Какими свойствами обладают амины кислотными основными или амфотерными

Какими свойствами обладают амины кислотными основными или амфотерными thumbnail

Амины – органические соединения, продукты замещения атомов водорода в аммиаке NH3 различными углеводородными радикалами. Функциональная
группой аминов является аминогруппа – NH2.

Аминогруппа

Классификация аминов

По числу углеводородных радикалов амины подразделяются на первичные, вторичные и третичные.

Первичные, вторичные и третичные амины

Запомните, что основные свойства аминов выражены тем сильнее, чем больше электронной плотности присутствует на атоме азота. Однако, у третичных аминов три углеводородных радикала создают значительные затруднения для химических реакций.

Таким образом,
у третичных аминов основные свойства выражены слабее, чем у вторичных аминов. Основные свойства возрастают в ряду: третичные амины (слабые основные свойства) → первичные амины → вторичные амины (основные свойства хорошо выражены).

Основные свойства аминов

Номенклатура и изомерия аминов

Названия аминов формируются путем добавления суффикса “амин” к названию соответствующего углеводородного радикала: метиламин, этиламин,
пропиламин, изопропиламин, бутиламин и т.д. В случае если радикалов несколько, их перечисляют в алфавитном порядке.

Общая формула предельных аминов CnH2n+3N. Атомы углерода находятся в sp3 гибридизации.

Номенклатура аминов

Для аминов характерна структурная изомерия: углеродного скелета, положения функциональной группы и изомерия аминогруппы.

Изомерия аминов

Получение
  • Нагревание галогеналканов с аммиаком
  • В основе этой реакции лежит замещение атома галогена в галогеналканах на аминогруппу, при этом образуются амин и соль аммония.

    Получение аминов реакцией галогеналкана с аммиаком

  • Восстановление нитросоединений
  • При такой реакции нитрогруппа превращается в аминогруппу, образуется вода.

    Восстановление нитросоединений

    Знаменитой является предложенная в 1842 году Н.Н. Зининым реакция получения аминов восстановления ароматических нитросоединений (анилина
    и других). Она возможна в нескольких вариантах, главное, чтобы в начале реакции выделился водород.

    Реакция Зинина

  • Восстановление амидов
  • Реакция сопровождается разрушением карбонильной группы и отщеплении ее от молекулы амида в виде воды.

    Восстановление амидов

  • Восстановление нитрилов
  • Этим способом в промышленности получают гексаметилендиамин, используемый в изготовлении волокна – нейлон.

    Восстановление нитрилов

  • Реакция аммиака со спиртами
  • В промышленности амины получают реакцией аммиака со спиртами, в ходе которой происходит замещение гидроксогруппы на аминогруппу.

    Получение аминов реакцией спирта с аммиаком

  • Реакция галогеналканов с аминами
  • В ходе реакции галогеналканов с аммиаком, аминами, становится возможным получение первичных, вторичных и третичных аминов.

    Реакция галогеналканов с аминами

    Реакция галогеналканов с аминами

Химические свойства аминов
  • Основные свойства
  • Как и аммиак, амины обладают основными свойствами, их растворы окрашивают лакмусовую бумажку в синий цвет.

    В реакции с водой амины образуют гидроксиды алкиламмония, которые аналогичны гидроксиду аммония. Анилин с водой не реагирует, так как является слабым основанием.

    Реакция аминов с водой

    Как основания, амины вступают в реакции с различными кислотами и образуют соли алкиламмония.

    Реакции аминов с кислотами

  • Реакция с азотистой кислотой
  • Данная реакция помогает различить первичные, вторичные и третичные амины, которые по-разному с ней взаимодействуют.

    Реакции аминов с азотистой кислотой

  • Конденсация аминов с альдегидами и кетонами
  • При конденсации первичных аминов с альдегидами и кетонами получают основания Шиффа, соединения, которые содержат фрагмент “N=C”.

    Реакция аминов с альдегидами и кетонами

  • Разложение солей аминов
  • Соли аминов легко разлагаются щелочами (растворимыми основаниями). В результате образуется исходный амин, соль кислоты и вода.

    Разложение солей аминов щелочами

  • Горение аминов
  • При горении аминов азот чаще всего выделяется в молекулярном виде, так как для реакции азота с кислородом необходима очень высокая
    температура. Выделение углекислого газа и воды обыкновенно при горении органических веществ.

    4C2H5NH2 + 15O2 → 8CO2 + 14H2O + 2N2

© Беллевич Юрий Сергеевич 2018-2020

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

Амины – это органические производные аммиака NH3, в молекуле которого один, два или три атома водорода замещены на углеводородные радикалы.

R-NH2,   R1-NH-R2,   R1-N(R2)-R3

Атом азота находится в состоянии sp3-гибридизации, поэтому молекула имеет форму тетраэдра.

Также атом азота в аминах имеет неподелённую электронную пару, поэтому амины проявляют свойства органических оснований.

По количеству углеводородных радикалов, связанных с атомом азота, различают первичные, вторичные и третичные амины.

По типу радикалов амины делят на алифатические, ароматические и смешанные.

Читайте также:  У какого элемента сильнее выражены металлические свойства sr или cd
АминыПервичныеВторичныеТретичные
АлифатическиеМетиламин

CH3-NH2

Диметиламин

CH3-NH-CH3

Триметиламин

(CH3)3N

АроматическиеФениламин

C6H5-NH2

Дифениламин

(C6H5)2NH

Трифениламин

(C6H5)3N

СмешанныеМетилфениламин

CH3-NH-C6H5

Диметилфениламин

(CH3)2N-C6H5

  • Названия аминов образуют из названий углеводородных радикалов и суффикса амин. Различные радикалы перечисляются в алфавитном порядке.

При наличии одинаковых радикалов используют приставки ди и три.

CH3-NH2                   Метиламин                       

СH3CH2-NH2            Этиламин  

CH3-CH2-NH-CH3    Метилэтиламин  

 (CH3)2NH                 Диметиламин

  • Первичные амины могут быть названы как производные углеводородов, в молекулах которых один или несколько атомов водорода замещены на аминогруппы -NH2.

В этом случае аминогруппа указывается в названии приставкой  амино-:

1-Аминопропан1,3-Диаминобутан
CH3-CH2-CH2-NH2 NH2-CH2-CH2-CH(NH2) -CH3
  • Для смешанных аминов, содержащих алкильные и ароматические радикалы, за основу названия обычно берется название первого представителя ароматических аминов – анилин.

Например, N-метиланилин:

   Символ N- ставится перед названием алкильного радикала, чтобы показать, что этот радикал связан с атомом азота, а не является заместителем в бензольном кольце.

Для аминов характерна изомерия углеродного скелета, изомерия положения аминогруппы и изомерия различных типов аминов.

Изомерия углеродного скелета

Для   аминов характерна изомерия углеродного скелета (начиная с С4H9NH2).

Например. Формуле С4Н9NH2 соответствуют два амина-изомера углеродного скелета.

Изомерия положения аминогруппы

Для аминов характерна изомерия положения аминогруппы (начиная с С3H9N).

Например.Формуле С4Н11N соответствуют амины положения аминогруппы.

1-Аминобутан (н-бутиламин)

2-Аминобутан (втор-бутиламин)

Изомерия между типами аминов

Например. Формуле  С3Н9N соответствуют первичный, вторичный и третичный амины. 

Пропиламин

(первичный амин)

Метилэтиламин (вторичный амин)Триметиламин

(третичный амин)

При обычной температуре низшие алифатические амины CH3NH2, (CH3)2NH и (CH3)3N – газы (с запахом аммиака), средние гомологи – жидкости (с резким рыбным запахом), высшие – твердые вещества без запаха.      

Ароматические амины – бесцветные жидкости с высокой температурой кипения или твердые вещества.

Первичные и вторичные амины образуют слабые межмолекулярные водородные связи:

Это объясняет относительно более высокую температуру кипения аминов по сравнению с алканами с близкой молекулярной массой.

 Амины также способны к образованию водородных связей с водой:

Поэтому низшие амины хорошо растворимы в воде.

 С увеличением числа и размеров углеводородных радикалов растворимость аминов в воде уменьшается. Ароматические амины в воде не растворяются.

Амины имеют сходное с аммиаком строение и проявляют подобные ему свойства.

Как в аммиаке, так и в аминах атом азота имеет неподеленную пару электронов:

Аммиак  :NH3

Первичный амин    R–:NH2

Поэтому амины и аммиак обладают свойствами оснований.

1. Основные свойства аминов

Алифатические амины являются более сильными основаниями, чем аммиак, а ароматические — более слабыми.

Это объясняется тем, что радикалы СН3–, С2Н5–  увеличивают электронную плотность на атоме азота:

Это приводит к усилению основных свойств.

Основные свойства аминов возрастают в ряду:

1.1. Взаимодействие с водой

В водном растворе амины обратимо реагируют с водой. Среда водного раствора аминов — слабощелочная:

Какими свойствами обладают амины кислотными основными или амфотерными

1.2. Взаимодействие с кислотами

Амины реагируют с кислотами, как минеральными, так и карбоновыми, и аминокислотами, образуя соли (или амиды в случае карбоновых кислот):

При взаимодействии аминов с многоосновными кислотами возможно образование кислых солей:

1.3. Взаимодействие с солями

Амины способны осаждать гидроксиды тяжелых металлов из водных растворов.

Например, при взаимодействии с хлоридом железа (II) образуется осадок гидроксида железа (II):

2. Окисление аминов

Амины сгорают в кислороде, образуя азот, углекислый газ и воду. Например, уравнение сгорания этиламина:

3. Взаимодействие с азотистой кислотой

Первичные алифатические амины при действии азотистой кислоты превращаются в спирты:

Это качественная реакция на первичные амины – выделение азота.

Вторичные амины (алифатические и ароматические) образуют нитрозосоединения — вещества желтого цвета:  

4. Алкилирование аминов

Первичные амины  способны взаимодействовать с галогеналканами с образованием соли вторичного амина:

Читайте также:  Каким свойством обладают полисахариды

Из полученной соли щелочью выделяют вторичный амин, который можно далее алкилировать до третичного амина.

Особенности анилина

Анилин С6H5-NH2 – это ароматический амин.

Анилин – бесцветная маслянистая жидкость с характерным запахом. На воздухе окисляется и приобретает красно-бурую окраску. Ядовит.  В воде практически не растворяется.

При 18 оС  в 100 мл воды растворяется 3,6г анилина. Раствор анилина не изменяет окраску индикаторов.

Видеоопыт изучения среды раствора анилина можно посмотреть здесь.

Для анилина характерны реакции как по аминогруппе, так и по бензольному кольцу.

  • Бензольное кольцо уменьшает основные свойства аминогруппы по сравнению алифатическими аминами и даже с аммиаком:

Анилин не реагирует с водой, но реагирует с сильными кислотами, образуя соли:

  • Бензольное кольцо в анилине становится более активным в реакциях замещения, чем у бензола.

Реакция с галогенами идёт без катализатора во все три орто- и пара- положения.

Качественная реакция на анилин: реагирует с бромной водой с образованием 2,4,6-триброманилина (белый осадок ↓).

Какими свойствами обладают амины кислотными основными или амфотерными

Видеоопыт бромирования анилина можно посмотреть здесь.

Восстановление нитросоединений

Первичные амины можно получить восстановлением нитросоединений.

  • Гидрирование водородом:
  • Восстановление сульфидом аммония (реакция Зинина):
  • Алюминий или цинк в щелочной среде.

Алюминий и цинк реагируют с щелочами с образованием гидроксокомплексов.

В щелочной и нейтральной среде получаются амины.

Восстановлением нитробензола получают анилин.

  • Металлами в кислой среде – железом, оловом или цинком в соляной кислоте.

При этом образуются не сами амины, а соли аминов:

Амины из раствора соли  выделяют с помощью щелочи: 

Алкилирование аммиака и аминов

При взаимодействии аммиака с галогеналканами происходит образование соли первичного амина, из которой действием щелочи можно выделить сам первичный амин.

Если проводить реакцию с избытком аммиака, то сразу получится амин, а галогеноводород образует соль с аммиаком:

Гидрирование нитрилов

Таким образом получают первичные амины. Возможно восстановление нитрилов водородом на катализаторе:

.

Соли аминов

  • Соли аминов — это  твердые вещества без запаха, хорошо растворимые в воде, но не растворимые в органических растворителях (в отличие от аминов).
  • При действии щелочей на соли аминов выделяются свободные амины:

Видеоопыт взаимодействия хлорида диметиламмония с щелочью с образованием диметиламина можно посмотреть здесь.

  • Соли аминов вступают в обменные реакции в растворе:
  • Взаимодействие с аминами.

Соль амина с более слабыми основными свойствами может реагировать с другим амином, образуя новую соль (более сильные амины вытесняют менее сильные из солей):

Какими свойствами обладают амины кислотными основными или амфотерными

Источник

Сложность статьи  

Типичные химические свойства аминов

1. Горение аминов. Как и все органические соединения, амины горят. При полном сгорании аминов, как и при горении аммиака, выделяется углекислый газ, вода и азот:

$4CH_3-NH_2 + 9O_2 longrightarrow 2N_2 + 4CO_2 + 10H_2O$

2. Амины являются органическими основаниями. Это значит, что они вступают в реакцию с кислотами с образованием четвертичных солей. Для них характерно образование донорно-акцепторной связи. Азот предоставляет неподеленную электронную пару, исполняя роль донора (основание Льюиса). В качестве акцептора электронов может выступать, например, протон $H^+$, образуя ион $[R_3NH]^+$.

Образующаяся ковалентная связь N-H полностью эквивалентна остальным связям N-H в амине. 

$CH_3CH_2NH_2 + HCl rightarrow [CH_3CH_2NH_3]^+Cl^-$

Четвертичные соли аминов хорошо растворимы в воде, но плохо в неполярных растворителях.

Запомнить! Основные свойства у алифатических аминов выражены сильнее, чем у аммиака.

Так, растворы гидроксидов четвертичных аммонийных катионов по силе сравнимы с растворами щелочей, в то время, как раствор аммиака проявляет слабые щелочные свойства. Это связано с положительным индуктивным эффектом +I алкильных заместителей.

По мере удлинения цепи радикалов, основные свойства ослабевают, так как индуктивный эффект быстро затухает по цепи одинарных связей:

$RNH_2 + HOH leftrightarrow RNH_3^+ + OH^-$

$  K_b = dfrac{[RNH_3^+] cdot [OH^-]}{[RNH_2]}  hspace{1cm} pK_b = -lgK_b$

$NH_3 hspace{1cm} CH_3NH_2 hspace{1cm} CH_3CH_2NH_2 hspace{1cm} CH_3CH_2 CH_2NH_2$

$pK_b hspace{2cm}4.74 hspace{1.6cm} 3.36 hspace{2cm}  3.25 hspace{3.2cm}  3.23$

Запомнить! Анилин, наоборот, обладает менее выраженными основными свойствами, чем аммиак.

Это связано с тем, что, несмотря на достаточно высокую электроотрицательность атома азота, его электронная пара вступает в сопряжение с $pi$-электронной системой бензольного ядра, поэтому суммирующий эффект проявляется в виде “стягивания” к бензольному ядру. За счет этого, частичный отрицательный заряд на амино-группе уменьшается.

Читайте также:  Какие свойства вещества называют физическими свойствами

$ xrightarrow[]{hspace{2cm} textrm{основные свойства ослабевают} hspace{2cm} }$

$textrm{алифатические амины (с удлинением цепи) — аммиак — ароматические амины}$

 3. Реакции нуклеофильного замещения – алкилирование аминов.  В качестве алкилирующих агентов используют алкил- и арилгалогениды, непредельные соединения, спирты, эфиры и др. соединения. Чаще всего реакции N-алкилирования можно рассматривать как нуклеофильное замещение $S_N2$.

Запомнить! Легче всего в реакцию нуклеофильного замещения с аминами вступают аллильные, бензильные, метильные и первичные галогениды.

Поскольку побочным продуктом реакции является  галогеноводород (который образует аммониевые соли и затрудняет реакцию), то реакцию проводят в присутствии веществ, связывающих кислоту. Ими могут быть карбонаты натрия, калия, кальция или щелочи, например:

$RNH_2 + R’Hal xrightarrow{NaHCO_3} RR’NH + NaHal +H_2O + CO_2$

Какими свойствами обладают амины кислотными основными или амфотерными

4. Образование амидов кислот.

Амиды  –  продукты замещения гидроксила карбоксильной группы на остаток амина

При действием на первичные и вторичные амины производных карбоновых кислот -хлорангидридов, ангидридов, сложных эфиров  получаются N-замешенные и N,N-дизамещенные амиды, например:

$mathrm{RNH_2 + R’–COCl longrightarrow R’–CO–NHR}$

$mathrm{R_2NH + R’–COCl longrightarrow R’–CO–NR_2}$

Какими свойствами обладают амины кислотными основными или амфотерными

Аналогично реакция протекает со сложными эфирами:

$CH_3-C(O)-O-CH_3 + CH_3-CH_2-NH_2 longrightarrow CH_3-C(O)-NH-CH_2-CH_3 + CH_3OH$

Какими свойствами обладают амины кислотными основными или амфотерными

Источник

Àìèíû – ýòî îðãàíè÷åñêèå ñîåäèíåíèÿ, â êîòîðûõ àòîì âîäîðîäà (ìîæåò è íå îäèí) çàìåùåí íà óãëåâîäîðîäíûé ðàäèêàë. Âñå àìèíû äåëÿò íà:

  • ïåðâè÷íûå àìèíû;
  • âòîðè÷íûå àìèíû;
  • òðåòè÷íûå àìèíû.

Åñòü åùå àíàëîãè ñîëåé àììîíèÿ – ÷åòâåðòè÷íûå ñîëè òèïà [R4N]+Cl-.

 çàâèñèìîñòè îò òèïà ðàäèêàëà àìèíû ìîãóò áûòü:

  • àëèôàòè÷åñêèå àìèíû;
  • àðîìàòè÷åñêèå (ñìåøàííûå) àìèíû.

Àëèôàòè÷åñêèå ïðåäåëüíûå àìèíû.

Îáùàÿ ôîðìóëà CnH2n+3N.

Ñòðîåíèå àìèíîâ.

Àòîì àçîòà íàõîäèòñÿ â sp3-ãèáðèäèçàöèè. Íà 4-îé íåãèáðèäíîé îðáèòàëè íàõîäèòñÿ íåïîäåëåííàÿ ïàðà ýëåêòðîíîâ, êîòîðàÿ îáóñëàâëèâàåò îñíîâíûå ñâîéñòâà àìèíîâ:

Àìèíû Ñâîéñòâà àìèíîâ

Ýëåêðîíîäîíîðíûå çàìåñòèòåëè ïîâûøàþò ýëåêòðîííóþ ïëîòíîñòü íà àòîìå àçîòà è óñèëèâàþò îñíîâíûå ñâîéñòâà àìèíîâ, ïî ýòîé ïðè÷èí âòîðè÷íûå àìèíû ÿâëÿþòñÿ áîëåå ñèëüíûìè îñíîâàíèÿìè, ÷åì ïåðâè÷íûå, ò.ê. 2 ðàäèêàëà ó àòîìà àçîòà ñîçäàþò áîëüøóþ ýëåêòðîííóþ ïëîòíîñòü, ÷åì 1.

 òðåòè÷íûõ àòîìàõ èãðàåò âàæíóþ ðîëü ïðîñòðàíñòâåííûé ôàêòîð: ò.ê. 3 ðàäèêàëà çàñëîíÿþò íåïîäåëåííóþ ïàðó àçîòà, ê êîòîðîé ñëîæíî «ïîäñòóïèòüñÿ» äðóãèì ðåàãåíòàì, îñíîâíîñòü òàêèõ àìèíîâ ìåíüøå, ÷åì ïåðâè÷íûõ èëè âòîðè÷íûõ.

Èçîìåðèÿ àìèíîâ.

Äëÿ àìèíîâ ñâîéñòâåííà èçîìåðèÿ óãëåðîäíîãî ñêåëåòà, èçîìåðèÿ ïîëîæåíèÿ àìèíîãðóïïû:

Àìèíû Ñâîéñòâà àìèíîâ

Êàê íàçûâàòü àìèíû?

 íàçâàíèè îáû÷íî ïåðå÷èñëÿþò óãëåâîäîðîäíûå ðàäèêàëû (â àëôàâèòíîì ïîðÿäêå) è äîáàâëÿþò îêîí÷àíèå –àìèí:

Ôèçè÷åñêèå ñâîéñòâà àìèíîâ.

Ïåðâûå 3 àìèíà – ãàçû, ñðåäíèå ÷ëåíû àëèôàòè÷åñêîãî ðÿäà – æèäêîñòè, à âûñøèå – òâåðäûå âåùåñòâà. Òåìïåðàòóðà êèïåíèÿ ó àìèíîâ âûøå, ÷åì ó ñîîòâåòñòâóþùèõ óãëåâîäîðîäîâ, ò.ê. â æèäêîé ôàçå â ìîëåêóëå îáðàçóþòñÿ âîäîðîäíûå ñâÿçè.

Àìèíû õîðîøî ðàñòâîðèìû â âîäå, ïî ìåðå ðîñòà óãëåâîäîðîäíîãî ðàäèêàëà ðàñòâîðèìîñòü ïàäàåò.

Ïîëó÷åíèå àìèíîâ.

1. Àëêèëèðîâàíèå àììèàêà (îñíîâíîé ñïîñîá), êîòîðûé ïðîèñõîäèò ïðè íàãðåâàíèè àëêèëãàëîãåíèäà ñ àììèàêîì:

Åñëè àëêèëãàëîãåíèä â èçáûòêå, òî ïåðâè÷íûé àìèí ìîæåò âñòóïàòü â ðåàêöèþ àëêèëèðîâàíèÿ, ïðåâðàùàÿñü âî âòîðè÷íûé èëè òðåòè÷íûé àìèí:

2. Âîññòàíîâëåíèå íèòðîñîåäèíåíèé:

Èñïîëüçóþò ñóëüôèä àììîíèÿ (ðåàêöèÿ Çèíèíà), öèíê èëè æåëåçî â êèñëîé ñðåäå, àëþìèíèé â ùåëî÷íîé ñðåäå èëè âîäîðîä â ãàçîâîé ôàçå.

3. Âîññòàíîâëåíèå íèòðèëîâ. Èñïîëüçóþò LiAlH4:

4. Ôåðìåíòàòè÷íîå äåêàðáîêñèëèðîâàíèå àìèíîêèñëîò:

Õèìè÷åñêèå ñâîéñòâà àìèíîâ.

Âñå àìèíû – ñèëüíûå îñíîâàíèÿ, ïðè÷åì àëèôàòè÷åñêèå áîëåå ñèëüíûå, ÷åì àììèàê.

Àìèíû Ñâîéñòâà àìèíîâ

Âîäíûå ðàñòâîðû èìåþò ùåëî÷íîé õàðàêòåð:

Àìèíû ðåàãèðóþò ñ êèñëîòàìè, îáðàçóÿ ñîëè:

Ñîëè – òâåðäûå âåùåñòâà, õîðîøî ðàñòâîðèìû â âîäå è ïëîõî ðàñòâîðèìû â íåïîëÿðíûõ æèäêîñòÿõ. Ïðè ðåàêöèè ñ ùåëî÷àìè âûäåëÿþòñÿ ñâîáîäíûå àìèíû:

2. Îáðàçîâàíèå êîìïëåêñíûõ ñîåäèíåíèé ñ ïåðåõîäíûìè ìåòàëëàìè:

3. Ðåàêöèÿ ñ àçîòèñòîé êèñëîòîé, êîòîðàÿ îáðàçóåòñÿ ïî ñëåäóþùåé ñõåìå:

4. Ñãîðàíèå àìèíîâ. Â ðåçóëüòàòå îáðàçóåòñÿ óãëåêèñëûé ãàç, àçîò è âîäà:

Ïðèìåíåíèå àìèíîâ.

Íèçøèå àëèôàòè÷åñêèå àìèíû èñïîëüçóþò äëÿ ñèíòåçà ëåêàðñòâåííûõ ñðåäñòâ, ïëàñòìàññ è ïåñòèöèäîâ.

Источник