток расположен в вертикальной плоскости. Точка А находится на горизонтальной прямой, проходящей через центр витка. Как направлен (вверх, вниз, влево, вправо) вектор магнитной индукции магнитного поля в точке А?

Если мысленно обхватить виток так, чтобы четыре пальца правой руки были бы направлены в сторону тока, то отклоненный на 90 градусов большой палец правой руки показал бы, что вектор магнитной индукции в точке А направлен вправо.

Магнитное поле электромагнита (соленоида)

Определение

Соленоид — это катушка цилиндрической формы, витки которой намотаны вплотную, а длина значительно больше диаметра.

Число витков в соленоиде N определяется формулой:

N=ld

l — длина соленоида, d — диаметр проволоки.

Линии магнитной индукции являются замкнутыми, причем внутри соленоида они располагаются параллельно друг другу. Поле внутри соленоида однородно.

Если ток по виткам соленоида идет против часовой стрелки, то вектор магнитной индукции →B внутри соленоида направлен вверх, если по часовой стрелке, то вниз. Для определения направления линий магнитной индукции можно воспользоваться правилом правой руки для витка с током.

Модуль вектора магнитной индукции в центральной области соленоида:

B=μμ0INl=μμ0Id

Модуль напряженности магнитного поля в центральной части соленоида:

H=INl=Id

Алгоритм определения полярности электромагнита

  1. Определить полярность источника.
  2. Указать на витках электромагнита условное направление тока (от «+» источника к «–»).
  3. Определить направление вектора магнитной индукции.
  4. Определить полюса электромагнита. Там, откуда выходят линии магнитной индукции, располагается северный полюс электромагнита (N, или «–». С противоположной стороны — южный (S, или «+»).

Пример №3. Через соленоид пропускают ток. Определите полюсы катушки.

Ток условно течет от положительного полюса источника тока к отрицательному. Следовательно, ток течет по виткам от точки А к точке В. Мысленно обхватив соленоид пальцами правой руки так, чтобы четыре пальца совпадали с направлением тока в витках соленоида, отставим большой палец на угол 90 градусов. Он покажет направление линий магнитной индукции внутри соленоида. Проделав это, увидим, что линии магнитной индукции направлены вправо. Следовательно, они выходят из В, который будет являться северным полюсом. Тогда А будет являться южным полюсом.

Алиса Никитина | ???? Скачать PDF | Просмотров: 744 | Оценить:

Источник

Рубрики: #как это работает (inznan) , #основы физики (inznan) , #электрофизика (inznan) , #школьникам (inznan)

Наверняка вам знакомо свойство магнитов примагничивать какие-либо предметы. Преимущественно, магниты могут притягивать металлические предметы, а на неметаллы влияние не оказывают (или оказывают, но при определенных специальных условиях).

Но почему же магнит способен притягивать предметы или другие магниты? Из-за чего, скажем, деревянный брусок ничего не притягивает, а вот постоянный магнит вполне способен притягивать гвозди, скрепки и другие предметы?

Ответ на вопрос кроется, как обычно это и бывает в материаловедении, в структуре рассматриваемого образца. Структура должна быть особенная. Правда сложно представить, какая именно специфика структуры материала может наделять образец такими “космическими свойствами”. Начнем с самого простого.

Как мы помним из элементарной школьной физики, всегда, где есть электричество, есть и магнетизм. Утрируя для упрощения изучения вопроса скажем, что электрический ток порождает магнитное поле. Электрический ток же – это упорядоченное направленное движение частиц.

При детальном рассмотрении, любой движущийся электрон можно рассматривать как частицу, создающую вокруг себя магнитное поле.

Вспомним, что все материалы состоят из частиц. Частицы – это молекулы и атомы. Атомы в свою очередь состоят из электронов и протонов (и много чего ещё, но не о том сейчас :)…) Электроны перемещаются относительно ядер атомов. Вспоминаем планетарную модель атома. Соответственно, когда электроны перемещаются по орбите, они создают магнитный момент.

По этой логике, как минимум все металлы, должны притягивать всё. Но дело тут в том, что магнитный момент отдельной частицы слишком мал. Частицы в обычном же материале перемещаются хаотично, поэтому малые моменты самоубиваются. Суммирование моментов не происходит.

Вот теперь наверное и понятно, что происходит в постоянном магните.

У ферромагнетиков (это вещества, из которых делают магниты) не все электроны имеют пару. В результате, некоторые электроны перемещаются в одном направлении.

Соответственно, и магнитный момент направлен в одну сторону и суммируется. Получается естественный электромагнит. Зоны, где происходит такое упорядочивание, называются магнитными доменами.

Это свойств характерно только определенному классу материалов с определенной структурой. Они и могут быть постоянными магнитами.

Микроструктура у таких материалов тоже будет иметь некоторые характерные отличия. Наверное можно догадаться, что она должна быть далеко неравновесной. Именно это создаст благодатную почву для формирования описываемых ранее условий. Нужны дислокации, границы зерен, и т.п., являющиеся источником искажений структуры. Ведь когда всё равновесно, то и цепляться не за что. Если структура равномерная то отклонения, которые как раз и являются основой формирования свойств, отсутствуют.

Постоянные магниты могут быть искусственными и естественными. Искусственные магниты получают выдерживанием подходящих образцов в магнитном поле. Это позволяет ориентировать все магнитные моменты в одну сторону. Естественные магниты имеют магнитные свойства прямо из природы. Среди ископаемых можно встречать куски руды и прочие образцы, обладающие магнитными свойствами от природы.

Вообщем-то, это всё, что нужно знать о причинах возникновения магнетизма в постоянном магните.

Ещё наверняка вам будет интересно узнать, что постоянный магнит можно “убить” в печке 🙂 Достаточно лишь выдержать его при определенной температуре. Тогда моменты опять переориентируется и магнит разрядится.

Источник