Какими из перечисленных свойств обладает математическое ожидание

Свойства математического ожидания

1) Математическое ожидание постоянной величины равно самой постоянной.

2) Постоянный множитель можно выносить за знак математического ожидания.

3) Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий.

Это свойство справедливо для произвольного числа случайных величин.

4) Математическое ожидание суммы двух случайных величин равно сумме математических ожиданий слагаемых.

Это свойство также справедливо для произвольного числа случайных величин.

Пусть производится п независимых испытаний, вероятность появления события А в которых равна р.

Теорема. Математическое ожидание М(Х) числа появления события А в п независимых испытаниях равно произведению числа испытаний на вероятность появления события в каждом испытании.

Однако, математическое ожидание не может полностью характеризовать случайный процесс. Кроме математического ожидания надо ввести величину, которая характеризует отклонение значений случайной величины от математического ожидания.

Это отклонение равно разности между случайной величиной и ее математическим ожиданием. При этом математическое ожидание отклонения равно нулю. Это объясняется тем, что одни возможные отклонения положительны, другие отрицательны, и в результате их взаимного погашения получается ноль.

Перечислите основные свойства дисперсии.

Свойства дисперсии

1) Дисперсия постоянной величины равна нулю.

2) Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат.

3) Дисперсия суммы двух независимых случайных величин равна сумме дисперсий этих величин.

4) Дисперсия разности двух независимых случайных величин равна сумме дисперсий этих величин.

Справедливость этого равенства вытекает из свойства 2.

Теорема. Дисперсия числа появления события А в п независимых испытаний, в каждом из которых вероятность р появления события постоянна, равна произведению числа испытаний на вероятности появления и не появления события в каждом испытании.

Дайте определение ковариации.

Ковариа́ция (корреляционный момент) в теории вероятностей и математической статистике мера линейной зависимости двух случайных величин.

Определение

Пусть X,Y — две случайные величины, определённые на одном и том же вероятностном пространстве. Тогда их ковариация определяется следующим образом:

,

в предположении, что все математические ожидания E в правой части определены.

Замечания

§ Если , то есть имеют конечный второй момент, то ковариация определена и конечна.

§ В гильбертовом пространстве несмещённых случайных величин с конечным вторым моментом ковариация имеет вид и играет роль скалярного произведения.

11. Коррелированность и некоррелированность – это свойство пары (случайных величин, наборов данных). Определяется по величине коэффициента корреляции (есть разные варианты).

12. Генеральная совокупность– все множество имеющихся объектов.

Выборка – набор объектов, случайно отобранных из генеральной совокупности.

Объем генеральной совокупности N и объем выборки n – число объектов в рассматривае-мой совокупности.

Виды выборки:

Повторная – каждый отобранный объект перед выбором следующего возвращается в генеральную совокупность;

Бесповторная – отобранный объект в генеральную совокупность не возвращается.

13. выборочным средним называется случайная величина

.

Пусть — случайная величина, определённая на некотором вероятностном пространстве. Тогда

где символ M обозначает математическое ожидание

Среднеквадратическое отклонение:

стандартное отклонение (несмещённая оценка среднеквадратического отклонения случайной величины x относительно её математического ожидания):

где — дисперсия; — i-й элемент выборки; — объём выборки; — среднее арифметическое выборки:

14. Оценка О называется несмещенной оценкой параметра О, если ее мат. ожидание равно оцениваемому параметру: М(О)= О. В противном случае оценка называется смещенной.

Оценка О* называется эффективной оценкой параметра О, если ее дисперсия Д(О*) меньше дисперсии любой другой альтернативной несмещенной оценки при фиксированном объёме выборки n, т.е. Д(О*)= Дмин.

Оценка О*n называется состоятельной оценкой параметра О, если О*n сходится по вероятности к оцениваемому параметру О при n-∞. Другими словами, состоятельной называется такая оценка, которая дает истинное значение при достаточно большом объёме выборки вне зависимости от значений входящих в нее конкретных наблюдений.

15.

16. Точечной оценкой О* параметра О называется числовое значение этого параметра, полученное по выборке объёма n.

Точечная оценка может быть дополнена интервальной оценкой- интервалом (О1;О2), внутри которого с наперед заданной вероятностью у находится точное значение оцениваемого параметра О.

17. Гипотеза Н0, подлежащая проверке, -нулевая гипотеза. Гипотеза Н1, которая будет приниматься, если отклоняется Н0- альтернативная.

18. Вероятность совершить ошибку 1-го рода принято обозначать буквой а и ее называют уровнем значимости.

Статистический критерий- СВ К, котторая служит для проверки нулевой гипотезы.

19. Важнейшей целью статистики является изучение объективно существующих связей между явлениями. В ходе статистического исследования этих связей необходимо выявить причинно-следственные зависимости между показателями, т.е. насколько изменение одних показателей зависит от изменения других показателей.

Существует две категории зависимостей (функциональная и корреляционная) и две группы признаков (признаки-факторы и результативные признаки). В отличие от функциональной связи, где существует полное соответствие между факторными и результативными признаками, в корреляционной связи отсутствует это полное соответствие.

Корреляционная связь – это связь, где воздействие отдельных факторов проявляется только как тенденция (в среднем) при массовом наблюдении фактических данных. Примерами корреляционной зависимости могут быть зависимости между размерами активов банка и суммой прибыли банка, ростом производительности труда и стажем работы сотрудников.

20. Суть регрессионного анализа сводится к установлению уравнения регрессии, т.е. вида кривой между случайными величинами (аргументами x и функцией y ), оценке тесноты связей между ними, достоверности и адекватности результатов измерений.

Дата добавления: 2016-07-29; просмотров: 748 | Нарушение авторских прав | Изречения для студентов

Читайте также:

Рекомендуемый контект:

Поиск на сайте:

© 2015-2020 lektsii.org – Контакты – Последнее добавление

Источник

Свойство 1. Математическое ожидание постоянной величины равно самой постоянной:.

Доказательство: Будем рассматривать постоянную С как дискретную случайную величину, которая имеет одно возможное значение С и принимает его с вероятностью р=1. Следовательно,.

Замечание 1. Определим произведение постоянной величины С на дискретную случайную величину Х как дискретную случайную СХ, возможные значения которой равны произведениям постоянной С на возможные значения X, вероятности возможных значений СХ равны вероятностям соответствующих возможных значений X. Например, если вероятность возможного значения равна , то вероятность того, что величина СХ примет значение , также равна .

Получить решение

Свойство 2. Постоянный множитель можно выносить за знак математического ожидания
.

Доказательство. Пусть случайная величина задана законом распределения вероятностей:…

Учитывая замечание 1, напишем закон распределения случайной величины СХ:

Тогда .

Итак,.

Замечание 2. Две случайные величины называют независимыми, если закон распределения одной из них не зависит от того, какие возможные значения приняла другая величина. В противном случае случайные величины зависимы. Несколько случайных величин называют взаимно независимыми, если законы распределения любого числа из них не зависят от того, какие возможные значения приняли остальные величины.

Замечание 3. Определим произведение независимых случайных величин Х и Y как случайную величину XY, возможные значения которой равны произведениям каждого возможного значения Х на каждое возможное значение Y; вероятности возможных значений произведения XY равны произведениям вероятностей возможных значений сомножителей. Например, если вероятность возможного значения равна , вероятность возможного значения равна , то вероятность возможного значения равна .

Следующее свойство приведем без доказательства.

Свойство 3. Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий:
.

Следствие. Математическое ожидание произведения нескольких взаимно независимых случайных величин равно произведению их математических ожиданий.

Например, для трех случайных величин имеем
.

ПРИМЕР 13.1.31 Независимые случайные величины Х и Y заданы следующими законами распределения:

Найти математическое ожидание случайной величины XY.

Решение. Найдем математические ожидания каждой из данных величин:
,.

Случайные величины Х и Y независимые, поэтому искомое математическое ожидание
.

Замечание 4. Определим сумму случайных величин Х и Y как случайную величину Х+Y, возможные значения которой равны суммам каждого возможного значения Х с каждым возможным значением Y; вероятности возможных значений Х+Y для независимых величин Х и Y равны произведениям вероятностей слагаемых; для зависимых величин — произведениям вероятности одного слагаемого, на условную вероятность второго.

Следующее свойство справедливо как для независимых, так и для зависимых случайных величин, его приведем без доказательства.

Свойство 4. Математическое ожидание суммы двух случайных величин равно сумме математических ожиданий слагаемых
.

Следствие. Математическое ожидание суммы нескольких случайных величин равно сумме математических ожиданий слагаемых.

Например, для трех слагаемых величин имеем
.

ПРИМЕР 13.1.32 Найти математическое ожидание суммы числа очков, которые могут выпасть при бросании двух игральных костей.

Решение. Обозначим число очков, которое может выпасть на первой кости, через Х и на второй — через Y. Возможные значения этих величин одинаковы и равны 1, 2, 3, 4, 5 и 6, причем вероятность каждого из этих значений равна 1/6.

Найдем математическое ожидание числа очков, которые могут выпасть на первой кости:

.

Очевидно, что и .

Искомое математическое ожидание

.

Рассмотрим следующую задачу. Пусть производится n независимых испытаний, в каждом из которых вероятность появления события А постоянна и равна р. Чему равно среднее число появлений события А в этих испытаниях? Ответ на этот вопрос дает следующая теорема.

ТЕОРЕМА 13.1.10. Математическое ожидание М (X) числа появлений события А в n независимых испытаниях равно произведению числа испытаний на вероятность появления события в каждом испытании:
.

ПРИМЕР 13.1.33 Вероятность попадания в цель при стрельбе из орудия р=0,6. Найти математическое ожидание общего числа попаданий, если будет произведено 10 выстрелов.

Решение. Попадание при каждом выстреле не зависит от исходов других выстрелов, поэтому рассматриваемые события независимы и, следовательно, искомое математическое ожидание
.

Онлайн помощь по математике >
Лекции по высшей математике >
Примеры решения задач >

Источник

Математическим ожиданием (или средним значением) дискретной случайной величины называется сумма произведений всех её возможных значение на соответствующие им вероятности.

Т.е., если сл. величина имеет закон распределения, то

называется её математическим ожиданием. Если сл. величина имеет бесконечное число значений, то математическое ожидание определяется суммой бесконечного ряда , при условии, что этот ряд абсолютно сходится (в противном случае говорят, что математическое ожидание не существует).

Для непрерывной сл. величины, заданной функцией плотности вероят­ности f(x), математическое ожидание определяется в виде интеграла

при условии, что этот интеграл существует (если интеграл расходится, то говорят, что математическое ожидание не существует).

Пример 1. Определим математическое ожидание случайной величины распределённой по закону Пуассона. По определению

или обозначим

,

Значит, параметр,определяющий закон распределения пуассоновской случайной величины равен среднему значению этой величины.

Пример 2. Для случайной величины, имеющей показательный закон распределения , математическое ожидание равно

():

(в интеграле пределы взять, с учётов того. что f (x) отлична от нуля только при положительных x).

Пример 3. Случайнаявеличина, распределенная по закону распределения Коши, не имеет среднего значения. Действительно

Свойства математического ожидания.

Свойство 1. Математическое ожидание постоянной равно самой этой постоянной.

Постоянная С принимает это значение с вероятностью единица и по определению М(С)=С×1=С

Свойство 2. Математическое ожидание алгебраической суммы случайных величин равно алгебраической суме их математических ожиданий.

Ограничимся доказательством этого свойства только для суммы двух дискретных случайных величин, т.е. докажем, что

Под суммой двух дискретных сл. Величин понимается сл. Величина, которая принимает значения с вероятностями

По определению

Но

где вероятность события , вычисленная при условии, что . В правой части последнего равенства перечислены все случаи появления события , поэтому равна полной вероятности появления события , т.е. . Аналогично . Окончательно имеем

Свойство 3. Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий.

Приведем доказательства этого свойства только для дискретных величин. Для непрерывных случайных величин оно доказывается аналогично.

Пусть Х и У независимы и имеют законы распределения

Произведением этих случайных величин будет случайная величина, которая принимает значения с вероятностями равными, в силу независимости случайных величин, . Тогда

Следствие. Постоянныймножитель можно выносить за знак матема­тического ожидания. Так век постоянная С не зависит от того какое значение примет сл. величина X, то по свойству 3. имеем

М(СХ)=М(С)×М(Х)=С×М(Х)

Пример. Если a и b постоянные, то М(ах+b)=аМ(х)+b.

Математическое ожидание числа появления события в схеме независимых испытаний.

Пусть производится n независимых опытов, ве­роятность появления события в каждом из которых равна Р. Чис­ло появлений события в этих n опытах является случайной величиною Х распределённой по биномиальному закону. Однако, непосредственное вычисление её среднего значения громоздко. Для упрощения воспользуемся разложением, которым будем пользоваться в дальнейшем неоднократно: Число появления события в n опытах состоит изчисла появлений события в отдельных опытах, т.е.

где имеет закон распределения (принимает значение 1, если событие в данном опыте произошло, и значение 0, если событие в данном опыте не появилось).

  
Р1-рр

Поэтому

или

т.е. среднее число появлений события в n независимых опытах равно произведению числа опытов на вероятность появления события в одном опыте.

Например, если вероятность попадания в цель при одном выстреле равна 0,1, то среднее число попадания в 20 выстрелах равно 20×0,1=2.

Источник

Математическое ожидание случайной величины обладает следующими свойствами:

1. Математическое ожидание постоянной величины равно самой постоянной, т.е. М(С)=С.

Доказательство. Постоянную величину можно рассматривать как дискретную с одним значением х1=С и вероятностью этого значения р1=1. По формуле (6.1) получим М(С)=С∙1=С.

Свойство доказано.

2. Математическое ожидание алгебраической суммы двух случайных величин равно алгебраической сумме их математических ожиданий, т.е. М(Х±Y) = М(Х) ± М (Y).

Доказательство. Доказательство проведем только для дискретных случайных величин. Пусть случайные величины Х и Y заданы своими рядами распределения:

Х x1 x2 xn и Y y1 y2 ym
P p1 p2 pn Q q1 q2 qm

Возможными значениями суммы Х±Y являются числа хi ± уj. Обозначим через pij вероятность того, что величина X примет значение хi, а величина Y примет значение уj. По определению математического ожидания имеем

.

Нетрудно понять, что по теореме о полной вероятности имеют место равенства . Следовательно,

.

Свойство доказано.

Следствие. Математическое ожидание алгебраической суммы конечного числа случайных величин равно алгебраической сумме математических ожиданий этих величин.

Доказательство данного следствия можно провести методом математической индукции.

3. Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий, т.е. если Х и Y – независимые случайные величины, то М(Х·Y) = М(Х) · М (Y).

Доказательство. Доказательство проведем также только для дискретных случайных величин. Пусть случайные величины Х и Y заданы, как и при доказательстве второго свойства, своими рядами распределения. Очевидно, что с учетом независимости случайных величин, ряд распределения случайной величины Z=X·Y имеет вид

XY x1y1 x1y2 x1ym x2y1 x2y2 x2ym xny1 xny1 xnym
P p1q1 p1q2 p1qm p2q1 p2q2 p2qm pnq1 pnq2 pnqm

Согласно определению математического ожидания, получим

.

Свойство доказано.

Следствие. Математическое ожидание произведения конечного числа независимых случайных величин равно произведению математических ожиданий этих величин.

Доказательство данного следствия можно провести методом математической индукции.

4. Постоянный множитель можно выносить за знак математического ожидания, т.е. М(С·Х) =С · М(Х).

Доказательство. Применим третье и первое свойства, получим М(С·Х)=М(СМ(Х) =С · М(Х).

Свойство доказано.

Несмотря на то, что доказательство свойств приведено для дискретных случайных величин, однако они все справедливы и для непрерывных случайных величин.

Пример 6.5. Найти математическое ожидание числа появлений события А в n независимых испытаниях, если вероятность появления А в каждом испытании постоянна и равна р.

Решение. Пусть случайная величина Х – число появлений события А в n испытаниях. Введем в рассмотрение еще n случайных величин:

Х1 – число появлений события А в первом испытании;

Х2 – число появлений события А во втором испытании;

…………………………………………………………….

Хn – число появлений события А в n – ом испытании.

Очевидно, что Х=Х1+Х2+…+Хn. Найдем, используя второе свойство, математическое ожидание, получим

М(Х)= М(Х1+Х2+…+Хn)=М(Х1)+М(Х2)+…+М(Хn)=р+р+…+р=n·р.

В последнем равенстве использовались результаты примера 5.2. ■

Математическое ожидание – это не единственная характеристика положения случайной величины. К таким характеристикам относятся также мода и медиана.

Модой случайной величины называется ее наиболее вероятное значение.

Очевидно, что для дискретной случайной величины модой является то значение хi, для которого вероятность рi является самой большой. Для непрерывной случайной величины модой является то значение х, при котором функция плотности f(x)достигает максимального значения.

Если вероятность или плотность вероятности достигают максимума не в одной, а в нескольких точках, распределение называется полимодальным(многомодальным); если в одной точке, то унимодальным(одномодальным).

Медианой случайной величины Х называется такое значение хт, для которого одинаково вероятными оказываются следующие события: “Х< хт” и “Х> хт“.

Как правило, медиана применяется, в основном, для непрерывных случайных величин. Если хт – медиана некоторой непрерывной случайной величины, то для нее выполнены равенства:

Р(Х< хт) = Р(Х> хт) = .

Геометрически медиана – это точка на оси абсцисс, для которой площади под графиком функции плотности, лежащие справа и слева от нее равны и равны .

Кроме характеристик положения распределение случайной величины могут определять характеристики разброса.

Дата добавления: 2017-03-12; просмотров: 2580 | Нарушение авторских прав | Изречения для студентов

Читайте также:

Рекомендуемый контект:

Поиск на сайте:

© 2015-2020 lektsii.org – Контакты – Последнее добавление

Источник