Какими общими свойствами обладают металлы главных подгрупп

Кодификатор ЕГЭ. Раздел 1.2.2. Общая характеристика металлов IА–IIIА групп в связи с их положением в Периодической системе химических элементов Д.И. Менделеева и особенностями строения их атомов.

Атомы элементов IА–IIIА групп имеют сходство в строении электронных оболочек и закономерностях изменения свойств, что приводит к некоторому сходству их химических свойств и свойств их соединений.

Металлы IA (первой группы главной подгруппы) также называются «щелочные металлы«. К ним относятся литий, натрий, калий, рубидий, цезий. Франций – радиоактивный элемент, в природе практически не встречается.  У всех металлов IA группы на внешнем энергетическом уровне, на s-подуровне в основном состоянии есть один неспаренный электрон:

… ns1 — электронное строение внешнего энергетического уровня щелочных металлов

Металлы IA группы — s-элементы. В химических реакциях они отдают один валентный электрон, поэтому для них характерна постоянная степень окисления +1.

Рассмотрим характеристики элементов IA группы:

НазваниеАтомная масса, а.е.м.Заряд ядраЭО по ПолингуМет. радиус, нмЭнергия ионизации, кДж/мольtпл, оСПлотность,

г/см3

Литий6,941+30,980,152520,2180,60,534
Натрий22,99+110,990,186495,897,80,968
Калий39,098+190,820,227418,863,070,856
Рубидий85,469+370,820,248403,039,51,532
Цезий132,905+550,790,265375,728,41,90

Все щелочные металлы — сильные восстановители. Это самые активные металлы, которые могут непосредственно взаимодействовать с неметаллами. С ростом порядкового номера и уменьшением энергии ионизации металлические свойства элементов усиливаются. Щелочные металлы образуют с кислородом оксиды Э2О. Оксиды щелочных металлов реагируют с водой с образованием основания (щелочи):

Э2О + Н2О = 2ЭОН

Водородные соединения щелочных металлов — это гидриды с общей формулой ЭН. Степень окисления водорода в гидридах равна -1.

Металлы IIA (второй группы главной подгруппы) — щелочноземельные. Раньше к щелочноземельным металлам относили только кальций, стронций, барий и радий, но по решению ИЮПАК бериллий и магний также называются щелочноземельными.

У щелочноземельных металлов на внешнем энергетическом уровне расположены два электрона. В основном состоянии это два спаренных электрона на s-подуровне:

… ns2 — электронное строение внешнего энергетического уровня элементов IIA группы

Щелочноземельные металлы — s-элементы. Отдавая два валентных электрона, они проявляют постоянную степень окисления +2. Все элементы подгруппы бериллия — сильные восстановители, но восстановительные свойства выражены слабее, чем у щелочных металлов.

Характеристики элементов IIA группы:

НазваниеАтомная масса, а.е.м.Заряд ядраЭО по ПолингуМет. радиус, нмЭнергия ионизации, кДж/мольtпл, оСПлотность,

г/см3

Бериллий9,012+41,570,169898,812781,848
Магний24,305+121,310,245737,36501,737
Кальций40,078+201,000,279589,48391,55
Стронций87,62+380,950,304549,07692,54
Барий137,327+560,890,251502,57293,5

Металлы подгруппы бериллия довольно активны. На воздухе они легко окисляются, образуя основные оксиды с общей формулой ЭО. Этим оксидам соответствуют гидроксиды Э(ОН)2.

Первый элемент IIA группы, бериллий, по большинству свойств гораздо ближе к алюминию (диагональное сходство). Это проявляется в свойствах бериллия. Например, он не взаимодействует с водой. Магний взаимодействует с водой только при нагревании. Кальций, стронций и барий — это типичные металлы. Они реагируют с водой при обычных условиях.

Элементам  IIA группы соответствуют гидриды с общей формулой ЭН2.

Элементы IIIA (третьей группы главной подгруппы) — это бор, алюминий, галлий, индий, таллий и нихоний. В основном состоянии содержат на внешнем энергетическом уровне три электрона, которые  распределены по s- и р-подуровням:

… ns2nр1 — электронное строение внешнего энергетического уровня элементов IIIA группы

Все элементы подгруппы бора относятся к р-элементам. В химических соединениях проявляются степень окисления +3. Хотя для таллия более устойчивая степень окисления +1.

Характеристики элементов IIA группы:

НазваниеАтомная масса, а.е.м.Заряд ядраЭО по ПолингуРадиус атома, нмЭнергия ионизации,

Э → Э3+, эВ

Степень окисления в соединенияхВалентные электроны
Бор10,811+52,010,09171,35+3, -32s22p1
Алюминий26,982+131,470,14353,20+33s23p1
Галлий69,723+311,820,13957,20+34s24p1
Индий114,818+491,490,11652,69+35s25p1
Таллий204,383+811,440,17156,31+1, +36s26p1

Металлические свойства у элементов подгруппы бора выражены слабее, чем у элементов IIA подгруппы. Элмент бор относится к неметаллам. Энергия ионизации атома у бора наибольшая среди элментов IIIA подгруппы. Алюминий относится к типичным металлам, но оксид и гидроксид алюминия проявляют амфотерные свойства. У таллия более сильно выражены металлические свойства, в степени окисления +1 он близок по свойствам к щелочным металлам.  Наибольшее практическое значение среди элементов IIIA подгруппы имеет алюминий.

В общем металлы IА–IIIА подгрупп характеризуются:

  • небольшим количеством электронов на внешнем энергетическом уровне:
  • сравнительно сильными восстановительными свойствами;
  • низкими значениями электроотрицательности;
  • сравнительно большими атомными радиусами (относительно радиусов других атомов в периодах, в которых расположены соответствующие металлы);
  • металлической кристаллической решеткой;
  • высокой электро- и теплопроводностью;
  • твердым фазовым состоянием при нормальных условиях.

Источник

Тема: Металлы главных подгрупп периодической системы химических элементов

Цель: познакомиться со свойствами металлов главных подгрупп периодической системы химических элементов; рассмотреть общие свойства и закономерности щелочных и щелочноземельных элементов, изучить по отдельности химические свойства щелочных и щелочноземельных металлов и их соединения. С помощью химических уравнений рассмотреть такое понятие, как жесткость воды. Познакомиться с алюминием, его свойствами и сплавами.

Оборудование: ПСХЭ

Ход урока

Организационный момент

Актуализация опорных знаний:

  1. Расскажите, каким образом располагаются металлы в ПСХЭ.

  2. Каких элементов больше: металлических или неметаллических?

  3. Какими общими свойствами обладают металлы?

Изучение нового материала:

Главную подгруппу I группы Периодической системы Д.И. Менделеева составляют литий Li, натрий Na, калий K, рубидий Rb, цезий Cs и франций Fr. Элементы этой подгруппы относят к металлам. Их общее название – щелочные металлы.

Читайте также:  Какими свойствами обладает валериана

Щелочноземельные металлы находятся в главной подгруппе II группы Периодической системы Д.И. Менделеева. Это магний Mg, кальций Ca, стронций Sr, барий Ba и радий Ra.

Щелочные и щелочноземельные металлы как типичные металлы проявляют ярко выраженные восстановительные свойства. У элементов главных подгрупп металлические свойства с увеличением радиуса возрастают. Особенно сильно восстановительные свойства проявляются у щелочных металлов. Настолько сильно, что практически невозможно проводить их реакции с разбавленными водными растворами, так как в первую очередь будет идти реакция взаимодействия их с водой. У щелочноземельных металлов ситуация аналогичная. Они тоже взаимодействуют с водой, но гораздо менее интенсивно, чем щелочные металлы.

Электронные конфигурации валентного слоя щелочных металлов – ns1 , где n – номер электронного слоя. Их относят к s-элементам. У щелочноземельных металлов – ns2 (s-элементы). У алюминия валентные электроны …3s23р1 (p-элемент). Эти элементы образуют соединения с ионным типом связи. При образовании соединений для них степень окисления соответствует номеру группы.

Обнаружение ионов металла в солях

Ионы металлов легко определить по изменению окраски пламени. Рис. 1.

Соли лития – карминово-красная окраска пламени. Соли натрия – желтый. Соли калия – фиолетовый через кобальтовое стекло. Рубидия – красный, цезия – фиолетово-синий.

Соли щелочноземельных металлов: кальция – кирпично-красный, стронция – карминово-красный и бария – желтовато-зеленый. Соли алюминия окраску пламени не меняют. Соли щелочных и щелочноземельных металлов используются для создания фейерверков. И можно легко определить по окраске, соли какого металла применялись.

 2. Щелочные металлы

Щелочные металлы – это серебристо-белые вещества с характерным металлическим блеском. Они быстро тускнеют на воздухе из-за окисления. Это мягкие металлы, по мягкости Na, K, Rb, Cs подобны воску. Они легко режутся ножом. Они легкие. Литий – самый легкий металл с пл. 0,5 г/см3.

Химические свойства щелочных металлов

1. Взаимодействие с неметаллами

Из-за высоких восстановительных свойств щелочные металлы бурно реагируют с галогенами с образованием соответствующего галогенида. При нагревании реагируют с серой, фосфором и водородом с образованием сульфидов, гидридов, фосфидов.

2Na + Cl2→ 2NaCl

2Na + S  Na2S

2Na + H2 2NaH

3Na + P  Na3P

Литий – это единственный металл, который реагирует с азотом уже при комнатной температуре.

6Li + N2 = 2Li3N, образующийся нитрид лития подвергается необратимому гидролизу.

Li3N + 3H2O → 3LiOH + NH3↑

2. Взаимодействие с кислородом

Только с литием сразу образуется оксид лития.

4Li + О2 = 2Li2О, а при взаимодействии кислорода с натрием образуется пероксид натрия.

2Na + О2 = Na2О2. При горении всех остальных металлов образуются надпероксиды.

К + О2 = КО2  

3. Взаимодействие с водой

По реакции с водой можно наглядно увидеть, как изменяется активность этих металлов в группе сверху вниз. Литий и натрий спокойно взаимодействуют с водой, калий – со вспышкой, а цезий – уже с взрывом.

2Li + 2H2O → 2LiOH + H2↑

4. Взаимодействие с кислотами – сильными окислителями

8K + 10HNO3 (конц) → 8KNO3 + N2O +5 H2O

8Na + 5H2SO4 (конц) → 4Na2SO4 + H2S↑ + 4H2O

Получение щелочных металлов

Из-за высокой активности металлов, получать их можно при помощи электролиза солей, чаще всего хлоридов.

Соединения щелочных металлов находят большое применение в разных отраслях промышленности. См. Табл. 1. 

NaOH

Едкий натр (каустическая сода)

NaCl

Поваренная соль

NaNO3

Чилийская селитра

Na2SO4∙10H2O

Глауберова соль

Na2CO3∙10H2O

Сода кристаллическая

KOH

Едкое кали

KCl

Хлорид калия (сильвин)

KNO3

Индийская селитра

K2CO3

Поташ

 3. Щелочноземельные металлы

Их название связано с тем, что гидроксиды этих металлов являются щелочами, а оксиды раньше называли «земли». Например, оксид бария BaO – бариевая земля. Бериллий и магний чаще всего к щелочноземельным металлам не относят.

Химические свойства щелочноземельных металлов.

1. Взаимодействие с неметаллами

Сa + Cl2→ 2СaCl2

Сa + S  СaS

Сa + H2 СaH2

3Сa + 2P  Сa3 P2-

2. Взаимодействие с кислородом

2Сa + O2 → 2CaO

3. Взаимодействие с водой

Sr + 2H2O → Sr(OH)2 + H2↑, но взаимодействие более спокойное, чем с щелочными металлами.

4. Взаимодействие с кислотами – сильными окислителями

4Sr + 5HNO3 (конц) → 4Sr(NO3)2 + N2O +4H2O

4Ca + 10H2SO4 (конц) → 4CaSO4 + H2S↑ + 5H2O

Получение щелочноземельных металлов

Металлический кальций и стронций получают электролизом расплава солей, чаще всего хлоридов.

CaCl2  Сa + Cl2

Барий высокой чистоты можно получить алюмотермическим способом из оксида бария

3BaO +2Al  3Ba + Al2O3

РАСПРОСТРАНЕННЫЕ СОЕДИНЕНИЯ ЩЕЛОЧНОЗЕМЕЛЬНЫХ МЕТАЛЛОВ

Самыми известными соединениями щелочноземельным металлов являются: CaО – негашеная известь. Ca(OH)2 – гашеная известь, или известковая вода. При пропускании углекислого газа через известковую воду происходит помутнение, так как образуется нерастворимый карбонат кальция СаСО3. Но надо помнить, что при дальнейшем пропускании углекислого газа образуется уже растворимый гидрокарбонат и осадок исчезает.

СaO + H2O → Ca(OH)2

Ca(OH)2 + CO2↑ → CaCO3↓+ H2O

CaCO3↓+ H2O + CO2 → Ca(HCO3)2

Гипс – это CaSO4∙2H2O, алебастр – CaSO4∙0,5H2O. Гипс и алебастр используются в строительстве, в медицине и для изготовления декоративных изделий. Рис. 2.

Карбонат кальция CaCO3 образует множество различных минералов. Рис. 3.

Фосфат кальция Ca3(PO4)2  – фосфорит, фосфорная мука используется как минеральное удобрение.

Чистый безводный хлорид кальция CaCl2 – это гигроскопичное вещество, поэтому широко применяется в лабораториях как осушитель.

Карбид кальция – CaC2. Его можно получить так:

СaO + 2C →CaC2 +CO. Одно из его применений – это получение ацетилена.

CaC2 + 2H2O →Ca(OH)2 + C2H2↑

Сульфат бария BaSO4 – барит. Рис. 4. Используется как эталон белого в некоторых исследованиях.

Жесткость воды

В природной воде содержатся соли кальция и магния. Если они содержатся в заметных концентрациях, то  в такой воде не мылится мыло из-за образования нерастворимых стеаратов. При её кипячении образуется накипь.

Временная жесткость обусловлена присутствием гидрокарбонатов кальция и магния Ca(HCO3)2 и Mg(HCO3)2. Такую жесткость воды можно устранить кипячением.

Ca(HCO3)2  CaCO3↓ + СО2↑ + Н2О

Постоянная жесткость воды обусловлена наличием катионов Ca2+., Mg2+ и анионов H2PO4- ,Cl-, NO3- и др. Постоянная жесткость воды устраняется только благодаря реакциям ионного обмена, в результате которых ионы магния и кальция будут переведены в осадок.

Читайте также:  Какие признаки или свойства живого лежат в основе исторического развития

CaCl2 + Na2CO3 → CaCO3↓ + 2NaCl

 4. Алюминий

Алюминий и его соединения

Алюминий занимает 4-е место по распространенности в земной коре, уступая кремнию, кислороду и водороду. В природе он присутствует в виде алюмосиликатов, глин и бокситов. Рис. 5.

По своим химическим свойствам он гораздо менее активен, чем щелочные и щелочноземельные металлы. Во многом это связано с образованием не его поверхности тончайшей пленки оксида, которая препятствует или замедляет многие химические реакции.

Химические свойства алюминия

1. Реакция с галогенами

2Al + 3I2 2AlI3

2. Сгорает при нагревании с выделением большого количества теплоты

4Al + 3O2 2Al2O3 + Q . При этом может развиваться температура до 35000С.

3. Реакция с неметаллами

2Al + 3S  Al2S3

2Al + N2 2AlN

4Al + 3С  Al4С3

4. Взаимодействует с водой

2Al + 6H2O → 2Al(OH)3 +3H2↑ Если снять амальгамированием или механически пленку.

Амальгамирование – это нанесение на поверхность небольшого количества ртути.

5. Алюминий активно восстанавливает металлы из их оксидов (алюмотермия)

Cr2O3 + 2Al → Al2O3 + 2Cr; этот способ используется при получении многих металлов: Mn, Cr, V, W, Ba, Sr и др.

6. Взаимодействует с кислотами-неокислителями

2Al + 6HCl →2AlCl3 + 3H2↑

Алюминий не реагирует с концентрированными азотной и серной кислотами из-за пассивации. С разбавленной серной или азотной кислотой взаимодействует

8Al + 30HNO3 →8Al(NO3)3 + 3NH4NO3 + 9H2O

7. Взаимодействие со щелочами. Al, Al2O3, Al(OH)3 взаимодействуют со щелочами:

2Al + 2NaOH + 6H2O → 2Na[Al(OH)4] + 3H2↑ (амфотерные свойства).

Al2O3 + 2NaOH  = 2NaAlO2 + H2O

8. Реагирует с растворами солей

2Al + 3CuCl2 → 2AlCl3 + 3Cu

Применение алюминия

Алюминий широко применяется в быту и технике, так как он довольно легок, коррозионно-устойчив и нетоксичен. См. Рис. 6. Часто используются сплавы алюминия. Основной – это дуралюмин (дюралюминий, дюраль). Это сплав алюминия, содержащий медь (массовая доля – 1,4-13%) и небольшие количества магния, марганца и других компонентов. Используется как конструкционный материал в авиа- и машиностроении.

 5. Смеси, регенерирующие кислород

Оксиды и пероксиды способны реагировать с углекислым газом, образуя карбонат и кислород.

Na2O2 + CO2 → Na2CO3 + 1/2O2

KO2 + CO2 → K2CO3 +  3/2O2

Если сложить эти 2 уравнения реакции, то получится смесь, выделяющая и 2 моль углекислого газа, и 2 моль кислорода.

Na2O2 + 2KO2 + 2 CO2 → Na2CO3 + K2CO3 + 2О2. Суммарный объём газа в левой и правой части уравнения будет одинаков. Постоянство объёма газа очень важно, так как такие смеси применяются для удаления CO2 и превращения его в нужный для дыхания кислород, например, в подводных лодках или космических станциях. Но там не должно происходить перепада давления.

Подведение итога урока

На уроке была раскрыта тема «Металлы и их свойства. Щелочные металлы. Щелочноземельные металлы. Алюминий». Вы узнали общие свойства и закономерности щелочных и щелочноземельных элементов, изучили по отдельности химические свойства щелочных и щелочноземельных металлов и их соединения. С помощью химических уравнений было рассмотрено такое понятие, как жесткость воды. Познакомились с алюминием, его свойствами и сплавами. Вы узнали, что такое смеси, регенерирующие кислород, озониды, пероксид бария и получение кислорода.

Домашнее задание

Рефлексия: Я могу…Я знаю… Я буду…

Источник

Общая характеристика металлов IА–IIIА групп в связи с их положением в Периодической системе химических элементов Д.И. Менделеева и особенностями строения их атомов

Металлы характеризуют по их положению в Периодической системе химических элементов Д. И. Менделеева (ПСХЭ или ПС), строению атома. Простые вещества-металлы, их сплавы подразделяют на легкие и тяжелые, тугоплавкие и легкоплавкие, выделяют благородные, описывают отношение к электрическому току.

Общая характеристика металлов

Периодическая система — совокупность горизонтальных рядов и вертикальных столбцов. Последние включают в себя подгруппы А (главные) и В (побочные). Элементы подгрупп расположены друг под другом, они похожи по строению и свойствам. Типичные металлы относятся к первым трем А-группам.

Рис. 1. Периодическая система

Мысленно проведем диагональ в ПС: сверху от лития и бериллия вниз — к астату (Рисунок 1). Слева внизу окажутся элементы-металлы, справа вверху расположены неметаллы. Чем левее и ниже, тем сильнее металлические свойства. По направлению вверх и вправо усиливается неметаллический характер элементов. Вблизи воображаемой линии расположены металлоиды, сочетающие свойства двух классов элементов. Их соединения также обладают двойственным характером.

В атомах химических элементов первых трех А-групп расположены 1–3 электрона на внешнем (валентном) энергетическом уровне. До его заполнения не хватает 7–5 электронов. Таким частицам легче отдать валентные электроны, чем присоединить недостающие. При этом образуются ионы с зарядами от +1 до +3 (одно-трехзарядные катионы). Типичные валентности металлов — от I(+) до III(+), степени окисления — от + до 3+. Металлы В-групп могут отдавать электроны предвнешнего уровня. Валентности, степени окисления и заряды ионов в этом случае возрастают.

Радиусы металлов сравнительно большие, что тоже объясняет слабую связь внешних электронов с ядром. Закономерное возрастание радиусов наблюдается в группах сверху вниз. Также в этом направлении усиливаются металлические (восстановительные) свойства. Слева направо в периодах металлические свойства ослабевают, а неметаллические — усиливаются.

Низкие значения относительной электроотрицательности, малое сродство к электрону — еще одна общая черта металлов. В целом, это сильные восстановители, для которых нехарактерны окислительные свойства. В химических реакциях атомы металлических элементов легко отдают внешние электроны окислителям, при этом приобретают электронное строение инертного газа из предыдущего периода.

Сходством электронного строения обусловлены физические свойства металлов. (Рис. 2).

Рис. 2. Связь положения металлов со строением и свойствами

Наличием свободных электронов в виде «электронного газа» обусловлена высокая электропроводность металлов. Они обычно имеют светло- или темно-серый цвет, обладают характерным блеском. Это ковкие, пластичные вещества, что используются при изготовлении проволоки, проката. Теплопроводность и электропроводность металлов имеют большое практическое значение.

Кристаллическая решетка металлов отличается от других типов наличием «электронного газа». Щелочные металлы — самые мягкие, они легко сгибаются, режутся ножом.. Хром царапает стекло, что характерно для твердых веществ, например, алмаза, корунда. Самый легкий металл — литий, тяжелый – осмий. Ртуть плавится при 30°С, вольфрам — почти при 3400°С.

Читайте также:  Какие свойства изоляции характеризует угол диэлектрических потерь

Восстановительные свойства металлов представлены в их последовательности, получившей название «Электрохимический ряд напряжений ( ряд активности металлов )». (Рис. 3).

Рис. 3. Ряд активности металлов

Слева направо в ЭХРН восстановительная активность металлы, а именно способность отдавать электрон, снижается.

Металлы реагируют с кислородом с получением оксидом. С водородом образуют гидриды (только металлы IА и IIА групп), с серой — сульфиды. Металлы вступают в химические реакции с галогенами и азотом.

Щелочные и щелочноземельные металлы реагируют с водой с образованием растворимых оснований. В реакции выделяется водород, который нередко вспыхивает из-за выделения тепла в результате взаимодействия веществ. 

Металлы, расположенные в ЭХРН до водорода, вытесняют Н2 из растворов кислот. Металлы после водорода — менее активные. Медь, ртуть, золото, серебро и платина не взаимодействуют с кислотами с вытеснением Н2.

Более активные металлы могут вытеснять металлы, расположены в ЭХРН правее, из растворов солей. Это и другие свойства широко используются для получения металлов, их важнейших соединений.

Характеристика металлов IA группы

Элементы Li, Na, K, Rb, Cs, Fr обладают сильными металлическими свойствами. Свое тривиальное название «щелочные металлы» они получили за едкие свойства растворимых оснований (щелочей). Лучше изучены первые три представителя группы. Франций является радиоактивным элементом, его химические свойства еще только исследуются в экспериментах.

Общая характеристика по положению в ПС и строению атома:

  • Заряды ядер соответствуют порядковым номерам элементов, только со знаком «+». Например, заряд ядра натрия равен + 11, калия + 19. 
  • Электронная конфигурация в невозбужденном состоянии повторяет строение предыдущего инертного газа плюс 1 электрон на уровне, имеющем такой же номер, как период. Например, строение атома лития отражает формула (He)2s1, где (He) — это электронное строение атома гелия 1s2, а 2s1 — номер последнего энергетического уровня, подуровень, количество электронов на нем.
  • Радиус элементов IA группы возрастает от 0,152 у лития до 0,248 нм у рубидия. Электроотрицательность снижается от лития (0,98) до франция (0,7).
  • Внешний энергетический уровень содержит 1 электрон, слабо связанный с ядром. Отдавая его, атомы превращаются в однозарядные катионы.

Щелочные металлы образуют соединения с ионной кристаллической решеткой с галогенами, кислородом и азотом.

Простые вещества химически очень активны: взаимодействуют с водой со взрывом, загораются на воздухе. Щелочные металлы хранят в лабораториях в запаянных ампулах, или в банках под слоем жидкости, не содержащей воду.

Ионы существенно отличаются по свойствам от атомов. Натрий, калий в виде однозарядных катионов являются макроэлементами, необходимыми для живых организмов.

Характеристика металлов IIA группы

Элементы IIA группы — Ве, Mg, Са, Sr, Ва, Ra. Радий — радиоактивный элемент. Электронное строение атомов IА и IIА групп имеет много общего. Повторяется конфигурация энергетических уровней инертного газа из предыдущего периода, дополненная двумя s-электронами на последнем уровне. Например, электронная конфигурация Са (Ar)4s2.

Радиус атомов возрастает сверху вниз от 0,112 у бериллия до 215 нм у стронция. Электроотрицательность выше, чем у щелочных металлов. ЭО бериллия — 1,57, магния — 1,31, кальция — 1, стронция — 0,95. Щелочноземельные металлы проявляют валентность II(+), степень окисления +2. Образуют двухзарядные катионы, например, Са2+.

Все щелочноземельные металлы при комнатной температуре — твердые вещества. Цвет серый или темно-серый, блеск металлический. Стронций режется ножом, кальций с трудом, магний твердый.

Общие признаки:

  • относятся к s-элементам;
  • на внешнем электронном слое по 1 и по 2 электрона;
  • в свободном состоянии в периоде не встречаются;
  • все металлы серебристо-белого цвета;
  • имеют низкие температуры кипения и плавления

Внутри групп существуют различия в химических свойствах. Например, бериллий и магний больше напоминают алюминий, отличаются от кальция и бария. Щелочноземельные металлы в химических реакциях с окислителями легко отдают валентные электроны и превращаются в двухзарядные катионы. Химическая активность повышается от бериллия к радию.

Характеристика металлов IIIA группы

Представители —В, Al, Ga, In, Tl. Бор в этой подгруппе — единственный неметалл. Заряд ядер атомов возрастает от 5 у бора до 81 у таллия. Атомный радиус в том же порядке увеличивается с 0,091 до 0,171 нм. Электроотрицательность снижается с 2,04 до 1,44.

Для электронной конфигурации металлов IIIA группы характерно наличие двух спаренных s-электронов и одного р-электрона. В «реальном» атоме все электроны внешнего энергетического уровня выравниваются по форме и энергии в результате sp2-гибридизации. Характерные валентность, степень окисления и заряд ионов в этой группе — III(+), +3, 3+ соответственно. Изменения свойств представлены в схеме 1.

Схема 1. Характеристика IIIA группы

Простые вещества имеют металлический блеск, серебристо-белый цвет. Они относительно легкоплавкие и мягкие. Лист или проволока из алюминия легко сгибаются, а индий — один из самых мягких металлов. Талий не только мягкий, но и твердеет при низкой температуре около –60°С.

Эка-таллий или нихоний — относительно недавно открытый, еще недостаточно изученный элемент IIIA группы.

Свойства галлия и индия близки к химии алюминия. Причина — одинаковое строение внешнего энергетического уровня. Алюминий имеет высокие тепло- и электропроводность.

Общие свойства металлов IА–IIIА групп ПС обусловлены сходством в электронном строении внешних электронных оболочек. Радиусы атомов и свойства закономерно изменяются. Более сильные металлические элементы — последние представители в группах. Самые сильные металлы относятся к IА группе. К IIIА группе металлические свойства ослабевают.

Смотри также:

  • Закономерности изменения свойств элементов и их соединений по периодам и группам
  • Характеристика переходных элементов (меди, цинка, хрома, железа)
  • Общая характеристика неметаллов IVА–VIIА групп

Источник