Какими свойствами обладает мантия

Какими свойствами обладает мантия thumbnail

Мантия Земли – это наиболее важный участок нашей планеты, так как именно тут сосредоточена большая часть веществ. Он намного толще, чем остальные компоненты и, по сути, занимает большую часть пространства – около 80%. Изучению именно этой части планеты ученые посвятили большую часть времени.

Строение мантии ученые могут только предполагать, так как методов, которые бы однозначно дали ответ на данный вопрос, пока что не существует. Но, проведенные исследования дали возможность предположить, что данный участок нашей планеты состоит из таких слоев:

  • первый, наружный – он занимает от 30 до 400 километров земной поверхности;
  • переходная зона, которая расположена сразу за наружным слоем – по предположениям ученых она уходит вглубь примерно на 250 километров;
  • нижний слой – его протяжность самая большая, около 2900 километров. Он начинается сразу после переходной зоны и идет прямо к ядру.

Следует отметить, что в мантии планеты есть такие горные породы, которых нет в земной коре.

Само собой, что точно установить из чего состоит мантия нашей планеты, нельзя, так как добраться туда невозможно. Поэтому, все, что удается изучить ученым, происходит при помощи обломков этого участки, которые периодически появляются на поверхности.

Так, после ряда исследований удалось выяснить, что этот участок Земли черно-зеленого цвета. Основной состав — это горные породы, которые состоят из таких химических элементов:

  • кремний;
  • кальций;
  • магний;
  • железо;
  • кислород.

По внешнему виду, а в чем-то даже и по составу, она очень похожа на каменные метеориты, которые также периодически попадают на нашу планету.

Вещества, которые находятся в самой мантии, жидкие, вязкообразные, так как температура на данном участке превышает тысячи градусов. Ближе к коре Земли температура снижается. Таким образом, происходит некоторый круговорот – те массы, которые уже охладились, спускаются вниз, а разогретые до предела попадают наверх, поэтому процесс «смешивания» никогда не прекращается.

Периодически, такие разогретые потоки попадают в самую кору планеты, в чем им оказывают содействие действующие вулканы.

Само собой разумеется, что слои, которые находятся на большой глубине достаточно сложно изучать и не только потому, что не такой техники. Усложняется процесс еще и тем, что температура практически постоянно повышается, а вместе с тем возрастает и плотность. Поэтому, можно сказать, что глубина нахождения слоя, является наименьшей проблемой, в этом случае.

Вместе с тем, ученым все же удалось продвинуться в изучении данного вопроса. Для исследования этого участка нашей планеты, главным источником информации были выбраны как раз геофизические показатели. Кроме этого, в ходе исследования, ученые используют и такие данные:

  • скорость сейсмических волн;
  • сила тяжести;
  • характеристики и показатели электропроводности;
  • изучение магматических пород и обломков мантии, которые редко, но все же удается найти на поверхности Земли.

Что касается последнего, то здесь особенного внимания ученых заслуживают именно алмазы – по их мнению, изучая состав и строение этого камня, можно выяснить много интересного даже о нижних слоях мантии.

Изредка, но встречаются мантийные породы. Их изучение также позволяет добыть ценную информацию, но в той или иной степени все же будут присутствовать искажения. Обусловлено это тем, что в коре происходят различные процессы, которые несколько отличаются от тех, которые происходят в глубинах нашей планеты.

Отдельно следует рассказать о технике, при помощи которой ученые пытаются достать оригинальные породы мантии. Так, в 2005 году в Японии было возведено специальное судно, которое, по мнению самих разработчиков проекта, сможет сделать рекордно глубокую скважину. На данный момент работы еще идут, а старт проекта намечен уже на 2020 год – ждать осталось не так уж и много.

Сейчас же все изучения строения мантии происходят в рамках лаборатории. Ученые уже точно установили, что нижний слой этого участка планеты, практически весь состоит из кремния.

Распределение давления в пределах мантии неоднозначно, собственно как и температурного режима, но обо всем по порядку. На долю мантии приходится больше половины веса планеты, а если сказать точнее, то 67%. В участках под земной корой давление составляет около 1,3-1,4 млн.атм., при этом, следует отметить, что в местах, где расположены океаны, уровень давления существенно спадает.

Что же касается температурного режима, то здесь данные вовсе неоднозначны и базируются только на теоретических предположениях. Так, у подошвы мантии предполагается температура в 1500-10 000 градусов по Цельсию. В целом, ученые предположили, что температурный уровень на данном участке планеты более близок к температуре плавления.

Источник

Мантия Земли находится между земной корой и ядром планеты. На глубине от 10-70 км до 2900 км. И большая часть вещества планеты приходится именно на Мантию. Но изучить этот слой, к сожалению, достаточно хорошо пока что не представляется возможным. Все исследования ведутся косвенными методами, с помощью геофизики и геохимии.

Строение мантии Земли

Существует граница, отделяющая земную поверхностную кору от мантии. Называют её границей Мохоровичича, хотя иногда сокращают до простого Мохо. Располагается она на различных глубинах, зависящих от участка земной поверхности. Так, под океанами граница Мохо находится выше всего (7-10 км), а под складчатыми поясами залегает гораздо глубже (до 70 км). Характерной особенностью границы Мохоровичича является то, что на ней наблюдается резкое увеличение сейсмических скоростей (от 7 до 8 км/с). Принято считать, что происходит это из-за изменения состава пород.

Мантия нашей планеты разделена на 2 части: верхнюю мантию и нижнюю. Друг от друга они также отделены границей, так называемым слоем Голицына. Располагает он примерно на глубине 670 км. Таким образом, становится понятно, что верхняя мантия значительно тоньше нижней.

Состав мантии Земли

Состоит мантия нашей планеты, предположительно, из так называемых ультраосновных пород, которые представлены перидотитами и перовскитами, но также в состав её входят и другие породы (эклогиты, например). Но гораздо понятнее будет, если разложить эти породы на составляющие элементы. Так вот, основным химическим элементом мантии является кислород (45%), находящийся в различных соединениях с другими элементами. По большей части, с кремнием и магнием (~22% каждого). Вместе с кислородом они образуют кремнезем и оксид магния, соответственно. На два этих оксида приходится порядка 84% всего вещества мантии.
Также в этом земном слое в небольших количествах находятся железо, алюминий, кальций, натрий, калий и другие элементы. Почти все из них вступают в реакцию с кислородом, образуя оксиды.

Процессы мантии

Процессы, происходящие на такой глубине, изучены довольно плохо. Например, существует теория, что земное ядро оказывает серьёзное влияние на мантию и процессы, происходящие в ней, но пока что серьёзных подтверждений этому не найдено. Ну а сама мантия оказывает существенное влияние на земную кору. Выражено это различными природными явлениями: вулканизмом, землетрясениями, движением тектонических плит, что является причиной образования гор и впадин.
Также в мантии образуются различные минералы и формируются месторождения полезных ископаемых.

Процессы, происходящие в глубинах планеты, оказывают огромное влияние на жизнь людей. Приносят они как пользу, так и вред. Но эти процессы изучены весьма плохо, потому сложно предположить, что же ожидает нас в дальнейшем. Никто не знает, как деятельность людей повлияет на планету.
Когда учащаются землетрясения, учёные не могут внятно объяснить, что послужило тому причиной, и строят десятки теорий по этому поводу. Но в этом нет их вины, поскольку никто не сможет дать нормальных объяснений, не имея данных необходимых исследований. В таком случае, не совсем понятно, почему тратятся колоссальные средства на изучение космоса, когда от участившихся землетрясений погибают сотни тысяч людей.

Источник

Мантия Земли, простирающаяся толщиной от 35 до 2900 километров под поверхностью нашей планеты до сих пор в значительной степени считается плохо изученной. Столетие исследований помогло нам заполнить только некоторые пробелы.

Мантия Земли имеет три основных слоя:

  • верхняя часть простирается от основания земной коры до глубины 660 километров;
  • переходная зона расположена между 400 и 660 километрами, на глубинах которых происходят основные физические изменения минералов;
  • нижняя зона простирается от 660 километров до примерно 2900 километров.

Мантия Земля Земля имеет тот же состав элементов, что и другие планеты (кроме водорода и гелия, которые избежали земного притяжения). Предполагая, что ядро состоит из железа, мы можем вычислить, что мантия Земли представляет собой смесь магния, кремния, железа и кислорода, которая примерно соответствует составу гранита. Верхняя зона мантии уходит в толщину Земли всего на 400 км., но вся достигает глубины 2900 км. Дальше идет ядро Земли. Однако то, что находится на таких глубинах, остается для нас тайной.

О составе мантии на этих глубинах существуют лишь косвенные данные.

Определение состава мантии косвенным путем

Но какая именно смесь минералов присутствует на данной глубине-это сложный вопрос, который не является твердо решенным. С помощью прямых наблюдений ученых-космохимиков, геологов можно с большой вероятностью определить толщину и состав мантии Земли.

Прямые наблюдения

Наши знания земной коры и процессов, которые в ней происходят, основаны на прямых наблюдениях. Ежедневно мы можем следить за деятельностью ветра и воды, а если удается, то и наблюдать выбросы газа и вулканическую деятельность, представляющую собой следствие какого-то процесса. Это то же самое, как если бы мы смотрели на конец конвейера, на котором завертывается шоколад, не зная, как, собственно, он получается.

Не понятно, каково минералогическое и химическое строение мантии. Ясно, что это должен быть материал, который при нагревании и давлении, имеющем место на глубине от 50 до 400 км, образует горные породы базальтового типа. В противном случае на Земле не было бы таких вулканических островов, как Гавайи, Таити или Исландия. Один из путей определения химического состава верхней мантии – это анализ подобных базальтовых пород.
У нас есть образцы как куски породы, перенесенные при некоторых вулканических извержениях, с глубин, как 300 километров глубины. Они показывают, что верхняя часть мантии состоит из пород типа перидотит и эклогит.

Тем не менее, самое интересное, что мы получаем из мантии – это алмазы.

Минералы и горные породы изменяются под высоким давлением. Например, общий минерал мантии оливин изменяется на различные кристаллические формы на глубинах около 410 километров и снова на 660 километров.

Наблюдения космохимиков

Еще один аргумент в дискуссию о составе мантии вносят космохимики. Аргумент этот интересен.

Он исходит из того, что Земля в целом не очень отличается от первоначальной материи Солнечной системы – от метеоритов-хондритов. Поэтому состав мантии можно высчитать.

Геологическое доказательство

И третьим вкладом в дискуссию о том, из чего состоит мантия Земли, является геологическое доказательство.

Алмазы, которые совершенно определенно возникают при огромных давлениях в мантии, происходят из горной породы, называемой кимберлит, который встречается в Южной Африке, в Сибири и в Бразилии.

Но кроме алмазов, кимберлиты содержат обломки других горных пород, которые они приняли в себя по пути к земной поверхности. Поэтому там мы можем найти небольшие куски пород, происходящих из верхней мантии. Это породы с высоким содержанием железа, магния и небольшим количеством кремния – ультраосновные породы, как, например, дуниты, верлиты, лерзолиты и породы группы гранитов – перидотиты и эклогиты. Все минералы этих горных пород верхней мантии кристаллизовались при высоком давлении и температуре.

Исследование с помощью сейсмических волн

Исследования мантии Земли с помощью сейсмических волн от мировых землетрясений считаются достаточно объективными. Два различных типа сейсмических волн, P-волны (похожи звуковым волнам) и S-волны (подобно волнам в раскачиваемой веревке), реагируют на физические свойства горных пород, через которые они проходят. Эти волны отражаются от некоторых типов поверхностей и преломляются (изгибаются) при столкновении с другими типами поверхностей. Мы используем эти эффекты, чтобы отобразить внутренности Земли.
Наши инструменты достаточно хороши, чтобы лечить мантию Земли так, как врачи делают ультразвуковые снимки своих пациентов. После столетия сбора информации от землетрясений, мы можем сделать некоторые впечатляющие карты внутреннего строения нашей планеты.

При огромных температурах и давлениях в лаборатории создаются условия, похожие на условия, царящие внутри Земли. Естественно, используются исключительно малые – миллиграммовые – образцы пород. Результаты опытов сравниваются потом с результатами распространения сейсмических волн.
Было установлено, что глубины, на которых происходит увеличение скорости сейсмических волн, хорошо сравниваются с глубинами, на которых, в соответствии с лабораторными данными, могло бы происходить изменение внутренней структуры минералов.

Изучение мантии компьютерными моделями и лабораторными экспериментами

Мы изучаем поведение минералов в мантийных условиях двумя методами: компьютерными моделями, основанными на уравнениях физики минералов и лабораторными экспериментами.

Таким образом, современные исследования мантии проводятся сейсмологами, компьютерными программистами и лабораторными исследователями, которые теперь могут воспроизводить условия в любом месте с помощью лабораторного оборудования высокого давления, такого как алмазная наковальня.

Свойства материала мантии такие же как и у любого вещества: по мере увеличения глубины возрастает температура и давление, и материя на этих глубинах приспосабливается к существующим условиям. Внутреннее строение составных частиц минералов отвечает высокому давлению, то есть структура сжимается, становится гуще. Поэтому удельная плотность минералов повышается. Об этом свидетельствуют и лабораторные данные.мантия земли

Изучение помогает геологии

Поскольку мантия-это основная часть строения Земли, ее история имеет фундаментальное значение для геологии. Во время рождения Земли мантия начиналась как океан жидкой магмы на поверхности железного ядра. По мере его затвердевания элементы, которые не вписывались в основные минералы, собирались в виде накипи сверху-коры. После этого мантия начала медленное обращение, которое она имела в течение последних четырех миллиардов лет. Верхняя часть остыла, потому что она перемешивается и гидратируется тектоническими движениями поверхностных плит.

В то же время мы многое узнали о строении и составе планет-сестер Земли Меркурия, Венеры и Марса. По сравнению с ними, Земля имеет активную, смазанную мантию, которая особенная благодаря воде, тому же ингредиенту, который отличает ее поверхность.

Источник

Мантия Земли имеет особый состав, отличаясь от состава покрывающей ее земной коры. Данные о химическом составе мантии получены на основании анализов наиболее глубинных магматических горных пород, поступивших в верхние горизонты Земли в результате мощных тектонических поднятий с выносом мантийного материала. К таким породам относятся ультраосновные породы — дуниты, перидотиты, залегающие в горных системах. Горные породы островов Св. Павла в средней части Атлантического океана, по всем геологическим данным, относятся к мантийному материалу. Также к мантийному материалу относятся обломки пород, собранные советскими океанографическими экспедициями со дна Индийского океана в области Индоокеанского хребта. Что касается минералогического состава мантии, то здесь можно ожидать существенных изменений, начиная от верхних горизонтов и кончая основанием мантии в связи с ростом давления. Верхняя мантия сложена преимущественно силикатами (оливинами, пироксенами, гранатами), устойчивыми и пределах относительно низких давлений. Нижняя мантия сложена минералами высокой плотности.

Наиболее распространенным компонентом мантии является окись кремния в составе силикатов. Но при высоких давлениях кремнезем может перейти в более плотную полиморфную модификацию — стишовит. Этот минерал получен советским исследователем Стишовым и назван так по его имени. Если обычный кварц имеет плотность 2,533 r/см3, то стишовит, образующийся из кварца при давлении 150 000 бар, имеет плотность 4,25 г/см3.

Кроме того, в нижней мантии вероятны и более плотные минеральные модификации других соединений. Исходя из изложенного выше, можно с достаточным основанием полагать, что с ростом давления обычные железисто-магнезиальные силикаты оливины и пироксены разлагаются на окислы, которые в отдельности имеют более высокую плотность, чем силикаты, которые оказываются устойчивыми в верхней мантии.

Верхняя мантия состоит преимущественно из железисто-магнезиальных силикатов (оливинов, пироксенов). Некоторые алюмосиликаты могут переходить здесь в более плотные минералы типа гранатов. Под материками и океанами верхняя мантия имеет разные свойства и, вероятно, различный состав. Можно только предположить, что в области континентов мантия более дифференцирована и имеет меньше SiO2 за счет концентрации этого компонента в алюмосиликатной коре. Под океанами мантия менее дифференцирована. В верхней мантии могут возникать более плотные полиморфные модификации оливина со структурой шпинели и др.

Переходной слой мантии характеризуется постоянным возрастанием скоростей сейсмических волн с глубиной, что свидетельствует о появлении более плотных полиморфных модификаций вещества. Здесь, очевидно, появляются окислы FeO, MgO, GaO, SiO2 в форме вюстита, периклаза, извести и стишовита. Количество их с глубиной возрастает, а количество обычных силикатов уменьшается, и глубже 1000 км они составляют ничтожную долю.

Нижняя мантия в пределах глубин 1000—2900 км практически полностью состоит из плотных разновидностей минералов — окислов, о чем свидетельствует ее высокая плотность в пределах 4,08—5,7 г/см3. Под влиянием возросшего давления плотные окислы сжимаются, еще более увеличивая свою плотность. В нижней мантии также, вероятно, увеличивается содержание железа.

Ядро Земли. Вопрос о составе и физической природе ядра нашей планеты относится к наиболее волнующим и загадочным проблемам геофизики и геохимии. Только за последнее время наметилось небольшое просветление в решении этой проблемы.

Обширное центральное ядро Земли, занимающее внутреннюю область глубже 2900 км, состоит из большого внешнего ядра и малого внутреннего. По сейсмическим данным, внешнее ядро обладает свойствами жидкости. Оно не пропускает поперечных сейсмических волн. Отсутствие сил сцепления между ядром и нижней мантией, характер приливов в мантии и коре, особенности перемещения оси вращения Земли в пространстве, характер прохождения сейсмических волн глубже 2900 км говорят о том, что внешнее ядро Земли жидкое.

Некоторыми авторами состав ядра для химически однородной модели Земли допускался силикатным, причем под влиянием высокого давления силикаты перешли в «металлизированное» состояние, приобретая атомную структуру металлов, у которых внешние электроны являются общими. Однако перечисленные выше геофизические данные противоречат предположению о «металлизированном» состоянии силикатного материала в ядре Земли. В частности, отсутствие сцепления между ядром и мантией не может быть совместимо с «металлизированным» твердым ядром, что допускалось в гипотезе Лодочникова—Рамзая. Очень важные косвенные данные о ядре Земли получены во время опытов с силикатами под большим давлением. При этом давления достигали 5 млн. атм. Между тем в центре Земли давление 3 млн. атм., а на границе ядра — приблизительно 1 млн. атм. Таким образом, экспериментальным путем удалось перекрыть давления, существующие в самых глубинах Земли. При этом для силикатов наблюдалось только линейное сжатие без скачка и перехода в «металлизированное» состояние. Кроме того, при высоких температурах и давлениях в пределах глубин 2900—6370 км силикаты не могут находиться в жидком состоянии, как и окислы. Их температура плавления возрастает с увеличением давления.

За последние годы получены весьма интересные результаты исследований по влиянию очень высоких давлений на температуру плавления металлов. Оказалось, что ряд металлов при высоких давлениях (300 тыс. атм. и выше) переходит в жидкое состояние при относительно невысоких температурах. По некоторым расчетам, сплав железа с примесью никеля и кремния (76% Fe, 10% Ni, 14% Si) на глубине 2900 км под влиянием высокого давления должен находиться в жидком состоянии уже при температуре 1000° С. Но температура на этих глубинах, по самым скромным оценкам геофизиков, должна быть значительно выше.

Поэтому в свете современных данных геофизики и физики высоких давлений, а также данных космохимии, указывающих на ведущую роль железа как наиболее обильного металла в космосе, следует допустить, что ядро Земли в основном сложено жидким железом с примесью никеля. Однако расчеты американского геофизика Ф. Берча показали, что плотность земного ядра на 10% ниже, чем железоникелевый сплав при температурах и давлениях, господствующих в ядре. Отсюда следует, что металлическое ядро Земли должно содержать значительное количество (10—20%) какого-то легкого элемента. Из всех наиболее легких и распространенных элементов максимально вероятными |оказываются кремний (Si) и сера (S). Наличие одного или другого способно объяснить наблюдаемые физические свойства земного ядра. Поэтому вопрос о том, что является примесью земного ядра — кремний или сера, оказывается дискуссионным и связан со способом формирования нашей планеты в делом.

А. Ридгвуд в 1958 г. допустил, что земное ядро содержит кремний в качестве легкого элемента, аргументируя такое предположение тем, что элементарный кремний в количестве нескольких весовых процентов встречается в металлической фазе некоторых восстановленных хондритовых метеоритов (энстатитовых). Однако других доводов в пользу присутствия кремния в земном ядре нет.

Предположение о том, что в земном ядре имеется сера, вытекает из сравнения ее распространения в хондритовом материале метеоритов и мантии Земли. Так, сопоставление элементарных атомных соотношений некоторых летучих элементов в смеси коры и мантии и в хондритах показывает резкий недостаток серы. В материале мантии и коры концентрация серы на три порядка ниже, чем в среднем материале солнечной системы, в качестве которого принимаются хондриты.

Возможность потери серы при высоких температурах первичной Земли отпадает, поскольку другие более летучие элементы, чем сера (например, Н2 в виде Н2O), обнаружившие значительно меньший дефицит, были бы потеряны в значительно большей степени. Кроме того, при охлаждении солнечного газа сера химически связывается с железом и перестает быть летучим элементом.

В связи с этим, вполне возможно, большие количества серы поступают в земное ядро. Следует отметить, что при прочих равных условиях температура плавления системы Fe—FeS значительно ниже, чем температура плавления железа пли силиката мантии. Так, при давлении 60 кбар температура плавления системы (эвтектики) Fe—FeS составит 990° С, в то время как чистого железа — 1610°, а пиролита мантии — 1310. Поэтому при повышении температуры в недрах первично однородной Земли железный расплав, обогащенный серой, будет формироваться первым и ввиду своей низкой вязкости и высокой плотности будет легко стекать в центральные части планеты, образуя железисто-сернистое ядро. Таким образом, присутствие серы в железоникелевой среде действует в качестве флюса, снижая температуру ее плавления в целом. Гипотеза о присутствии в земном ядре значительных количеств серы является весьма привлекательной и не противоречит всем известным данным геохимии и космохимии.

Таким образом, современные представления о природе недр нашей планеты соответствуют химически дифференцированному земному шару, который оказался разделенным на две разные части: мощную твердую силикатно-окисную мантию и жидкое в основном металлическое ядро. Земная кора представляет собой наиболее легкую верхнюю твердую оболочку, состоящую из алюмосиликатов и имеющую наиболее сложное строение.

Подводя итог сказанному, можно сделать следующие выводы.

  1. Земля имеет слоистое зонарное строение. Она состоит на две трети из твердой силикатно-окисной оболочки — мантии и на одну треть из металлического жидкого ядра.
  2. Основные свойства Земли свидетельствуют о том, что ядро находится в жидком состоянии и только железо из наиболее распространенных металлов с примесью некоторых легких элементов (скорее всего, серы) способно обеспечить эти свойства.
  3. В верхних своих горизонтах Земля имеет асимметричное строение, охватывающее кору и верхнюю мантию. Океаническое полушарие в пределах верхней мантии менее дифференцировано, чем противоположное континентальное полушарие.

Задача любой космогонической теории происхождения Земли — объяснить эти основные особенности ее внутренней природы и состава.

Источник