Какими свойствами обладает мнимая единица
Мни́мая едини́ца — комплексное число, квадрат которого равен −1 (минус единице). Термин может употребляться также в обобщённом смысле не только для комплексных чисел[⇨].
В математике, физике мнимая единица обозначается как латинская или . Она позволяет расширить поле вещественных чисел до поля комплексных чисел. Точное определение зависит от способа расширения.
Причиной введения мнимой единицы является то, что не каждое полиномиальное уравнение с вещественными коэффициентами имеет решения в поле вещественных чисел. Так, уравнение не имеет вещественных корней. Однако оказывается, что любое полиномиальное уравнение с комплексными коэффициентами имеет комплексное решение — «Основная теорема алгебры».
Исторически мнимая единица сначала была введена для решения вещественного кубического уравнения: нередко, при наличии трёх вещественных корней, для получения двух из них формула Кардано требовала брать кубический корень в комплексных числах.
Утверждение, что мнимая единица — это «квадратный корень из −1», не совсем точно: ведь «−1» имеет два квадратных корня, один из которых можно обозначить как «i», а другой как «−i». Какой именно корень принять за мнимую единицу — неважно: все равенства сохранят силу при одновременной замене всех «i» на «−i» и «−i» на «i». Однако из-за этой двусмысленности, чтобы избежать ошибочных выкладок, не следует применять обозначение для через радикал (как ).
Определение[править | править код]
Мнимая единица — это число, квадрат которого равен −1. Т.е. — это одно из решений уравнения
или
И тогда его вторым решением будет , что проверяется подстановкой.
Степени мнимой единицы[править | править код]
Степени повторяются в цикле:
Что может быть записано для любой степени в виде:
где n — любое целое число.
Отсюда:
где mod 4 — это остаток от деления на 4.
Из тождества Эйлера следует, что число является вещественным:
.
Точнее, в комплексном анализе возведение в степень: является многозначной функцией, поэтому
, где .
Также верно, что .
Факториал[править | править код]
Факториал мнимой единицы i можно определить как значение гамма-функции от аргумента 1 + i:
Также
[1]
Корни из мнимой единицы[править | править код]
Корни квадратные из мнимой единицы
Корни кубические из мнимой единицы (вершины треугольника)
В поле комплексных чисел корень n-й степени имеет n решений. На комплексной плоскости корни из мнимой единицы находятся в вершинах правильного n-угольника, вписанного в окружность с единичным радиусом.
В частности, и
Также корни из мнимой единицы могут быть представлены в показательном виде:
Иные мнимые единицы[править | править код]
В конструкции удвоения по Кэли — Диксону или в рамках алгебры по Клиффорду «мнимых единиц расширения» может быть несколько. Но в этом случае могут возникать делители нуля и иные свойства, отличные от свойств комплексного «i».
Например, в теле кватернионов три антикоммутативных мнимых единицы, а также имеется бесконечно много решений уравнения .
К вопросу об интерпретации и названии[править | править код]
Обозначения[править | править код]
Обычное обозначение , но в электро- и радиотехнике мнимую единицу принято обозначать , чтобы не путать с обозначением мгновенной силы тока: .
В языке программирования Python мнимая единица записывается как 1j.
В языке программирования Wolfram Language мнимая единица записывается как I.
См.также[править | править код]
- Дуальные числа и Двойные числа
- Комплексный анализ
- Кватернион
- Гиперкомплексное число
Примечания[править | править код]
Ссылки[править | править код]
- Мнимая единица // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
Источник
Ранее мы с вами разобрали пару крайне важных, в нашем мире, чисел: число Эйлера и число ПИ. Сегодня мы с вами узнаем еще об одном интересном и важном числе.
Мнимая единица, по сути, его нельзя назвать числом в привычном нам понимании. Это число не вещественное, а комплексное. Давайте пойдем по порядку.
Сперва история
Первые заметки о нем были обнаружены в записях Джероламо Кардано – итальянский математик живший в 16 веке. Он ввел его, когда решал кубические уравнения. Позже, когда ученые обнаружили эти записи, они начали производить с ним различные действия.
Основной вклад в развитие этой теории вложил ранее знакомый нам Леонард Эйлер. Тогда родился комплексный анализ, а позже и теория функций комплексного переменного (ТФКП). Леонард распространил основные функции в комплексную плоскость. Было сформулировано множество принципов, алгебраические действия не отличались от привычного вещественного анализа, но было сделано одно существенное допущение: в этой теории есть число, квадрат которого равен отрицательному числу. И это мнимая единица. Обозначается она как i, и такое название она получила благодаря все тому же Эйлеру (в некоторых других науках, таких как электротехника, встречается обозначение j, так как буква i занята для обозначения тока).
По определению мнимая единица – это число, квадрат которого равен -1 (i^2 = -1). Давайте попробуем поразмыслить, что это значит.
Для нахождения площади квадрата, мы возводим длину стороны этого квадрата в квадрат. То есть, мнимая единица – это сторона квадрата, у которого отрицательная площадь. Да, на реальности мы такого не встретим, именно по этому она называется мнимой. Но какой от нее тогда толк? Об этом немного позже.
Немного введу в курс дела
В комплексном анализе числовая прямая расширяется до комплексной плоскости, где осью абсцисс представлена вещественная прямая, а осью ординат – мнимая. Существует несколько способов записи комплексного числа: в виде пары чисел, в алгебраической форме, тригонометрической и вытекающей отсюда показательной.
Все формы представления в порядке, написанном выше
Самая красивая формула математики
Я хочу показать вам одну красивую формулу в математике, а для этого необходимо немного разобраться в комплексном анализе.
Давайте взглянем на комплексную плоскость поподробнее. На ней числа отмечаются точками, и каждой соответствует своя координата.
Но так же возможно векторное представление, где начало вектора лежит в начале координат, а конец на точке.
Благодаря этому возможно ввести показательное представление. Где число перед экспонентой показывает длину вектора, а угол в показателе равен углу между вещественной осью и этим вектором.
А теперь давайте рассмотрим следующий случай: пусть длина вектора равняется 1, а угол будет равен пи, то есть, пол оборота. Так мы попадем в точку -1 на вещественной оси.
То есть e^(i*pi) = -1. Переписав ее в несколько другом виде можно получить следующее выражение:
Это так называемая формула Эйлера (на самом деле это лишь частный случай этой формулы). И вся ее красота состоит в том, что она содержит в себе все знаменитые константы и числа.
Важность этого числа
Комплексный анализ очень важен для нашей жизни. В физике с его помощью описывают все волновые процессы. Вообще, говорят, что все волны и поля существуют в комплексном пространстве, а то, что мы видим, только тень «истинных» процессов. Квантовая механика, где и атом и другие материальные объекты — волны, делает такую трактовку более убедительной.
Так же, современная аэродинамика не обходится без ТФКП, где функции Жуковского могут давать необходимые профили крыла.
И это еще не все. Во многих отраслях так или иначе могут присутствовать элементы этой теории, поэтому ее важность нельзя отрицать.
Если данная статья была вам интересна, то не забывайте ставить пальцы вверх, я постарался написать для вас наиболее понятно. Так же подписывайтесь на канал, если еще не сделали этого! До скорых встреч и всего доброго! 🙂
Источник
Ìíèìàÿ åäèíèöà — â îñíîâíîì êîìïëåêñíîå ÷èñëî, êâàäðàò êîòîðîãî ðàâíÿåòñÿ îòðèöàòåëüíîé åäèíèöå: .
×èñëî íàçûâàåòñÿ ìíèìîé åäèíèöåé.
Ìíèìàÿ åäèíèöà íå îòíîñèòñÿ ê ïðèâû÷íîìó íàì ìíîæåñòâó äåéñòâèòåëüíûõ ÷èñåë, à èñïîëüçóåòñÿ äëÿ ðàñøèðåíèÿ ýòîãî ìíîæåñòâà.
Ìíèìàÿ åäèíèöà — ýòî ÷èñëî, ó êîòîðîãî êâàäðàò ðàâíÿåòñÿ ìèíóñ åäèíèöå. Òî åñòü i — ýòî îäíî èç ðåøåíèé óðàâíåíèÿ:
èëè .
È òîãäà åãî âòîðûì ðåøåíèåì óðàâíåíèÿ áóäåò , ÷òî ìîæíî ïðîâåðèòü ïîäñòàíîâêîé.
Êîìïëåêñíàÿ ïëîñêîñòü. Âñå òî÷êè íà ïëîñêîñòè ñîîòâåòñòâóþò êîìïëåêñíîìó ÷èñëó. Êîîðäèíàòû a è b ñîîòâåòñòâóþò äåéñòâèòåëüíîé è ìíèìîé ÷àñòè êîìïëåêñíîãî ÷èñëà.
Ïðèìåðû ðàñ÷åòîâ ñ ìíèìîé åäèíèöåé.
Èíòåðåñíî òî, ÷òî âñå ìíîãî÷ëåíû èìåþò êîðíè, åñëè áðàòü â ðàñ÷åò ìíèìóþ åäèíèöó, åñëè òî÷íåå, êîëè÷åñòâî êîðíåé ðàâíÿåòñÿ ñòåïåíè ìíîãî÷ëåíà, ñ òî÷íîñòüþ äî êðàòíîñòè êîðíåé.
Íàïðèìåð:
Ñòåïåíè ìíèìîé åäèíèöû .
Ñòåïåíè i ïîâòîðÿþòñÿ öèêëè÷íî:
Ýòî ìîæíî çàïèñàòü äëÿ ëþáîé ñòåïåíè òàêèì îáðàçîì:
ãäå n — âñÿêîå öåëîå ÷èñëî.
Îòñþäà: , ãäå mod 4 ýòî îñòàòîê îò äåëåíèÿ íà 4.
×èñëî îêàçûâàåòñÿ âåùåñòâåííûì ÷èñëîì:
Êîðíè èç ìíèìîé åäèíèöû .
 ïîëå êîìïëåêñíûõ ÷èñåë êîðåíü n-îé ñòåïåíè èìååò n ðåøåíèé. Íà êîìïëåêñíîé ïëîñêîñòè êîðíè èç ìíèìîé åäèíèöû ðàñïîëîæåíû â âåðøèíàõ ïðàâèëüíîãî n-óãîëüíèêà, êîòîðûé âïèñàí â îêðóæíîñòü åäèíè÷íîãî ðàäèóñà.
Ýòî ñëåäóåò èç ôîðìóëû Ìóàâðà è òîãî, ÷òî ìíèìóþ åäèíèöó ìîæíî ïðåäñòàâèòü â òðèãîíîìåòðè÷åñêîì âèäå:
 ÷àñòíîñòè, è
Êðîìå òîãî, êîðíè èç ìíèìîé åäèíèöû ìîæíî ïðåäñòàâèòü â ïîêàçàòåëüíîì âèäå:
Êîðíè êâàäðàòíûå èç ìíèìîé åäèíèöû.
Êîðíè êóáè÷åñêèå èç ìíèìîé åäèíèöû (âåðøèíû òðåóãîëüíèêà).
Êàëüêóëÿòîðû ïî àëãåáðå | |
Ðåøåíèÿ, ïîäñêàçêè è ó÷åáíèê ëèíåéíîé àëãåáðû îíëàéí (âñå êàëüêóëÿòîðû ïî àëãåáðå). | |
Êàëüêóëÿòîðû ïî àëãåáðå |
Ìàòåìàòè÷åñêèå êàëüêóëÿòîðû | |
Ìàòåìàòè÷åñêèå êàëüêóëÿòîðû: êîðíè, äðîáè, ñòåïåíè, óðàâíåíèÿ, ôèãóðû, ñèñòåìû ñ÷èñëåíèÿ è äðóãèå êàëüêóëÿòîðû. | |
Ìàòåìàòè÷åñêèå êàëüêóëÿòîðû |
Àëãåáðà 6,7,8,9,10,11 êëàññ, ÅÃÝ, ÃÈÀ | |
Îñíîâíàÿ èíôîðìàöèÿ ïî êóðñó àëãåáðû äëÿ îáó÷åíèÿ è ïîäãîòîâêè â ýêçàìåíàì, ÃÂÝ, ÅÃÝ, ÎÃÝ, ÃÈÀ | |
Àëãåáðà 6,7,8,9,10,11 êëàññ, ÅÃÝ, ÃÈÀ |
×èñëà. Êîìïëåêñíûå (ìíèìûå) ÷èñëà. | |
Êîìïëåêñíûå ÷èñëà (ìíèìûå ÷èñëà) ÷èñëà, êîòîðûå èìåþò âèä: x + iy , ãäå x è y âåùåñòâåííûå ÷èñëà, i ìíèìàÿ åäèíèöà (âåëè÷èíà, äëÿ êîòîðîé âûïîëíÿåòñÿ ðàâåíñòâî: i 2 = -1 ). | |
×èñëà. Êîìïëåêñíûå (ìíèìûå) ÷èñëà. |
Источник
Мни́мая едини́ца — обычно комплексное число, квадрат которого равен −1 (минус единице). Однако возможны и иные варианты: в конструкции удвоения по Кэли—Диксону или в рамках алгебры по Клиффорду.
Для комплексных чисел
В математике, физике мнимая единица обозначается как латинская или . Она позволяет расширить поле вещественных чисел до поля комплексных чисел. Точное определение зависит от способа расширения.
Причиной введения мнимой единицы является то, что не каждое полиномиальное уравнение с вещественными коэффициентами имеет решения в поле вещественных чисел. Так, уравнение не имеет вещественных корней. Однако оказывается, что любое полиномиальное уравнение с комплексными коэффициентами имеет комплексное решение — «Основная теорема алгебры».
Исторически мнимая единица сначала была введена для решения вещественного кубического уравнения: нередко, при наличии трёх вещественных корней, для получения двух из них формула Кардано требовала брать кубический корень в комплексных числах.
Утверждение, что мнимая единица — это «квадратный корень из −1», не точно: ведь «−1» имеет два квадратных корня, один из которых можно обозначить как «i», а другой как «−i». Какой именно корень принять за мнимую единицу — неважно: все равенства сохранят силу при одновременной замене всех «i» на «-i» и «-i» на «i». Однако из-за этой двусмысленности, чтобы избежать ошибочных выкладок, не следует применять обозначение для через радикал (как ).
Определение
Мнимая единица — это число, квадрат которого равен −1. Т.е. — это одно из решений уравнения
или
И тогда его вторым решением уравнения будет , что проверяется подстановкой.
Степени мнимой единицы
Степени повторяются в цикле:
Что может быть записано для любой степени в виде:
где n — любое целое число.
Отсюда:
где mod 4 — это остаток от деления на 4.
Число является вещественным:
[1]
Факториал
Факториал мнимой единицы i можно определить как значение гамма-функции от аргумента 1 + i:
Также
[2]
Корни из мнимой единицы
Корни квадратные из мнимой единицы
Корни кубические из мнимой единицы (вершины треугольника)
В поле комплексных чисел корень n-й степени имеет n решений. На комплексной плоскости корни из мнимой единицы находятся в вершинах правильного n-угольника, вписанного в окружность с единичным радиусом.
Это следует из формулы Муавра и того, что мнимая единица может быть представлена в тригонометрическом виде:
В частности, и
Также корни из мнимой единицы могут быть представлены в показательном виде:
Иные мнимые единицы
В конструкции Кэли — Диксона (или в алгебрах Клиффорда) «мнимых единиц расширения» может быть несколько, и/или их квадрат может быть =”+1″ или даже =”0″. Но в этом случае могут возникать делители нуля, имеются и иные свойства, отличные от свойств комплексного «i».
Например, в теле кватернионов три антикоммутативных мнимых единицы, а также имеется бесконечно много решений уравнения «».
К вопросу об интерпретации и названии
Обозначения
Обычное обозначение , но в электро- и радиотехнике мнимую единицу принято обозначать , чтобы не путать с обозначением мгновенной силы тока: .
В языке программирования python мнимая единица записывается как 1j.
См.также
- Дуальные числа и Двойные числа
- Комплексный анализ
- Кватернион
- Гиперкомплексное число
Примечания
Ссылки
- Мнимая единица // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
Источник
Мни́мая едини́ца — комплексное число, квадрат которого равен −1 (минус единице). Термин употребляется также в обобщённом смысле в конструкции удвоения по Кэли — Диксону или в рамках алгебры по Клиффорду.
Для комплексных чисел
В математике, физике мнимая единица обозначается как латинская или . Она позволяет расширить поле вещественных чисел до поля комплексных чисел. Точное определение зависит от способа расширения.
Причиной введения мнимой единицы является то, что не каждое полиномиальное уравнение с вещественными коэффициентами имеет решения в поле вещественных чисел. Так, уравнение не имеет вещественных корней. Однако оказывается, что любое полиномиальное уравнение с комплексными коэффициентами имеет комплексное решение — «Основная теорема алгебры».
Исторически мнимая единица сначала была введена для решения вещественного кубического уравнения: нередко, при наличии трёх вещественных корней, для получения двух из них формула Кардано требовала брать кубический корень в комплексных числах.
Утверждение, что мнимая единица — это «квадратный корень из −1», не совсем точно: ведь «−1» имеет два квадратных корня, один из которых можно обозначить как «i», а другой как «−i». Какой именно корень принять за мнимую единицу — неважно: все равенства сохранят силу при одновременной замене всех «i» на «-i» и «-i» на «i». Однако из-за этой двусмысленности, чтобы избежать ошибочных выкладок, не следует применять обозначение для через радикал (как ).
Определение
Мнимая единица — это число, квадрат которого равен −1. Т.е. — это одно из решений уравнения
или
И тогда его вторым решением уравнения будет , что проверяется подстановкой.
Степени мнимой единицы
Степени повторяются в цикле:
Что может быть записано для любой степени в виде:
где n — любое целое число.
Отсюда:
где mod 4 — это остаток от деления на 4.
Из тождества Эйлера следует, что число является вещественным:
.
Точнее, в комплексном анализе возведение в степень: является многозначной функцией, поэтому
, где .
Также верно, что .
Факториал
Факториал мнимой единицы i можно определить как значение гамма-функции от аргумента 1 + i:
Также
[1]
Корни из мнимой единицы
Корни квадратные из мнимой единицы
Корни кубические из мнимой единицы (вершины треугольника)
В поле комплексных чисел корень n-й степени имеет n решений. На комплексной плоскости корни из мнимой единицы находятся в вершинах правильного n-угольника, вписанного в окружность с единичным радиусом.
Это следует из формулы Муавра и того, что мнимая единица может быть представлена в тригонометрическом виде:
В частности, и
Также корни из мнимой единицы могут быть представлены в показательном виде:
Иные мнимые единицы
В конструкции Кэли — Диксона (или в алгебрах Клиффорда) «мнимых единиц расширения» может быть несколько, и/или их квадрат может быть = «+1» или даже = «0». Но в этом случае могут возникать делители нуля, имеются и иные свойства, отличные от свойств комплексного «i».
Например, в теле кватернионов три антикоммутативных мнимых единицы, а также имеется бесконечно много решений уравнения «».
К вопросу об интерпретации и названии
Гаусс утверждал также, что если бы величины 1, −1 и √−1 назывались соответственно не положительной, отрицательной и мнимой единицей, а прямой, обратной и побочной, то у людей не создавалось бы впечатления, что с этими числами связана какая-то мрачная тайна. По словам Гаусса, геометрическое представление дает истинную метафизику мнимых чисел в новом свете. Именно Гаусс ввел термин «комплексные числа» (в противоположность «мнимым числам» Декарта) и использовал для обозначения √−1 символ i. Морис Клайн, «Математика. Утрата определённости». Глава VII. Нелогичное развитие: серьёзные трудности на пороге XIX в. |
Обозначения
Обычное обозначение , но в электро- и радиотехнике мнимую единицу принято обозначать , чтобы не путать с обозначением мгновенной силы тока: .
В языке программирования Python мнимая единица записывается как 1j.
См.также
- Дуальные числа и Двойные числа
- Комплексный анализ
- Кватернион
- Гиперкомплексное число
Примечания
Ссылки
- Мнимая единица // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
Источник