Какими свойствами обладает водная среда обитания
Вода как среда обитания имеет ряд специфических свойств, таких, как большая плотность, сильные перепады давления, относительно малое содержание кислорода, сильное поглощение солнечных лучей и др. Водоемы и отдельные их участки различаются, кроме того, солевым режимом, скоростью горизонтальных перемещений (течений), содержанием взвешенных частиц. Для жизни придонных организмов имеют значение свойства грунта, режим разложения органических остатков и т.п. Поэтому наряду с адаптациями к общим свойствам водной среды ее обитатели должны быть приспособлены и к разнообразным частным условиям. Обитатели водной среды получили в экологии общее название гидробионтов. Они населяют Мировой океан, континентальные водоемы и подземные воды. В любом водоеме можно выделить различные по условиям зоны.
Рассмотрим основные свойства воды как среды обитания.
Плотность воды — это фактор, определяющий условия передвижения водных организмов и давление на разных глубинах. Плотность природных вод, содержащих растворенные соли, может быть больше, до 1,35 г/см3. Давление возрастает с глубиной примерно в среднем на 101,3 кПа (1 атм) на каждые 10 м.
В связи с резким изменением давления в водоемах гидробионты в целом более легко, чем сухопутные организмы, переносят изменение давления. Некоторые виды, распространенные на разных глубинах, переносят давление от нескольких до сотен атмосфер. Например, голотурии рода Elpidia обитают в районе от прибрежной зоны до зоны наибольших океанических глубин, 6—11 км. Однако большинство обитателей морей и океанов обитают на определенной глубине.
Плотность воды обеспечивает возможность опираться на нее, что особенно важно для бесскелетных форм. Плотность среды служит условием парения в воде, и многие гидробионты приспособлены именно к этому образу жизни. Взвешенные, парящие в воде организмы объединяют в особую экологическую группу гидробионтов — планктон («планктос» — парящий). В составе планктона — одноклеточные и колониальные водоросли, простейшие, медузы, разнообразные мелкие рачки, личинки донных животных, икра и мальки рыб и многие другие.
Плотность и вязкость воды сильно влияют на возможность активного плавания. Животных, способных к быстрому плаванию и преодолению силы течений, объединяют в экологическую группу нектона («нектос» — плавающий). Представители нектона — рыбы, кальмары, дельфины. Быстрое движение в водной толще возможно лишь при наличии обтекаемой формы тела и сильно развитой мускулатуры.
1. Кислородный режим. В насыщенной кислородом воде содержание его не превышает 10 мл в 1 л, это в 21 раз ниже, чем в атмосфере. Поэтому условия дыхания гидробионтов значительно усложнены. Кислород поступает в воду в основном за счет фотосинтетической деятельности водорослей и диффузии из воздуха. Поэтому верхние слои водной толщи, как правило, богаче этим газом, чем нижние. С повышением температуры и солености воды концентрация в ней кислорода понижается.
Дыхание гидробионтов осуществляется либо через поверхность тела, либо через специализированные органы — жабры, легкие, трахеи. При этом покровы могут служить дополнительным органом дыхания. Например, рыба вьюн через кожу потребляет в среднем до 63% кислорода. Многие сидячие и малоподвижные животные обновляют вокруг себя воду, либо создавая ее направленный ток, либо колебательными движениями способствуя ее перемешиванию. Двустворчатым моллюскам для этой цели служат реснички, выстилающие стенки мантийной полости; ракообразным — работа брюшных или грудных ножек. Пиявки, личинки комаров-звонцов (мотыль) колышут тело, высунувшись из грунта.
Млекопитающие, перешедшие в процессе эволюционного развития от сухопутного к водному образу жизни, например, ластоногие, китообразные, водяные жуки, личинки комаров, сохраняют обычно атмосферный тип дыхания и поэтому нуждаются в контактах с воздушной средой.
Нехватка кислорода в воде приводит иногда к катастрофическим явлениям — заморам, сопровождающимся гибелью множества гидро- бионтов. Зимние заморы часто вызываются образованием на поверхности водоемов льда и прекращением контакта с воздухом; летние — повышением температуры воды и уменьшением вследствие этого растворимости кислорода.
- 2. Солевой режим. Поддержание водного баланса гидробионтов имеет свою специфику. Если для наземных животных и растений наиболее важно обеспечение организма водой в условиях ее дефицита, то для гидробионтов не менее существенно поддержание определенного количества воды в теле при ее избытке в окружающей среде. Излишнее количество воды в клетках приводит к изменению в них осмотического давления и нарушению важнейших жизненных функций. Поэтому пресноводные формы не могут существовать в морях, морские — не переносят опреснения. Если соленость воды подвержена изменениям, животные перемещаются в поисках благоприятной среды.
- 3. Температурный режим водоемов, как уже было замечено, более устойчив, чем на суше. Амплитуда годовых колебаний температуры в верхних слоях океана не более 10—15 °С, в континентальных водоемах — 30—35 °С. Глубокие слои воды отличаются постоянством температуры. В экваториальных водах среднегодовая температура поверхностных слоев +26—27 °С, в полярных — около 0 °С и ниже. В горячих наземных источниках температура воды может приближаться к +100 °С, а в подводных гейзерах при высоком давлении на дне океана зарегистрирована температура +380 °С. Но по вертикали температурный режим разнообразен, например, в верхних слоях проявляются сезонные колебания температуры, а в нижних тепловой режим постоянен.
- 4. Световой режим. Света в воде гораздо меньше, чем в воздухе. Часть падающих на поверхность водоема лучей отражается в воздушную среду. Отражение тем сильнее, чем ниже положение Солнца, поэтому день под водой короче, чем на суше. Быстрое убывание количества света с глубиной связано с поглощением его водой. Лучи с разной длиной волны поглощаются неодинаково: красные исчезают уже недалеко от поверхности, тогда как сине-зеленые проникают значительно глубже. Это оказывает влияние на окраску гидробионтов, например, с глубиной происходит смена окраски водорослей: зеленые, бурые и красные водоросли, специализирующиеся на улавливании света с разной длиной волны. Окраска животных меняется с глубиной так же закономерно. Многие глубинные организмы не имеют пигментов.
В темных глубинах океана в качестве источника зрительной информации организмы используют свет, испускаемый живыми существами. Свечение живого организма получило название биолюминесценции.
Таким образом, свойства среды во многом определяют пути адаптации ее обитателей, их образ жизни и способы использования ресурсов, создавая цепи причинно-следственных зависимостей. Так, высокая плотность воды делает возможным существование планктона, а наличие парящих в воде организмов — предпосылка для развития фильтрационного типа питания, при котором возможен и сидячий образ жизни животных. В результате формируется мощный механизм самоочищения водоемов биосферного значения. В нем участвует огромное количество гидробионтов, как бентосных (обитающих на грунте и в грунте дна водоёмов), так и пелагиальных (растений или животных, обитающих в толще или на поверхности воды), от одноклеточных простейших до позвоночных животных. Например, только планктонные морские веслоногие раки (Calanus) за несколько лет способны профильтровать воды всего Мирового океана, т.е. примерно 1,37 млрд км3. Нарушение деятельности фильтраторов различными антропогенными воздействиями создает серьезную угрозу в поддержании чистоты вод.
Вопросы и задания для самоконтроля
- 1. Перечислите основные свойства водной среды обитания.
- 2. Поясните, как плотность воды определяет форму животных, способных к быстрому плаванию.
- 3. Назовите причину заморов.
- 4. Какое явление называется «биолюминисценция»? Знаете ли вы живые организмы, обладающие подобным свойством?
- 5. Какую экологическую роль играют фильтраторы?
Источник
Факторы водной среды
Характеристика
Температурный режим
Колебания воды в Мировом океане сравнительно невелики: от -2°С до +36°С. В пресных внутренних водоемах умеренных широт температура поверхностных слоев воды колеблется от -0,9°С до +25°С. Исключением являются термальные источники, теплые, горячие и кипящие, температура воды в которых может достигать +100°С. Благоприятный температурный режим исключает как слишком высокие температуры, которые вызывают свертывание белков, так и слишком низкие, когда прекращается работа ферментов.
Плотность и вязкость.
Плотность воды превышает плотность воздуха в 800раз, поэтому у водных растений очень слабо или вообще не развита механическая ткань, обеспечивающая растению прочность, вследствие чего их стебли эластичны и легко изгибаются. Большинству водных растений присуща плавучесть и способность находиться в толще воды во взвешенном состоянии. Они то поднимаются к поверхности, то вновь опускаются. У многих водных животных покровы обильно смазываются слизью, уменьшающей трение при передвижении, а тело имеет обтекаемую форму. На разных глубинах животные испытывают различное давление. В среднем в водной толще на каждые 10 м глубины давление возрастает на 1 атм. Глубоководные приспособились к высокому давлению (до 1000 атм), обитатели же поверхностных слоев ему не подвержены.
Прозрачность и световой режим
К данным факторам наиболее чувствительны фотосинтезирующие растения. В мутных водоемах они обитают только в поверхностном слое, а там, где прозрачность воды более высока, они проникают на значительные глубины. Мутность воды создается огромным количеством взвешенных в ней частиц минеральных веществ (глина, ил) и мелких организмов, что ограничивает проникновение солнечных лучей. Световой режим обусловлен также закономерным убыванием света с глубиной. При этом лучи солнечного света с разной длиной волны поглощаются неодинаково: быстрее всего поглощаются красные, тогда как сине-зеленые проникают на значительные глубины. Цвет среды с глубиной меняется, постепенно переходя от зеленоватого к зеленому, затем к голубому, синему, сине-фиолетовому, сменяемому постоянным мраком. Соответственно этому с глубиной зеленые водоросли уступают место бурым и красным, пигменты которых приспособлены к улавливанию солнечных лучей с более короткими длинами волн.
Соленость водной среды
В водах Мирового океана содержатся почти все встречающиеся на Земле элементы. Масса минеральных веществ (в граммах), растворенных в 1 л воды, называется соленостью. Единицей солености является промилле (‰), что соответствует содержанию 1г минеральных веществ в 1 литре воды.
В морях, где испарение превышает осадки и сток пресных вод с материков, соленость повышена (до 40-45 %о), а там, где осадки и сток больше испарений, соленость понижена (3-5 %о), и вода становится пресной. В подземных водах с концентрацией солей свыше 270 Ко жизнь отсутствует. Средняя соленость воды близка к 35 %о, т. е. в 1 л воды содержится около 35 г растворенных солей, главным образом, хлоридов, сульфатов и карбонатов. С соленостью растворов связано явление осмоса. Осмос – односторонняя диффузия растворенных в воде веществ через клеточную полупроницаемую мембрану. Мембраны клеток легко проницаемы для воды и почти не прони-цаемы для веществ, растворенных в клеточном соке. Интересен механизм осморегуляции у пресноводных и морских рыб. Из-за разницы в осмотическом давлении вне и внутри тела в организм постоянно проникает вода, и гидробионты пресных вод вынуждены ее интенсивно удалять. В связи с этим у них хорошо выражены процессы осморегуляции. Концентрация солей в тканях морских организмов равна концентрации растворов солей в окружающей среде. Поэтому осморегуляторные функции у них не развиты в такой степени, как у пресноводных, и они не сумели заселить пресные водоемы.
Кислород
Кислород попадает в водную среду двумя путями: во-первых, поступает из атмосферы, во-вторых, образуется в результате фотосинтеза зеленых растений. Разные животные проявляют неодинаковую потребность в кислороде. Например, форель и гольян очень чувствительны к его дефициту, поэтому обитают лишь в быстро текущих, холодных и хорошо перемешиваемых водах. Плотва, ерш, карась неприхотливы в этом отношении, а личинки комаров хирономид и малощетинковые черви трубочники обитают на больших глубинах, где кислород практически отсутствует. С понижением температуры растворимость кислорода, как и других газов, увеличивается.
Углекислый газ
Углекислый газ растворяется в воде примерно в 35 раз лучше кислорода (при 0°С). В воде его почти в 700 раз больше, чем в атмосфере, откуда он поступает. Большая часть углекислоты присутствует в водной среде в виде карбонатов и гидрокарбонатов щелочных и щелочноземельных металлов. Углекислый газ обеспечивает фотосинтез водных растений и принимает участие в формировании известковых скелетных образований беспозвоночных животных.
Кислотность водной среды
Водородный показатель pH – это величина, характеризующая кислотность воды. Он определяется как отрицательный десятичный логарифм концентрации ионов водорода Сн+ в воде при 22°С, выраженный в молях на литр: pH = -lg Сн+. Значение pH воды легко определяется с помощью универсальной индикаторной бумаги. Вода бывает кислая (рН<7), нейтральная (рН=7) и щелочная (рН>7). С глубиной кислотность воды увеличивается (pH уменьшается). Большинство пресноводных рыб выдерживает кислотность со значением водородного показателя от 5 до 9. При рН<5 наблюдается массовая гибель рыб, а если pH выше 10, погибают все рыбы и многие животные.
Источник
Âîäíàÿ ñðåäà îáèòàíèÿ õàðàêòåðèñòèêè è îñîáåííîñòè, å¸ îáèòàòåëè.
Ñðåäà îáèòàíèÿ – ýëåìåíò ìèðà, èñïîëüçóåìûé æèâûìè îðãàíèçìàìè äëÿ ñóùåñòâîâàíèÿ.
Îíà èìååò îïðåäåë¸ííûå óñëîâèÿ è ôàêòîðû, ê êîòîðûì äîëæíû ïðèñïîñàáëèâàòüñÿ îðãàíèçìû, æèâóùèå â ýòîé îáëàñòè.
Åñòü 4 âèäà:
- Íàçåìíî-âîçäóøíûé
- Ïî÷âåííûé
- Âîäíûé
- Îðãàíèçìåííûé
Ïî îäíîé òåîðèè ïåðâûå îðãàíèçìû îáðàçîâàëèñü 3,7 ìëðä ëåò íàçàä, ïî äðóãîé – 4,1 ìèëëèàðäà. Ïåðâûå ôîðìû æèçíè ïîÿâèëèñü â âîäå.
Ïîâåðõíîñòü Çåìëè íà 71% çàëèòà âîäîé, êîòîðàÿ î÷åíü âàæíà äëÿ æèçíè íà ïëàíåòå â öåëîì.
Áåç âîäû íå ñìîãóò ñóùåñòâîâàòü ðàñòåíèÿ, æèâîòíûå. Ýòî óäèâèòåëüíàÿ æèäêîñòü, êîòîðàÿ ìîæåò íàõîäèòüñÿ â òðåõ ïðåáûâàíèÿõ. Âîäà – ÷àñòü âñåãî, íåêîòîðûé å¸ ïðîöåíò ñîäåðæèòñÿ â àòìîñôåðå, ïî÷âå è æèâûõ îðãàíèçìàõ, ìèíåðàëàõ, âëèÿåò íà ïîãîäíûå óñëîâèÿ è êëèìàò.
Îíà èìååò ñïîñîáíîñòü çàïàñàòü òåïëîâóþ ýíåðãèþ, áëàãîäàðÿ ÷åìó íå ïðîèñõîäÿò ðåçêè ïåðåïàäû òåìïåðàòóðû íà ïðèáðåæíûõ ó÷àñòêàõ.
 âîäíîé ñðåäå îãðàíè÷åííûå ðåñóðñû êàê ñâåòà, òàê è êèñëîðîäà. Êîëè÷åñòâî âîçäóõà ìîæåò ïîïîëíÿòüñÿ ãëàâíûì îáðàçîì ñ ïîìîùüþ ôîòîñèíòåçà. Ïîêàçàòåëü êèñëîðîäà íàïðÿìóþ çàâèñèò îò ãëóáèíû òîëùè âîäû, ò.ê. ñâåò íå ïðîíèêàåò íèæå 270 ìåòðîâ. Èìåííî òàì ðàñòóò êðàñíûå âîäîðîñëè, ïîãëîùàþùèå ðàññåÿííûå ëó÷è ñîëíöà è ïåðåäåëûâàþùèå èõ â êèñëîðîä. Áëàãîäàðÿ äàâëåíèþ íà ðàçíûõ ãëóáèíàõ, îðãàíèçìû ìîãóò æèòü íà îïðåäåëåííûõ óðîâíÿõ.
Íà òî, êàêèå ñóùåñòâà æèâóò â âîäå, áîëüøîå âëèÿíèå îêàçûâàþò:
- òåìïåðàòóðà âîäû,
å¸ êèñëîòíîñòü è ïëîòíîñòü; - ïîäâèæíîñòü (ïðèëèâû è îòëèâû);
- ìèíåðàëèçàöèÿ;
- ñâåòîâîé ðåæèì;
- ãàçîâûé ðåæèì (ïðîöåíò ñîäåðæàíèÿ êèñëîðîäà).
 âîäíîé ñðåäå æèâåò îãðîìíîå ìíîæåñòâî ïðåäñòàâèòåëåé ðàçíîîáðàçíûõ âèäîâ æèâîòíûõ è ðàñòåíèé. Ìëåêîïèòàþùèå ìîãóò ïðîæèâàòü êàê íà ñóøå, òàê è â âîäå. Èç ïðåñíîâîäíûõ ìîæíî âûäåëèòü òàêèõ, êàê ãèïïîïîòàì, èñïîëüçóþùèé âîäó â öåëÿõ îõëàæäåíèÿ, àìàçîíñêèé äåëüôèí, ïðîæèâàþùèé â ðóñëàõ ðåêè Àìàçîíêè, ëàìàíòèí, êîòîðûé ìîæåò îáèòàòü êàê â ñîëåíûõ, òàê è â ïðåñíûõ âîäàõ.
Ê ìîðñêèì ìëåêîïèòàþùèì îòíîñÿòñÿ êèòû, ñàìûå áîëüøèå æèâîòíûå íà ïëàíåòå, áåëûå ìåäâåäè, ïðîâîäÿùèå íå âñþ æèçíü â âîäå, íî çíà÷èòåëüíóþ ÷àñòü; ìîðñêèå ëüâû, âûõîäÿùèå íà áåðåã ðàäè îòäûõà.
Èç ïðåñíîâîäíûõ àìôèáèé ìîæíî âûäåëèòü ðàçëè÷íûå âèäû:
òðèòîíîâ;
ñàëàìàíäð;
ëÿãóøåê;
÷åðâÿã, ðàêè, îìàðû, è ìíîãèõ äðóãèõ.
Çåìíîâîäíûå íå æèâóò â ñîë¸íîé âîäå èç-çà òîãî, ÷òî èõ èêðà ïîãèáàåò äàæå â ñëàáîñîë¸íûõ âîäîåìàõ, à àìôèáèè îáèòàþò òàì æå, ãäå è ðàçìíîæàþòñÿ, õîòÿ èñêëþ÷åíèÿ èç ïðàâèë åñòü.
Òàê æå ëÿãóøêè íå ìîãóò æèòü â ñîë¸íîé âîäå èç-çà òîãî, ÷òî ó íèõ î÷åíü òîíêàÿ êîæà, è ñîëè âûòÿãèâàþò âëàãó èç àìôèáèè, âñëåäñòâèå ÷åãî îíà ïîãèáàåò. Ïðåñìûêàþùèåñÿ íàñåëÿþò êàê ïðåñíûå, òàê è ñîë¸íûå âîäû. Òàì ïðîæèâàþò íåêîòîðûå âèäû ÿùåðèö, çìåé, êðîêîäèëîâ è ÷åðåïàõ, ïðèñïîñîáèâøèõñÿ ê äàííîé ñðåäå.
ðàñòåíèÿ âîäíîé ñðåäû ôîòî
Äëÿ ðûá âîäíàÿ ñðåäà – ýòî èõ äîì.
Îíè ìîãóò îáèòàòü â ñîëåíîâàòîé ëèáî ïðåñíîé âîäå. Ìíîãèå íàñåêîìûå, òàêèå êàê êîìàðû, ñòðåêîçû, âîäîìåðêè, âîäÿíûå ïàóêè è èì ïîäîáíûå îáèòàþò â âîäíîé ñðåäå.
Òàê æå çäåñü ïðèñóòñòâóåò áîëüøîå êîëè÷åñòâî ðàñòåíèé.  ïðåñíîâîäíûõ âîäîåìàõ ðàñòåò îçåðíîé êàìûø (ïî çàáîëî÷åííûì áåðåãàì), êóâøèíêà (áîëîòà, ïðóäû, çàâîäè), àèð áîëüøîé (íà ìåëêîâîäüå).  ñîëåíîé âîäå ïî áîëüøåé ÷àñòè ðàñòóò âîäîðîñëè è ìîðñêèå òðàâû (ïîñèäîíèÿ, âçìîðíèê).
Ïîìèìî ìíîãîêëåòî÷íûõ æèâîòíûõ â âîäå îáèòàþ è ïðîñòûå îäíîêëåòî÷íûå. Ïëàíêòîí èëè “áëóæäàþùèé” íå ìîæåò ñàìîñòîÿòåëüíî ïåðåäâèãàòüñÿ. Èìåííî ïîýòîìó åãî ïåðåíîñèò òå÷åíèå êàê ñîë¸íûõ, òàê è ïðåñíûõ âîäîåìàõ.  ïîíÿòèå ïëàíêòîíà âõîäÿò êàê ðàñòåíèÿ (ôèòîïëàíêòîí), æèâóùèå íà ïîâåðõíîñòè ðàäè ñîëíå÷íîãî ñâåòà, òàê è æèâîòíûå (çîîïëàíêòîí), îáèòàþùèå âî âñåé òîëùå âîäû. Çäåñü åñòü è àì¸áû, îäíîêëåòî÷íûå îäèíî÷êè, ïðîæèâàþùèå âåçäå, ãäå åñòü âîäà.
Ìíîãèì îðãàíèçìàì ïðèõîäèëîñü ïðèñïîñàáëèâàòüñÿ ê æèçíè â âîäíîé ñðåäå. Ó âûäðû ïåðåïîí÷àòûå ëàïû, ïîçâîëÿþùèå áûñòðî ïëàâàòü, íîçäðè è óøè, çàêðûâàþùèåñÿ ïðè ïîãðóæåíèè â âîäó, è âîäîîòòàëêèâàþùèé ìåõ.
Ôîðìà òåëà èãðàåò áîëüøóþ ðîëü. Îíà äîëæíà áûòü îáòåêàåìîé, ÷òîáû èçáåæàòü êàêîå-ëèáî òðåíèå. Òàêîé õâîñò êàê ó áîáðà è óòêîíîñà òîæå ìîæåò ïîìî÷ü â ïåðåäâèæåíèè. Ó âîäîïëàâàþùèõ ïòèö ïåðüÿ ñìàçûâàþòñÿ ñïåöèàëüíîé æåëåçîé, ÷òîáû “îäåæäà” íå ïðîìîêàëà.
- Âîäà ñ âûñîêèì ñîäåðæàíèå ìåòàíà ìîæåò ãîðåòü
- Ñàìûå áîëüøèå çàïàñû ïðåñíîé âîäû íàõîäÿòñÿ â ëåäíèêàõ
- 85% çàáîëåâàíèé ïåðåíîñÿòñÿ ñ ïîìîùüþ âîäû.
Âîäà – ñàìûé âàæíûé èñòî÷íèê â íàøåé æèçíè. Áåç íåå Çåìëÿ áûëà áû ïîäîáíà äðóãèì ïëàíåòàì. Íå ñìîòðÿ íà ýòî îíà òàèò â ñåáå áîëüøèå îïàñíîñòè, âûðàæåííûå êàê â çàáîëåâàíèÿõ, òàê è â îáèòàòåëÿõ, å¸ íàñåëÿþùèõ.
Источник
Н.М. Чернова, А.М. Былова
Общая экология. Учебник
М.: Дрофа, 2004
4.1. Водная среда обитания. Специфика адаптации гидробионтов
4.1.2. Основные свойства водной среды
Плотность воды – это фактор, определяющий условия передвижения водных организмов и давление на разных глубинах. Для дистиллированной воды плотность равна 1 г/см3 при 4 °C. Плотность природных вод, содержащих растворенные соли, может быть больше, до 1,35 г/см3. Давление возрастает с глубиной примерно в среднем на 1 · 105 Па (1 атм) на каждые 10 м.
В связи с резким градиентом давления в водоемах гидробионты в целом значительно более эврибатны по сравнению с сухопутными организмами. Некоторые виды, распространенные на разных глубинах, переносят давление от нескольких до сотен атмосфер. Например, голотурии рода Elpidia, черви Priapulus caudatus обитают от прибрежной зоны до ультраабиссали. Даже пресноводные обитатели, например инфузории-туфельки, сувойки, жуки-плавунцы и др., выдерживают в опыте до 6 · 107 Па (600 атм).
Однако многие обитатели морей и океанов относительно стенобатны и приурочены к определенным глубинам. Стенобатность чаще всего свойственна мелководным и глубоководным видам. Только на литорали обитают кольчатый червь пескожил Arenicola, моллюски морские блюдечки (Patella). Многие рыбы, например из группы удильщиков, головоногие моллюски, ракообразные, погонофоры, морские звезды и др. встречаются лишь на больших глубинах при давлении не менее 4 · 107– 5 · 107 Па (400–500 атм).
Плотность воды обеспечивает возможность опираться на нее, что особенно важно для бесскелетных форм. Плотность среды служит условием парения в воде, и многие гидробионты приспособлены именно к этому образу жизни. Взвешенные, парящие в воде организмы объединяют в особую экологическую группу гидробионтов – планктон («планктос» – парящий).
Рис. 39. Увеличение относительной поверхности тела у планктонных организмов (по С. A. Зернову, 1949):
A – палочковидные формы:
1– диатомея Synedra;
2– цианобактерия Aphanizomenon;
3– перидинеевая водоросль Amphisolenia;
4– Euglena acus;
5– головоногий моллюск Doratopsis vermicularis;
6– веслоногий рачок Setella;
7– личинка Porcellana (Decapoda)
Б – расчлененные формы:
1– моллюск Glaucus atlanticus;
2– червь Tomopetris euchaeta;
3– личинка рака Palinurus;
4– личинка рыбы морского черта Lophius;
5– веслоногий рачок Calocalanus pavo
В составе планктона – одноклеточные и колониальные водоросли, простейшие, медузы, сифонофоры, гребневики, крылоногие и киленогие моллюски, разнообразные мелкие рачки, личинки донных животных, икра и мальки рыб и многие другие (рис. 39). Планктонные организмы обладают многими сходными адаптациями, повышающими их плавучесть и препятствующими оседанию на дно. К таким приспособлениям относятся: 1) общее увеличение относительной поверхности тела за счет уменьшения размеров, сплющенности, удлинения, развития многочисленных выростов или щетинок, что увеличивает трение о воду; 2) уменьшение плотности за счет редукции скелета, накопления в теле жиров, пузырьков газа и т. п. У диатомовых водорослей запасные вещества отлагаются не в виде тяжелого крахмала, а в виде жировых капель. Ночесветка Noctiluca отличается таким обилием газовых вакуолей и капелек жира в клетке, что цитоплазма в ней имеет вид тяжей, сливающихся только вокруг ядра. Воздухоносные камеры есть и у сифонофор, ряда медуз, планктонных брюхоногих моллюсков и др.
Водоросли (фитопланктон) парят в воде пассивно, большинство же планктонных животных способно к активному плаванию, но в ограниченных пределах. Планктонные организмы не могут преодолевать течения и переносятся ими на большие расстояния. Многие виды зоопланктона способны, однако, к вертикальным миграциям в толще воды на десятки и сотни метров как за счет активного передвижения, так и за счет регулирования плавучести своего тела. Особую разновидность планктона составляет экологическая группа нейстона («нейн» – плавать) – обитатели поверхностной пленки воды на границе с воздушной средой.
Плотность и вязкость воды сильно влияют на возможность активного плавания. Животных, способных к быстрому плаванию и преодолению силы течений, объединяют в экологическую группу нектона («нектос» – плавающий). Представители нектона – рыбы, кальмары, дельфины. Быстрое движение в водной толще возможно лишь при наличии обтекаемой формы тела и сильно развитой мускулатуры. Торпедовидная форма вырабатывается у всех хороших пловцов независимо от их систематической принадлежности и способа движения в воде: реактивного, за счет изгибания тела, с помощью конечностей.
Кислородный режим. В насыщенной кислородом воде содержание его не превышает 10 мл в 1 л, это в 21 раз ниже, чем в атмосфере. Поэтому условия дыхания гидробионтов значительно усложнены. Кислород поступает в воду в основном за счет фотосинтетической деятельности водорослей и диффузии из воздуха. Поэтому верхние слои водной толщи, как правило, богаче этим газом, чем нижние. С повышением температуры и солености воды концентрация в ней кислорода понижается. В слоях, сильно заселенных животными и бактериями, может создаваться резкий дефицит О2 из-за усиленного его потребления. Например, в Мировом океане богатые жизнью глубины от 50 до 1000 м характеризуются резким ухудшением аэрации – она в 7-10 раз ниже, чем в поверхностных водах, населенных фитопланктоном. Около дна водоемов условия могут быть близки к анаэробным.
Среди водных обитателей много видов, способных переносить широкие колебания содержания кислорода в воде, вплоть до почти полного его отсутствия (эвриоксибионты – «окси» – кислород, «бионт» – обитатель). К ним относятся, например, пресноводные олигохеты Tubifex tubifex, брюхоногие моллюски Viviparus viviparus. Среди рыб очень слабое насыщение воды кислородом могут выдерживать сазан, линь, караси. Вместе с тем ряд видов стеноксибионтны – они могут существовать лишь при достаточно высоком насыщении воды кислородом (радужная форель, кумжа, гольян, ресничный червь Planaria alpina, личинки поденок, веснянок и др.). Многие виды способны при недостатке кислорода впадать в неактивное состояние – аноксибиоз – и таким образом переживать неблагоприятный период.
Дыхание гидробионтов осуществляется либо через поверхность тела, либо через специализированные органы – жабры, легкие, трахеи. При этом покровы могут служить дополнительным органом дыхания. Например, рыба вьюн через кожу потребляет в среднем до 63 % кислорода. Если через покровы тела происходит газообмен, то они очень тонки. Дыхание облегчается также увеличением поверхности. Это достигается в ходе эволюции видов образованием различных выростов, уплощением, удлинением, общим уменьшением размеров тела. Некоторые виды при недостатке кислорода активно изменяют величину дыхательной поверхности. Черви Tubifex tubifex сильно вытягивают тело в длину; гидры и актинии – щупальцы; иглокожие – амбулакральные ножки. Многие сидячие и малоподвижные животные обновляют вокруг себя воду, либо создавая ее направленный ток, либо колебательными движениями способствуя ее перемешиванию. Двустворчатым моллюскам для этой цели служат реснички, выстилающие стенки мантийной полости; ракообразным – работа брюшных или грудных ножек. Пиявки, личинки комаров-звонцов (мотыль), многие олигохеты колышут тело, высунувшись из грунта.
У некоторых видов встречается комбинирование водного и воздушного дыхания. Таковы двоякодышащие рыбы, сифонофоры дискофанты, многие легочные моллюски, ракообразные Gammarus lacustris и др. Вторичноводные животные сохраняют обычно атмосферный тип дыхания как более выгодный энергетически и нуждаются поэтому в контактах с воздушной средой, например ластоногие, китообразные, водяные жуки, личинки комаров и др.
Нехватка кислорода в воде приводит иногда к катастрофическим явлениям – заморам, сопровождающимся гибелью множества гидробионтов. Зимние заморы часто вызываются образованием на поверхности водоемов льда и прекращением контакта с воздухом; летние– повышением температуры воды и уменьшением вследствие этого растворимости кислорода.
Частая гибель рыб и многих беспозвоночных зимой характерна, например, для нижней части бассейна реки Оби, воды которой, стекающие из заболоченных пространств Западно-Сибирской низменности, крайне бедны растворенным кислородом. Иногда заморы возникают и в морях.
Кроме недостатка кислорода, заморы могут быть вызваны повышением концентрации в воде токсичных газов – метана, сероводорода, СО2 и др., образующихся в результате разложения органических материалов на дне водоемов.
Солевой режим. Поддержание водного баланса гидробионтов имеет свою специфику. Если для наземных животных и растений наиболее важно обеспечение организма водой в условиях ее дефицита, то для гидробионтов не менее существенно поддержание определенного количества воды в теле при ее избытке в окружающей среде. Излишнее количество воды в клетках приводит к изменению в них осмотического давления и нарушению важнейших жизненных функций.
Большинство водных обитателей пойкилосмотичны: осмотическое давление в их теле зависит от солености окружающей воды. Поэтому для гидробионтов основной способ поддерживать свой солевой баланс – это избегать местообитаний с неподходящей соленостью. Пресноводные формы не могут существовать в морях, морские – не переносят опреснения. Если соленость воды подвержена изменениям, животные перемещаются в поисках благоприятной среды. Например, при опреснении поверхностных слоев моря после сильных дождей радиолярии, морские рачки Calanus и другие спускаются на глубину до 100 м. Позвоночные животные, высшие раки, насекомые и их личинки, обитающие в воде, относятся к гомойосмотическим видам, сохраняя постоянное осмотическое давление в теле независимо от концентрации солей в воде.
У пресноводных видов соки тела гипертоничны по отношению к окружающей воде. Им угрожает излишнее обводнение, если не препятствовать поступлению или не удалять избыток воды из тела. У простейших это достигается работой выделительных вакуолей, у многоклеточных – удалением воды через выделительную систему. Некоторые инфузории каждые 2–2,5 мин выделяют количество воды, равное объему тела. На «откачку» избыточной воды клетка затрачивает очень много энергии. С повышением солености работа вакуолей замедляется. Так, у туфелек Paramecium при солености воды 2,5%о вакуоль пульсирует с интервалом в 9 с, при 5%о – 18 с, при 7,5%о – 25 с. При концентрации солей 17,5%о вакуоль перестает работать, так как разница осмотического давления между клеткой и внешней средой исчезает.
Если вода гипертонична по отношению к жидкостям тела гидробионтов, им грозит обезвоживание в результате осмотических потерь. Защита от обезвоживания достигается повышением концентрации солей также в теле гидробионтов. Обезвоживанию препятствуют непроницаемые для воды покровы гомойосмотических организмов – млекопитающих, рыб, высших раков, водных насекомых и их личинок.
Многие пойкилосмотические виды переходят к неактивному состоянию – анабиозу в результате дефицита воды в теле при возрастании солености. Это свойственно видам, обитающим в лужах морской воды и на литорали: коловраткам, жгутиковым, инфузориям, некоторым рачкам, черноморским полихетам Nereis divesicolor и др. Солевой анабиоз– средство переживать неблагоприятные периоды в условиях переменной солености воды.
Истинно эвригалинных видов, способных в активном состоянии обитать как в пресной, так и в соленой воде, среди водных обитателей не так много. В основном это виды, населяющие эстуарии рек, лиманы и другие солоноватоводные водоемы.
Температурный режим водоемов более устойчив, чем на суше. Это связано с физическими свойствами воды, прежде всего высокой удельной теплоемкостью, благодаря которой получение или отдача значительного количества тепла не вызывает слишком резких изменений температуры. Испарение воды с поверхности водоемов, при котором затрачивается около 2263,8 Дж/г, препятствует перегреванию нижних слоев, а образование льда, при котором выделяется теплота плавления (333,48 Дж/г), замедляет их охлаждение.
Амплитуда годовых колебаний температуры в верхних слоях океана не более 10–15 °C, в континентальных водоемах – 30–35 °C. Глубокие слои воды отличаются постоянством температуры. В экваториальных водах среднегодовая температура поверхностных слоев +(26–27) °С, в полярных – около 0 °C и ниже. В горячих наземных источниках температура воды может приближаться к +100 °C, а в подводных гейзерах при высоком давлении на дне океана зарегистрирована температура +380 °C.
Таким образом, в водоемах существует довольно значительное разнообразие температурных условий. Между верхними слоями воды с выраженными в них сезонными колебаниями температуры и нижними, где тепловой режим постоянен, существует зона температурного скачка, или термоклина. Термоклин резче выражен в теплых морях, где сильнее перепад температуры наружных и глубинных вод.
В связи с более устойчивым температурным режимом воды среди гидробионтов в значительно большей мере, чем среди населения суши, распространена стенотермность. Эвритермные виды встречаются в основном в мелких континентальных водоемах и на литорали морей высоких и умеренных широт, где значительны суточные и сезонные колебания температуры.
Световой режим. Света в воде гораздо меньше, чем в воздухе. Часть падающих на поверхность водоема лучей отражается в воздушную среду. Отражение тем сильнее, чем ниже положение Солнца, поэтому день под водой короче, чем на суше. Например, летний день около острова Мадейра на глубине 30 м – 5 ч, а на глубине 40 м всего 15 мин. Быстрое убывание количества света с глубиной связано с поглощением его водой. Лучи с разной длиной волны поглощаются неодинаково: красные исчезают уже недалеко от поверхности, тогда как сине-зеленые проникают значительно глубже. Сгущающиеся с глубиной сумерки в океане имеют сначала зеленый, затем голубой, синий и сине-фиолетовый цвет, сменяясь наконец постоянным мраком. Соответственно сменяют друг друга с глубиной зеленые, бурые и красные водоросли, специализированные на улавливании света с разной длиной волны.
Окраска животных меняется с глубиной так же закономерно. Наиболее ярко и разнообразно окрашены обитатели литоральной и сублиторальной зон. Многие глубинные организмы, подобно пещерным, не имеют пигментов. В сумеречной зоне широко распространена красная окраска, которая является дополнительной к сине-фиолетовому свету на этих глубинах. Дополнительные по цвету лучи наиболее полно поглощаются телом. Это позволяет животным скрываться от врагов, так как их красный цвет в сине-фиолетовых лучах зрительно воспринимается как черный. Красная окраска характерна для таких животных сумеречной зоны, как морской окунь, красный коралл, различные ракообразные и др.
У некоторых видов, обитающих у поверхности водоемов, глаза разделяются на две части с разной способностью к преломлению лучей. Одна половина глаза видит в воздухе, другая – в воде. Такая «четырехглазость» характерна для жуков-вертячек, американской рыбки Anableps tetraphthalmus, одного из тропических видов морских собачек Dialommus fuscus. Эта рыбка при отливах сидит в углублениях, выставляя часть головы из воды (см. рис. 26).
Поглощение света тем сильнее, чем меньше прозрачность воды, которая зависит от количества взвешенных в ней частиц.
Прозрачность характеризуют предельной глубиной, на которой еще виден специально опускаемый белый диск диаметром около 20 см (диск Секки). Самые прозрачные воды – в Саргассовом море: диск виден до глубины 66,5 м. В Тихом океане диск Секки виден до 59 м, в Индийском – до 50, в мелких морях – до 5-15 м. Прозрачность рек в среднем 1–1,5 м, а в самых мутных реках, например в среднеазиатских Амударье и Сырдарье, всего несколько сантиметров. Граница зоны фотосинтеза поэтому сильно варьирует в разных водоемах. В самых чистых водах эуфотическая зона, или зона фотосинтеза, простирается до глубин не свыше 200 м, сумеречная, или дисфотическая, зона занимает глубины до 1000–1500 м, а глубже, в афотическую зону, солнечный свет не проникает совсем.
Количество света в верхних слоях водоемов сильно меняется в зависимости от широты местности и от времени года. Длинные полярные ночи сильно ограничивают время, пригодное для фотосинтеза, в арктических и приантарктических бассейнах, а ледовый покров затрудняет доступ света зимой во все замерзающие водоемы.
В темных глубинах океана в качестве источника зрительной информации организмы используют свет, испускаемый живыми существами. Свечение живого организма получило название биолюминесценции. Светящиеся виды есть почти во всех классах водных животных от простейших до рыб, а также среди бактерий