Какими особыми свойствами обладают сверхпроводники

Какими особыми свойствами обладают сверхпроводники thumbnail

В 1911 году нидерландский физик Х. Камерлинг-Оннес получил, что при $T=4,3 K$ у ртути отсутствует сопротивление электрическому току. Причем падение сопротивления идет скачком в интервале несколько сотых градуса. Позднее обнаружилось, что резкое уменьшение сопротивления можно наблюдать и у других чистых веществ и некоторых сплавов. Это явление назвали сверхпроводимостью Температура перехода в состояние сверхпроводимости у разных веществ разные, но всегда очень низкие.

Если возбудить электрический ток в кольце из сверхпроводника при помощи такого явления, как электромагнитная индукция, то сила тока может не изменяться до нескольких лет.

Пример:

  1. Возьмем кольцо из проволоки.
  2. Поместим его в магнитное поле.
  3. Выключим магнитное поле (быстро удалим магнит). В кольце появится ток индукции.

Данный ток будет идти очень короткое время, поскольку ЭДС индукции действует только в момент отключения магнитного поля. После прекращения работы ЭДС перестает идти ток в проводнике.

Проведем ту же последовательность действий со сверхпроводником, сопротивление которого равно нулю. В материале сверхпроводника отсутствуют силы, препятствующие движению электронов. Следовательно, для поддержания тока в проводнике нет необходимости во внешнем электрическом поле, значит, источник ЭДС не нужен. Ток в сверхпроводнике может существовать долгое время и после прекращения действия электродвижущей силы. В подобном эксперименте Камерлинг – Оннес наблюдал наличие тока в сверхпроводнике в течение почти четырех суток, после выключения магнитного поля. В этом опыте кольцо из свинца поддерживалось при очень низкой температуре около 7К.

Критическая температура

Верхним пределом удельного сопротивления сверхпроводников считают менее $rho

Определение 1

Явление скачкообразного уменьшения сопротивления веществ при низких температурах назвали сверхпроводимостью.

Температура, при которой сопротивление вещества становится равным нулю стали называть критической температурой ($T_k$).

Сопротивление веществ до их перехода в сверхпроводящее состояние может быть разным. Многие из них при комнатных температурах могут обладать высоким сопротивлением. Как уже отмечалось, переход в сверхпроводящее состояние происходит очень резко. У чистых монокристаллов интервал температур перехода составляет менее тысячной градуса.

Сверхпроводимость среди «чистых» материалов выявлена у:

  • алюминия,
  • кадмия,
  • цинка,
  • индия,
  • галлия.

Свойство сверхпроводимости связано со структурой кристаллической решетки. Так, белое олово проявляет свойства сверхпроводника, а серое не проявляет, ртуть имеет сверхпроводящие свойства только в $alpha$ – фазе.

Критическое поле

В 1914 г. Камерлинг – Оннес выявил, что состояние сверхпроводимости можно разрушить при помощи магнитного поля, если величина магнитной индукции его выше некоторого критического значения. Это значение зависит от материала сверхпроводника и его температуры.

Критическое поле может создать сам сверхпроводящий ток. Следовательно, есть критическая величина силы тока, при которой состояние сверхпроводимости подвергается деструкции.

Эффект Мейсснера

В 1933 году ученые Мейсснер и Оксенфельд выявили, что внутри сверхпроводников полностью отсутствуют магнитные поля. Если сверхпроводник охлаждать во внешнем постоянном магнитном поле, то в момент перехода в состояние сверхпроводника магнитное поле полностью вытесняется из объема материала.

В этом состоит принципиальное отличие сверхпроводника от идеального проводника. У проводника при уменьшении удельного сопротивления индукция магнитного поля в его объеме должна сохраняться без изменений.

Определение 2

Явление вытеснения магнитного поля из объема сверхпроводника называют эффектом Мейсснера.

К важнейшим свойствам сверхпроводников относят:

  1. Отсутствие сопротивления.
  2. Эффект Мейсснера.

Поверхностный ток

Так как в объеме сверхпроводника отсутствует магнитное поле, то в нем имеются только токи, текущие по поверхности. Эти токи физически реальны. Они локализованы в тонком слое около поверхности тела.

Магнитные поля поверхностных токов нивелируют внешнее магнитное поле внутри сверхпроводника. Получается, что сверхпроводник ведет себя формально как диамагнетик. Но таковым не является, поскольку его намагниченность равна нулю внутри него.

Сверхпроводники первого и второго рода

Чистые вещества (так называемы элементарные проводники), обладающие свойством сверхпроводимости очень немногочисленны. Более часто сверхпроводимость наблюдается у сплавов.

У элементарных сверхпроводников наблюдается полный эффект Мейсснера, тогда как у сплавов имеется только частичный эффект, то есть магнитное поле выталкивается из объема вещества не полностью.

Определение 3

Вещества, у которых возникает полный эффект Мейсснера, называют сверхпроводниками первого рода.

Вещества, у которых эффект Мейсснера проявляется частично, носят название сверхпроводников второго рода.

Сверхпроводники второго рода в своем объеме имеют круговые токи, которые порождают магнитное поле, распределенное в веществе в виде отдельных «нитей». Сопротивление же этих сверхпроводников, так же равно нулю, как и у первых.

Природа сверхпроводимости

Сверхпроводимость можно сравнить со сверхтекучестью жидкости, которая создана из электронов. Явление сверхтекучести появляется в результате отсутствия обмена энергиями сверхтекучей составляющей жидкости и других ее частей, при этом исчезает трение. Важным моментом при этом является то, что молекулы этой жидкости как бы конденсируются на самом низком энергетическом уровне, который отделен от других уровней довольно широкой энергетической щелью. Эту щель силы взаимодействия не могут преодолеть. Это является причиной отсутствия взаимодействия.

Для того чтобы многие частицы могли локализоваться на низшем энергоуровне, нужно их подчинение статистике Бозе- Эйнштейна (это значит они должны иметь целочисленный спин).

Электроны подчинены статистике Ферми – Дирака, значит, не могут собираться не низшем энергоуровне и создавать сверхтекучую жидкость. Силы отталкивания, возникающие между электронами, в основном компенсируются силами притяжения к ионам кристаллической решетки. Но из-за тепловых колебаний атомов в узлах решетки между электронами может появляться притяжение, и они способны создавать пары (куперовские пары).

Куперовские пары ведут себя как частицы с целочисленным спином, это значит, что они подчиняются статистике Бозе – Эйнштейна. Куперовские пары способны к концентрации, и они создают течение сверхтекучей жидкости, то есть электрический ток в состоянии сверхпроводимости. Выше самого низкого энергоуровня расположена энергетическая щель, которую пары не могут преодолеть за счет энергии взаимодействия с остальными зарядами, следовательно, она не изменяет свое энергетическое состояние. Как следствие – сопротивление вещества равно нулю.

Процесс возникновения куперовских пар и создания сверхтекучей жидкости объясняет квантовая теория.

Источник

Сверхпроводник — материал, электрическое сопротивление которого при понижении температуры до некоторой величины Tc становится равным нулю (сверхпроводимость). При этом говорят, что материал приобретает «сверхпроводящие свойства» или переходит в «сверхпроводящее состояние».

В настоящее время проводятся исследования в области сверхпроводимости с целью повышения температуры Tc (высокотемпературная сверхпроводимость).

История[править | править код]

В 1911 году голландский физик Камерлинг-Оннес обнаружил, что при охлаждении ртути в жидком гелии её сопротивление сначала меняется постепенно, а затем при температуре 4,1 К резко падает до нуля.

Сверхпроводник наименьшего размера был создан в 2010 году на основе органического сверхпроводника (BETS)2GaCl4[1][2], где аббревиатура «BETS» означает бисэтилендитиотетраселенафульвален. Созданный сверхпроводник состоит всего из четырёх пар молекул этого вещества при общей длине образца порядка 3,76 нм.

Свойства сверхпроводников[править | править код]

В зависимости от свойств сверхпроводники делят на три группы:

  • сверхпроводники I (первого) рода;
  • сверхпроводники 1,5 рода;
  • сверхпроводники II (второго) рода.

Фазовый переход в сверхпроводящее состояние[править | править код]

Переход вещества в сверхпроводящее состояние сопровождается изменением его тепловых свойств. Однако, это изменение зависит от рода рассматриваемых сверхпроводников. Так, для сверхпроводников Ι рода в отсутствие магнитного поля теплота перехода (поглощения или выделения) из сверхпроводящего состояния в обычное равна нулю, а следовательно терпит скачок теплоёмкость, что характерно для фазового перехода ΙΙ рода.

Эффект Мейснера[править | править код]

Даже более важным свойством сверхпроводника, чем нулевое электрическое сопротивление, является так называемый эффект Мейснера, заключающийся в выталкивании сверхпроводником магнитного потока. Из экспериментального наблюдения данного факта делается вывод о существовании незатухающих токов около поверхности сверхпроводника, которые создают внутреннее магнитное поле, противоположно направленное внешнему, приложенному магнитному полю и компенсирующее его.

Таблица сверхпроводников[править | править код]

В представленной ниже таблице перечислены некоторые сверхпроводники и характерные для них величины критической температуры (Tc) и предельного магнитного поля (Bc).

Название материалаКритическая
температура
, К
Критическое
поле
, Тл
Год опубликования
обнаружения
сверхпроводимости
Сверхпроводники I рода
Pb (свинец)7,26[3]0,08[4]1913[3]
Sn (олово)3,69[3]0,031[4]1913[3]
Ta (тантал)4,38[3]0,083[4]1928[3]
Al (алюминий)1,18[3]0,01[4]1933[3]
Zn (цинк)0,88[4]0,0053[4]
W (вольфрам)0,01[4]0,0001[4]
Сверхпроводники 1.5 рода
Ведутся поиски по теоретической модели[5]
Сверхпроводники II рода
Nb (ниобий)9,20[3]0,4[4]1930[3]
V3Ga14,5[4]>35[4]
Nb3Sn18,0[4]>25[4]
(Nb3Al)4Ge20,0[4]
Nb3Ge23[4]
GeTe0,17[4]0,013[4]
SrTiO30,2—0,4[4]>60[4]
MgB2 (диборид магния)39?2001
H2S (сероводород)203[6]72[6]2015[6]

Применение[править | править код]

  • Квантовый компьютер использует кубиты, основанные на сверхпроводниках.
  • Сверхпроводники также используют для создания мощного магнитного поля, к примеру ITER (International Thermonuclear Experimental Reactor; Международный Экспериментальный Термоядерный Реактор), в котором сверхпроводники, создавая магнитное поле, удерживают высокотемпературную плазму, не давая ей контактировать со стенками реактора.

См. также[править | править код]

  • Высокотемпературная сверхпроводимость

Литература[править | править код]

  • Hirsch J.E., Maple M.B., Marsiglio F. Superconducting materials classes: Introduction and overview // Physica C: Superconductivity and its Applications. — 2015. — Vol. 514. — P. 1-8. — ISSN 09214534. — doi:10.1016/j.physc.2015.03.002.
  • Hamlin J.J. Superconductivity in the metallic elements at high pressures // Physica C: Superconductivity and its Applications. — 2015. — Vol. 514. — P. 59-76. — ISSN 09214534. — doi:10.1016/j.physc.2015.02.032.
  • White B.D., Thompson J.D., Maple M.B. Unconventional superconductivity in heavy-fermion compounds // Physica C: Superconductivity and its Applications. — 2015. — Vol. 514. — P. 246-278. — ISSN 09214534. — doi:10.1016/j.physc.2015.02.044.
  • Kubozono Yoshihiro, Goto Hidenori, Jabuchi Taihei, Yokoya Takayoshi, Kambe Takashi, Sakai Yusuke, Izumi Masanari, Zheng Lu, Hamao Shino, Nguyen Huyen L.T., Sakata Masafumi, Kagayama Tomoko, Shimizu Katsuya. Superconductivity in aromatic hydrocarbons // Physica C: Superconductivity and its Applications. — 2015. — Vol. 514. — P. 199-205. — ISSN 09214534. — doi:10.1016/j.physc.2015.02.015.
  • Griveau Jean-Christophe, Colineau Éric. Superconductivity in transuranium elements and compounds // Comptes Rendus Physique. — 2014. — Vol. 15. — P. 599-615. — ISSN 16310705. — doi:10.1016/j.crhy.2014.07.001.

Примечания[править | править код]

  1. K. Clark, A. Hassanien, S. Khan, K.-F. Braun, H. Tanaka and S.-W. Hla. Superconductivity in just four pairs of (BETS)2GaCl4 molecules (англ.) // Nature Nanotechnology. — 2010. — Vol. 5. — P. 261—265.
  2. Юрий Ерин. Создан сверхпроводник, состоящий всего из 8 молекул вещества. Элементы.ру (19 апреля 2010). Дата обращения: 19 апреля 2010. Архивировано 26 августа 2011 года.
  3. 1 2 3 4 5 6 7 8 9 10 В. Л. Гинзбург, Е. А. Андрюшин. Глава 1. Открытие сверхпроводимости // Сверхпроводимость. — 2-е издание, переработанное и дополненное. — Альфа-М, 2006. — 112 с. — 3000 экз. — ISBN 5-98281-088-6.
  4. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Сверхпроводник — статья из Большой советской энциклопедии
  5. ↑ Физики представили теорию полуторной сверхпроводимости
  6. 1 2 3 A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, S. I. Shylin. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system // Nature. — Т. 525, вып. 7567. — С. 73–76. — doi:10.1038/nature14964.

Источник

Сверхпроводимость

Загадочные квантовые явления до сих пор удивляют исследователей своим невообразимым поведением. Ранее мы говорили о сверхтекучести, сегодня же рассмотрим другое квантово-механическое явление – сверхпроводимость.

Что такое сверхпроводимость? Сверхпроводимость – это квантовое явление протекания электрического тока в твердом теле без потерь, то есть при строго нулевом электрическом сопротивлении тела.

Предыстория

С введением в физику такого понятия как «абсолютный ноль» ученые стали все больше исследовать свойства веществ при низкой температуре, когда движение молекул практически отсутствует. Для достижения низких температур требуется проведение такого процесса, как «сжижение газа». При испарении такой газ отбирает энергию у тела, которое погружено в этот газ, так как для отрыва молекул от жидкости требуется энергия. Подобные процессы протекают в бытовых холодильниках, где сжиженный газ фреон испарятся в морозилке.

В конце XIX – начале XX столетия уже были получены такие сжиженные газы как кислород, азот, водород. Долгое время не поддавался сжижению гелий, при этом ожидалось, что он поможет достичь минимальной температуры.

Хейке Камерлинг-Оннес (справа) с помощником Герритом Флимом (слева)

Хейке Камерлинг-Оннес (справа) с помощником Герритом Флимом (слева)

Успех в сжижении гелия был достигнут голландским физиком Хейке Камерлинг-Оннесем в 1908-м году, который работал в Лейденском университете (Нидерланды). Сжиженный гелий позволял достичь рекордно низкой температуры – около 4 К. Получив жидкий гелий, ученый начал заниматься изучением свойств разных материалов при гелиевых температурах.

История открытия

Одним из вопросов, которые интересовали Камерлинг-Оннеса, было изучение сопротивления металлов при сверхнизких температурах. Было известно, что с ростом температуры электрическое сопротивление также растет. Следовательно, можно ожидать, что с уменьшением температуры будет наблюдаться обратный эффект.

Экспериментируя с ртутью в 1911-м году, ученый довел ее до замерзания и продолжил понижать температуру. При достижении 4,2 К устройство перестало фиксировать сопротивление. Оннес заменял устройства в исследовательской установке, поскольку побаивался их неисправности, однако устройства неизменно показывали нулевое сопротивление, несмотря на то, что до абсолютного нуля оставалось еще 4 К.

После открытия сверхпроводимости ртути возникло большое количество вопросов. Среди них: «свойственна ли сверхпроводимость другим веществам, помимо ртути?» или «сопротивление снижается до нуля, либо оно настолько мало, что устройства, которые существуют, не могут его измерить.

Оннес предложил оригинальное исследование с непрямым измерением, до какого уровня понижается сопротивление. Возбужденный в полупроводниковой цепи электрический ток, который был измерен при помощи отклонения магнитной стрелки, не затухал несколько лет. Согласно результатам этого эксперимента, полученное посредством расчетов удельное электрическое сопротивление сверхпроводника равнялось 10−25 Ом•м. По сравнению с удельным электрическим сопротивлением меди (1.5۰10−8 Ом•м) данная величина меньше на 7 порядков, что делает ее практически нулевой.

Эффект Мейснера

Помимо сверхпроводимости, сверхпроводники обладают еще одной отличительной чертой, а именно – эффектом Мейснера. Это явление быстрого затухания магнитного поля в сверхпроводнике. Сверхпроводник является диамагнетиком, то есть в магнитном поле в сверхпроводнике индуцируются макроскопические токи, которые создают собственное магнитное поле, которое полностью компенсирует внешнее.

Магнит, левитирующий над высокотемпературным сверхпроводником, охлаждаемым жидким азотом

Магнит, левитирующий над высокотемпературным сверхпроводником, охлаждаемым жидким азотом

Эффект Мейснера пропадает в сильных магнитных полях. В зависимости от типа сверхпроводника (об этом далее) сверхпроводящее состояние при этом либо пропадает полностью (сверхпроводники I-го рода), либо сверхпроводник сегментируется на нормальные и сверхпроводимые области (II-го рода). Именно этот эффект способен объяснить левитацию сверхпроводника над сильным магнитом, либо магнита над сверхпроводником.

Теоретическое объяснение эффекта сверхпроводимости

Феноменологический подход. Хоть Камерлинг-Оннес и является первооткрывателем сверхпроводимости, первая теория сверхпроводимости впервые была предложена в 1935-м году немецкими физиками и братьями Фрицом и Гайнцом Лондонами. Ученые стремились математически записать такие свойства сверхпроводника как сверхпроводимость и эффект Мейснера, не вникая в микроскопические причины сверхпроводимости, феноменологически. Выведенные уравнения позволяли объяснить эффект Мейснера так, что внешнее магнитное поле могло проникать в сверхпроводник только на определенную глубину, зависящую от так называемой лондоновской глубины проникновения. Для объяснения сверхпроводимости, потребовалось предположение о том, что носителями тока в сверхпроводнике, как и в металле, являются электроны. При этом, нулевое сопротивление означает то, что электрон не испытывает столкновений во время своего движения. Так как это относится ко всем электронам проводимости, то имеет место ток электронов без сопротивления.

Очевидно, что данная теория не объясняет саму природу данного явления, а лишь описывает его и позволяет предсказывать его поведение в ряде случаев. Более глубокая, но также, феноменологическая теория была предложена в 1950-м году советскими физиками-теоретиками Левом Ландау и Виталием Гнизбургом.

Куперовская пара электронов, движущаяся сквозь решетку из положительных атомов. Первый электрон искажает решетку, создавая область повышенного положительного заряда, в которую втягивается второй электрон.

Куперовская пара электронов, движущаяся сквозь решетку из положительных атомов. Первый электрон искажает решетку, создавая область повышенного положительного заряда, в которую втягивается второй электрон.

Теория БКШ. Первое качественное объяснение явлению сверхпроводимости было предложено в рамках так называемой теории БКШ, построенной американскими физиками Джоном Бардином, Леоном Купером и Джоном Шриффером. Эта теория выходит из предположения, что между электронами при определенных условиях может возникать притяжение. Притяжение, которое обусловлено различными возбуждениями, в первую очередь – колебаниями кристаллической решетки, способно создавать «куперовские пары» — связанные состояния двух электронов в кристалле. Такая пара может двигаться в кристалле, не рассеиваясь ни на колебания кристаллической решетки, ни на примеси. В веществах с температурой, далекой от нуля, достаточно энергии, чтобы «разорвать» такую пару электронов, в то время как при низких температурах система не обладает достаточной энергией. В результате этого возникает поток связанных электронов – куперовских пар, которые практически не взаимодействуют с веществом. В 1972-м году Д. Бардин, Л. Купер и Д. Шриффер получили Нобелевскую премию по физике.

Позднее советский физик-теоретик Николай Боголюбов усовершенствовал теорию БКШ. В своих работах ученый подробно описал условия, при которых могут образовываться куперовские пары (энергия близкая к энергии Ферми, определенные спины и др.) в результате квантовых эффектов. По отдельности электроны представляют собой частицы с полуцелым спином (фермионы), которые неспособны образовывать конденсат Бозе-Эйнштейна и переходить в сверхтекучее состояние. Когда же имеется куперовская пара электронов, то она представляет собой квазичастицу с целым спином и является бозоном. При определенных условиях бозоны способны формировать конденсат Бозе-Эйнштейна, то есть вещество, частицы которого занимают одно и то же состояние, что приводит к возникновению сверхтекучести. Такая сверхтекучесть электронов и объясняет эффект сврехпроводимости.

Сверхпроводники в переменном электрическом поле

Кроме сверхпроводимости и эффекта Мейснера, сверхпроводники обладают рядом других свойств. Стоит отметить следующее — нулевое сопротивление сверхпроводников характерно только при постоянном токе. Переменное электрическое поле делает сопротивление сверхпроводника ненулевым и оно растет, с увеличением частоты поля.

Также как двухжидкостная модель разделяет сверхтекучий материал на область сверхтекучести и область обычного вещества, так разделяется и поток электронов на сверхпроводящие и обычные. Постоянно поле ускоряло бы сверхпроводящие электроны до бесконечности (учитывая их нулевое сопротивление), что невозможно, потому оно обращается в ноль при попадании в сверхпроводник. Так как постоянное электрическое поле не действует на сверхпроводники, то и обычные электроны не подвержены его воздействию (оно просто выталкивается наружу), а значит движение представлено лишь сверхпроводящими электронами.

В случае с переменным электрическим полем происходит процесс ускорения электронов с последующим замедлением, что физически возможно. В таком случае имеет место и ток обычных электронов, которые обладают свойством сопротивления. Чем выше частота такого поля, тем большее проявляются эффекты, связанные с обычными электронами.

Момент Лондона

Еще одно интересное свойство сверхпроводника – момент Лондона. Суть феномена заключается в том, что вращающийся сверхпроводник создает магнитное поле, которое выравнивается точно вдоль оси вращения проводника.

Дальнейшее исследование этого явления привело к открытию гравити магнитного момента Лондона. В2006-м году исследователи Мартин Таджмар из института ARC Seibersdorf Research, Австрия, и Кловис де Матос из Европейского космического агентства (ESA) обнаружили, что вращающийся с ускорением сврехпроводник генерирует также и гравитационное поле. Однако такое гравитационное поле слабее земного примерно в 100  миллионов раз.

Классификация сверхпроводников

Существует несколько  классификаций сверхпроводников, которые опираются на такие критерии:

  1. Реакция на магнитное поле. Это свойство делит сверхпроводники на две категории. Сверхпроводники I-го рода имеют некоторое одно критическое значение магнитного поля, превысив которое, они теряют сверхпроводимость. II-го рода – имеют два предельных значения магнитного поля. При применении магнитного поля, ограниченного этими значениями, к сверхпроводникам этой категории, поле частично проникает внутрь, при этом сохраняя сверхпроводимость.
  2. Критическая температура. Различают низкотемпературные и высокотемпературные сверхпроводники. Первые обладают свойством сверхпроводимости при температурах ниже −196 °C или 77 К. Высокотемпературным сверхпроводникам достаточно температуры выше указанной. Такое разделение имеет место, так как высокотемпературные сверхпроводники могут применяться на практике в качестве охладителей.
  3. Материал. Здесь выделяют такие разновидности как: чистый химический элемент (вроде ртути или свинца), сплавы, керамика, органические или на основе железа.
  4. Теоретическое описание. Как известно, любая физическая теория имеет определенную область применения. По этой причине, для дальнейшего применения, имеет смысл разделять сверхпроводники по теориям, которые способны описать их природу.

Сверхпроводимость графена

За последние несколько лет известность графена значительно возросла. Напомним, что графен представляет собой слой модифицированного углерода, толщиной в один атом. В первую очередь, этому поспособствовало открытие углеродных нанотрубок – специфическому сверхпрочному материалу, который создается посредством сворачивания одного или нескольких слоев графена.

Крупномасштабная симуляция структуры, сформированной, когда одна решетка графена повернута под «магическим углом» относительно второй решетки графена

В 2018-м году группа исследователей из Массачусетского технологического института и Гарвардского университета под руководством профессора Пабло Джарилло-Эрреро, обнаружила, что при вращении под определенном («магически») углом, два листа графена полностью лишены электропроводимости. Когда исследователи применили к материалу напряжение, добавив небольшое количество электродов к этой графеновой конструкции, они обнаружили, что на определенном уровне электроны вырвались из исходного изолирующего состояния и протекали без сопротивления. Важнейшей особенностью данного явления является то, что сверхпроводимость указанной графеновой конструкции была получена при комнатной температуре. И хотя объяснение данного эффекта все еще остается под вопросом, его потенциал в сфере энергоснабжения довольно высок.

Применение сверхпроводников

Сверхпроводники еще не получили широкое применение, однако разработки в этой области активно ведутся. Так благодаря эффекту Мейснера возможны «парящие» над дорогой поезда на магнитной подушке – маглевы.

На основе сверхпроводников уже создаются сверхмощные турбогенераторы, которые могут применяться на электростанциях.

Поезд на магнитном подвеске в Шанхае, Китай

Поезд на магнитном подвеске в Шанхае, Китай

Криотрон – еще одно применение сверхпроводимости, которое может быть полезно для техники и электронных приборов. Это такое устройство, которое может переключать состояние сверхпроводника из обычного в сверхпроводящее за очень короткое время (от 10⁻⁶ до 10⁻¹¹с). Криотроны могут быть использованы в информационных системах, связанных с запоминанием и кодированием. Так впервые они применялись как запоминающие устройства в ЭВМ. Также криотроны могут помочь в области криоэлектроники, среди задач которой – повысить чувствительность приемников сигнала и сохранить форму сигнала как можно лучше. Здесь достижению поставленных целей способствуют низкие температуры и эффект сверхпроводимости.

Также, в силу отсутствия сопротивления в сверхпроводниках, кабели из такого вещества доставляли бы электричество без потерь на нагревание, что значительно бы повысило эффективность электроснабжения. Сегодня такие кабели требуют охлаждения посредством жидкого азота, что повышает цену на их эксплуатацию. Однако, исследования в этой сфере ведутся, и первая электропередача на основе сверхпроводников была приведена в эксплуатацию в Нью-Йорке 2008-м году компанией American Superconductor. В 2015-м году Южная Корея объявила о намерении создать несколько тысяч километров сверхпроводящих линий электропередач. Если добавить к этому недавнее открытие сверхпроводимости графена при комнатной температуре, то в ближайшее время следует ожидать глобальные изменения в области электроснабжения.

Самая близкая к идеальной сфера из всех когда-либо созданных человеком — ротор гироскопа GP-B. Сфера сделана из кварцевого стекла и покрыта тонкой плёнкой сверхпроводящего ниобия. Поверхности кварца отполированы до атомарного уровня.

Самая близкая к идеальной сфера из всех когда-либо созданных человеком — ротор гироскопа GP-B. Сфера сделана из кварцевого стекла и покрыта тонкой плёнкой сверхпроводящего ниобия. Поверхности кварца отполированы до атомарного уровня.

Кроме указанных областей применения, сверхпроводимость применяется в измерительной технике, начиная от детекторов фотонов и заканчивая измерением геодезической прецессии посредством сверхпроводящих гироскопов на космическом аппарате «Gravity Probe B». Это измерение подтвердило предсказание Эйнштейна о наличии таковой прецессии по причинам, изложенным в Общей теории относительности. Не углубляясь в механизм измерения, следует отметить, что данные о геодезической прецессии Земли позволяют точно калибровать искусственные спутники Земли.

Подводя итоги написанного выше, напрашивается вывод о перспективности эффекта сверхпроводимости во множестве областей, и большом потенциале сверхпроводников, в первую очередь в сферах электроснабжения и электротехники. Ожидаем в ближайшее время множество открытий в данной области.

Источник