Какими свойствами обладает масса

Какими свойствами обладает масса thumbnail

Отношение величины силы, действующей на тело, к приобретенному телом ускорению постоянно для данного тела. Масса тела и есть это отношение.

1. Масса=Сила/ускорение
m=F/a
 

Масса тела является неизменной характеристикой данного тела, не зависящей от его местоположения. Масса характеризует два свойства тела:

Инерция

Тело изменяет состояние своего движения только под воздействием внешней силы.

Тяготение

Между телами действуют силы гравитационного притяжения.

Эти свойства присущи не только телам, т.е. веществу, но и другим формам существования материи (например излучению, полям). Справедливо следующее утверждение:

Масса тела характеризует свойство любого вида материи быть инертной и тяжелой, т.е. принимать участие в гравитационных взаимодействиях.

Центр масс и система центра масс

В любой системе частиц имеется одна замечательная точка С- центр инерции, или центр масс, – которая обладает рядом интересных и важных свойств. Центр масс является точкой приложения вектора импульса системы , так как вектор любого импульса является полярным вектором. Положение точки С относительно начала О данной системы отсчета характеризуется радиусом-вектором, определяемым следующей формулой:

(4.8)

где – масса и радиус-вектор каждой частицы системы, M – масса всей

системы (рис. 4.3).

Импульс материальной точки, системы материальных точек и твердого тела.

Импульсом материальной точки называют величину равную произведению массы точки на ее скорость.

Обозначим импульс (его также называют иногда количеством движения) буквой . Тогда

. (2)

Из формулы (2) видно, что импульс — векторная величина. Так как m > 0, то импульс имеет то же направление, что и скорость.

Единица импульса не имеет особого названия. Ее наименование получается из определения этой величины:

[p] = [m] · [υ] = 1 кг · 1 м/с = 1 кг·м/с .

Момент импульса материальной точки относительно точки O определяется векторным произведением

, где — радиус-вектор, проведенный из точки O, — импульс материальной точки.

Момент импульса материальной точки относительно неподвижной оси равен проекции на эту ось вектора момента импульса, определенного относительно произвольной точки O данной оси. Значение момента импульса не зависит от положения точки O на оси z.

Момент импульса твердого тела относительно оси есть сумма моментов импульса отдельных частиц, из которых состоит тело относительно оси. Учитывая, что , получим
.

Если сумма моментов сил, действующих на тело, вращающееся вокруг неподвижной оси, равна нулю, то момент импульса сохраняется (закон сохранения момента импульса):

.

Производная момента импульса твердого тела по времени равна сумме моментов всех сил, действующих на тело:

.

Фундаментальные и нефундаментальные взаимодействия. Сила как мера взаимодействия тел. Свойства силы.

Фундамента́льные взаимоде́йствия — качественно различающиеся типы взаимодействия элементарных частиц и составленных из них тел.

На сегодня достоверно известно существование четырех фундаментальных взаимодействий:

– гравитационного

– электромагнитного

– сильного

– слабого

При этом электромагнитное и слабое взаимодействия являются проявлениями единого электрослабого взаимодействия.

Сила как мера взаимодействия тел

Сила – векторная величина, характеризующая механическое действие одного тела на другое, которое проявляется в деформациях рассматриваемого тела и изменении его движения относительно других тел.

Сила характеризуется модулем и направлением. Модуль и направление силы не зависят от выбора системы отсчета.

Понятие силы относится к двум телам. Всегда можно указать тело, на которое действует сила, и тело со стороны которого она действует.

Способы измерения силы:
-определение ускорения эталонного тела под действием данной силы;
– определение деформации эталонного тела.

Первый закон Ньютона

Первый закон Ньютона постулирует наличие такого явления, как инерция тел. Поэтому он также известен как Закон инерции. Инерция — это явление сохранения телом скорости движения (и по величине, и по направлению), когда на тело не действуют никакие силы. Чтобы изменить скорость движения, на тело необходимо подействовать с некоторой силой. Естественно, результат действия одинаковых по величине сил на различные тела будет различным. Таким образом, говорят, что тела обладают инертностью. Инертность — это свойство тел сопротивляться изменению их текущего состояния. Величина инертности характеризуется массой тела.

Существуют такие системы отсчёта, называемые инерциальными, относительно которых материальная точка при отсутствии внешних воздействий сохраняет величину и направление своей скорости неограниченно долго.

Системы отсчета, в которых выполняется первый закон Ньютона, называют инерциальными.

Или

Инерциальные системы отсчета – это системы, относительно которых материальная точка при отсутствии на нее внешних воздействий или их взаимной компенсации покоится или движется равномерно и прямолинейно.

18. Второй закон Ньютона

Второй закон Ньютона — дифференциальный закон движения, описывающий взаимосвязь между приложенной к материальной точке силой и получающимся от этого ускорением этой точки. Фактически, второй закон Ньютона вводит массу как меру проявления инертности материальной точки в выбранной инерциальной системе отсчёта (ИСО).

Читайте также:  Какими свойствами обладает акции

Современная формулировка

В инерциальной системе отсчёта ускорение, которое получает материальная точка, прямо пропорционально равнодействующей всех приложенных к ней сил и обратно пропорционально её массе.

При подходящем выборе единиц измерения, этот закон можно записать в виде формулы:

где — ускорение материальной точки;
— сила, приложенная к материальной точке;
— масса материальной точки.

Или в более известном виде:

В случае, когда масса материальной точки меняется со временем, второй закон Ньютона формулируется с использованием понятия импульс:

В инерциальной системе отсчета скорость изменения импульса материальной точки равна равнодействующей всех приложенных к ней сил.

где — импульс точки,

где — скорость точки;

— время;

— производная импульса по времени.

Когда на тело действуют несколько сил, с учётом принципа суперпозиции второй закон Ньютона записывается:

или

Второй закон Ньютона действителен только для скоростей, много меньших скорости света и в инерциальных системах отсчёта. Для скоростей, приближенных к скорости света, используются законы теории относительности.

Нельзя рассматривать частный случай (при ) второго закона как эквивалент первого, так как первый закон постулирует существование ИСО, а второй формулируется уже в ИСО.

19. Третий закон Ньютона

Этот закон объясняет, что происходит с двумя взаимодействующими телами. Возьмём для примера замкнутую систему, состоящую из двух тел. Первое тело может действовать на второе с некоторой силой , а второе — на первое с силой . Как соотносятся силы? Третий закон Ньютона утверждает: сила действия равна по модулю и противоположна по направлению силе противодействия. Подчеркнём, что эти силы приложены к разным телам, а потому вовсе не компенсируются.

Современная формулировка

Материальные точки попарно действуют друг на друга с силами, имеющими одинаковую природу, направленными вдоль прямой, соединяющей эти точки, равными по модулю и противоположными по направлению:

Закон отражает принцип парного взаимодействия. То есть все силы в природе рождаются парами.



Источник

Масса, физическая величина, одна из основных характеристик материи, определяющая её инерционные и гравитационные свойства. Соответственно различают М. инертную и М. гравитационную (тяжёлую, тяготеющую).

Понятие М. было введено в механику И. Ньютоном. В классической механике Ньютона М. входит в определение импульса (количества движения) тела: импульс p пропорционален скорости движения тела v,

p = mv .

(1)

Коэффициент пропорциональности ‒ постоянная для данного тела величина m ‒ и есть М. тела. Эквивалентное определение М. получается из уравнения движения классической механики

f = ma .

(2)

Здесь М. ‒ коэффициент пропорциональности между действующей на тело силой f и вызываемым ею ускорением тела a. Определённая соотношениями (1) и (2) М. называется инерциальной массой, или инертной массой; она характеризует динамические свойства тела, является мерой инерции тела: при постоянной силе чем больше М. тела, тем меньшее ускорение оно приобретает, то есть тем медленнее меняется состояние его движения (тем больше его инерция).

Действуя на различные тела одной и той же силой и измеряя их ускорения, можно определить отношения М. этих тел: m1 : m2 : m3 … = a1 : a2 : a3 …; если одну из М.

принять за единицу измерения, можно найти М. остальных тел.

В теории гравитации Ньютона М. выступает в другой форме ‒ как источник поля тяготения. Каждое тело создаёт поле тяготения, пропорциональное М. тела (и испытывает воздействие поля тяготения, создаваемого другими телами, сила которого также пропорциональна М. тел). Это поле вызывает притяжение любого другого тела к данному телу с силой, определяемой Ньютона законом тяготения:

,

(3)

где r ‒ расстояние между телами, G ‒ универсальная гравитационная постоянная, a m1 и m2 ‒ М. притягивающихся тел. Из формулы (3) легко получить формулу для веса Р тела массы m в поле тяготения Земли:

Р = m · g .

(4)

Здесь g = G · M / r2 ‒ ускорение свободного падения в гравитационном поле Земли, а r » R ‒ радиусу Земли. М., определяемая соотношениями (3) и (4), называется гравитационной массой тела.

В принципе ниоткуда не следует, что М., создающая поле тяготения, определяет и инерцию того же тела. Однако опыт показал, что инертная М. и гравитационная М. пропорциональны друг другу (а при обычном выборе единиц измерения численно равны). Этот фундаментальный закон природы называется принципом эквивалентности. Его открытие связано с именем Г. Галилея, установившего, что все тела на Земле падают с одинаковым ускорением. А. Эйнштейн положил этот принцип (им впервые сформулированный) в основу общей теории относительности (см. Тяготение). Экспериментально принцип эквивалентности установлен с очень большой точностью. Впервые (1890‒1906) прецизионная проверка равенства инертной и гравитационной М. была произведена Л. Этвешем, который нашёл, что М. совпадают с ошибкой ~ 10-8. В 1959‒64 американские физики Р. Дикке, Р. Кротков и П. Ролл уменьшили ошибку до 10-11, а в 1971 советские физики В. Б. Брагинский и В. И. Панов ‒ до 10-12.

Читайте также:  Какие свойства живого характерны для всех живых организмов ответы

Принцип эквивалентности позволяет наиболее естественно определять М. тела взвешиванием.

Первоначально М. рассматривалась (например, Ньютоном) как мера количества вещества. Такое определение имеет ясный смысл только для сравнения однородных тел, построенных из одного материала. Оно подчёркивает аддитивность М. ‒ М. тела равна сумме М. его частей. М. однородного тела пропорциональна его объёму, поэтому можно ввести понятие плотности ‒ М. единицы объёма тела.

В классической физике считалось, что М. тела не изменяется ни в каких процессах. Этому соответствовал закон сохранения М. (вещества), открытый М. В. Ломоносовым и А. Л. Лавуазье. В частности, этот закон утверждал, что в любой химической реакции сумма М. исходных компонентов равна сумме М. конечных компонентов.

Понятие М. приобрело более глубокий смысл в механике спец. теории относительности А. Эйнштейна (см. Относительности теория), рассматривающей движение тел (или частиц) с очень большими скоростями ‒ сравнимыми со скоростью света с » 3×1010 см/сек. В новой механике ‒ она называется релятивистской механикой ‒ связь между импульсом и скоростью частицы даётся соотношением:

(5)

При малых скоростях (v << с) это соотношение переходит в Ньютоново соотношение р = mv. Поэтому величину m0 называют массой покоя, а М. движущейся частицы m определяют как зависящий от скорости коэфф. пропорциональности между р и v:

(6)

Имея в виду, в частности, эту формулу, говорят, что М. частицы (тела) растет с увеличением её скорости. Такое релятивистское возрастание М. частицы по мере повышения её скорости необходимо учитывать при конструировании ускорителей заряженных частиц высоких энергий. М. покоя m0 (М. в системе отсчёта, связанной с частицей) является важнейшей внутренней характеристикой частицы. Все элементарные частицы обладают строго определёнными значениями m0, присущими данному сорту частиц.

Следует отметить, что в релятивистской механике определение М. из уравнения движения (2) не эквивалентно определению М. как коэффициент пропорциональности между импульсом и скоростью частицы, так как ускорение перестаёт быть параллельным вызвавшей его силе и М. получается зависящей от направления скорости частицы.

Согласно теории относительности, М. частицы m связана с её энергией Е соотношением:

(7)

М. покоя определяет внутреннюю энергию частицы ‒ так называемую энергию покоя Е0 = m0c2. Таким образом, с М. всегда связана энергия (и наоборот). Поэтому не существует по отдельности (как в классической физике) закона сохранения М. и закона сохранения энергии ‒ они слиты в единый закон сохранения полной (то есть включающей энергию покоя частиц) энергии. Приближённое разделение на закон сохранения энергии и закон сохранения М. возможно лишь в классической физике, когда скорости частиц малы (v << с) и не происходят процессы превращения частиц.

В релятивистской механике М. не является аддитивной характеристикой тела. Когда две частицы соединяются, образуя одно составное устойчивое состояние, то при этом выделяется избыток энергии (равный энергии связи) DЕ, который соответствует М. Dm = DЕ/с2. Поэтому М. составной частицы меньше суммы М. образующих его частиц на величину DЕ/с2 (так называемый дефект масс). Этот эффект проявляется особенно сильно в ядерных реакциях. Например, М. дейтрона (d) меньше суммы М. протона (p) и нейтрона (n); дефект М. Dm связан с энергией Еg гамма-кванта (g), рождающегося при образовании дейтрона: p + n ® d + g, Еg = Dm · c2. Дефект М., возникающий при образовании составной частицы, отражает органическую связь М. и энергии.

Единицей М. в СГС системе единиц служит грамм, а в Международной системе единиц СИ ‒ килограмм. М. атомов и молекул обычно измеряется в атомных единицах массы. М. элементарных частиц принято выражать либо в единицах М. электрона me, либо в энергетических единицах, указывая энергию покоя соответствующей частицы. Так, М. электрона составляет 0,511 Мэв, М. протона ‒ 1836,1 me, или 938,2 Мэв и т. д.

Природа М. ‒ одна из важнейших нерешенных задач современной физики. Принято считать, что М. элементарной частицы определяется полями, которые с ней связаны (электромагнитным, ядерным и другими). Однако количественная теория М. ещё не создана. Не существует также теории, объясняющей, почему М. элементарных частиц образуют дискретный спектр значений, и тем более позволяющей определить этот спектр.

Читайте также:  Какие свойства у камня хризолит

В астрофизике М. тела, создающего гравитационное поле, определяет так называемый гравитационный радиус тела Rгр = 2GM/c2. Вследствие гравитационного притяжения никакое излучение, в том числе световое, не может выйти наружу, за поверхность тела с радиусом R £ Rгр. Звёзды таких размеров будут невидимы; поэтому их назвали «чёрными дырами». Такие небесные тела должны играть важную роль во Вселенной.

Лит.: Джеммер М., Понятие массы в классической и современной физике, перевод с английского, М., 1967; Хайкин С. Э., физические основы механики, М., 1963; Элементарный учебник физики, под редакцией Г. С. Ландсберга, 7 изд., т. 1, М., 1971.

Я. А. Смородинский.

Большая советская энциклопедия. — М.: Советская энциклопедия.
1969—1978.

Источник

Удивительно, как много людей, употребляя слова «масса» и «вес», не понимают их различие с точки зрения физики и подразумевают одно и то же. Между тем, это различие принципиально и огромно…

Масса

Начнем с массы. Масса определяет инерционные свойства тела. Что это означает? Инертность – это способность тела сопротивляться изменению его состояния движения под действием силы. Попробуйте остановить катящийся по инерции футбольный мяч. А потом – катящийся с той же скоростью по инерции автомобиль. В последнем случае сделать это гораздо тяжелее, потому что автомобиль обладает большим количеством материи. И можно сказать, что автомобиль обладает большей массой. Измеряется масса в килограммах, а обозначается буквой m. Масса тела всегда постоянна.

Вес

Что касается веса, то это сила. Как и любая другая сила, это векторная величина (имеющая направление действия) и измеряется она в ньютонах. По определению, вес – сила, с которой тело действует на опору или подвес:

Если человек массой 70 кг неподвижно стоит на полу, какие силы на него действуют с точки зрения классической механики? Всего две. Одна из них – сила тяжести, направленная вертикально вниз. Эта та сила, с которой Земля притягивает человека, и она равна произведению массы человека m на ускорение свободного падения g (для Земли – 9,81 м/с2, округлим это значение до 10). Таким образом, эта сила будет равна mg=70*10=700Н. Часто эту силу также измеряют в килограмм-силах, кгс. Ее величина равна весу тела массой в 1 кг, поэтому обыватели часто измеряют вес в килограммах и именно поэтому часто возникает путаница с весом и массой.

Вторая сила – это сила реакции опоры N. Человек давит на пол, а пол этому сопротивляется – ровно с такой же силой, как и сила тяжести. Эта сила направлена в противоположное направление и равна по величине силе тяжести. Суммарная же сила равна F=mg-N=0.

Вы можете спросить – зачем всё это, если сила тяжести и вес – одно и то же? Ничего подобного, это абсолютно разные вещи, просто в данном примере они совпадают. Рассмотрим космонавта, находящегося во взлетающей ракете. На него также действует сила тяжести и сила реакции опоры, но плюс к этому добавляется сила, толкающая космонавта вверх вместе с ракетой. В этом случае сила реакции опоры N будет превышать силу тяжести mg, и вес космонавта возрастет, он испытает перегрузку, хотя сила тяжести и масса космонавта не изменились.

На самом деле, вес для физиков является незначащим термином. С точки зрения физики его правильней называть просто силой, а слово «вес» – это просто дань языковой традиции.

В земных условиях люди обычно приравнивают вес и массу, да и шкала у всех весов откалибрована для земной силы тяжести. Однако, взаимодействие веса и массы очень интересно наблюдать в условиях, отличных от Земли. Так, на Луне сила тяжести меньше земной в 6 раз, соответственно, вес космонавта также будет меньше в 6 раз. При этом масса его останется неизменной. Если мы попробуем забить на Луне гвоздь в доску, то молоток будет весить в 6 раз меньше. Но при ударе по шляпке, он будет воздействовать на гвоздь с той же силой, что и на Земле, потому что масса молотка не изменилась.

Итог. Масса – неотделимое свойство любого тела. Если спортивное ядро массой 7 кг тяжело метнуть на Земле, то точно также тяжело его будет метнуть и в условиях невесомости, несмотря на то, что его вес будет равен нулю.

Если тебе понравилась статья, подписывайся на канал, расскажи о нем в соцсетях, а уж мы постараемся не ударить в грязь лицом )

Источник