Какими свойствами обладают амины кислотными основными или амфотерными
Амины – органические соединения, продукты замещения атомов водорода в аммиаке NH3 различными углеводородными радикалами. Функциональная
группой аминов является аминогруппа – NH2.
Классификация аминов
По числу углеводородных радикалов амины подразделяются на первичные, вторичные и третичные.
Запомните, что основные свойства аминов выражены тем сильнее, чем больше электронной плотности присутствует на атоме азота. Однако, у третичных аминов три углеводородных радикала создают значительные затруднения для химических реакций.
Таким образом,
у третичных аминов основные свойства выражены слабее, чем у вторичных аминов. Основные свойства возрастают в ряду: третичные амины (слабые основные свойства) → первичные амины → вторичные амины (основные свойства хорошо выражены).
Номенклатура и изомерия аминов
Названия аминов формируются путем добавления суффикса “амин” к названию соответствующего углеводородного радикала: метиламин, этиламин,
пропиламин, изопропиламин, бутиламин и т.д. В случае если радикалов несколько, их перечисляют в алфавитном порядке.
Общая формула предельных аминов CnH2n+3N. Атомы углерода находятся в sp3 гибридизации.
Для аминов характерна структурная изомерия: углеродного скелета, положения функциональной группы и изомерия аминогруппы.
Получение
- Нагревание галогеналканов с аммиаком
- Восстановление нитросоединений
- Восстановление амидов
- Восстановление нитрилов
- Реакция аммиака со спиртами
- Реакция галогеналканов с аминами
В основе этой реакции лежит замещение атома галогена в галогеналканах на аминогруппу, при этом образуются амин и соль аммония.
При такой реакции нитрогруппа превращается в аминогруппу, образуется вода.
Знаменитой является предложенная в 1842 году Н.Н. Зининым реакция получения аминов восстановления ароматических нитросоединений (анилина
и других). Она возможна в нескольких вариантах, главное, чтобы в начале реакции выделился водород.
Реакция сопровождается разрушением карбонильной группы и отщеплении ее от молекулы амида в виде воды.
Этим способом в промышленности получают гексаметилендиамин, используемый в изготовлении волокна – нейлон.
В промышленности амины получают реакцией аммиака со спиртами, в ходе которой происходит замещение гидроксогруппы на аминогруппу.
В ходе реакции галогеналканов с аммиаком, аминами, становится возможным получение первичных, вторичных и третичных аминов.
Химические свойства аминов
- Основные свойства
- Реакция с азотистой кислотой
- Конденсация аминов с альдегидами и кетонами
- Разложение солей аминов
- Горение аминов
Как и аммиак, амины обладают основными свойствами, их растворы окрашивают лакмусовую бумажку в синий цвет.
В реакции с водой амины образуют гидроксиды алкиламмония, которые аналогичны гидроксиду аммония. Анилин с водой не реагирует, так как является слабым основанием.
Как основания, амины вступают в реакции с различными кислотами и образуют соли алкиламмония.
Данная реакция помогает различить первичные, вторичные и третичные амины, которые по-разному с ней взаимодействуют.
При конденсации первичных аминов с альдегидами и кетонами получают основания Шиффа, соединения, которые содержат фрагмент “N=C”.
Соли аминов легко разлагаются щелочами (растворимыми основаниями). В результате образуется исходный амин, соль кислоты и вода.
При горении аминов азот чаще всего выделяется в молекулярном виде, так как для реакции азота с кислородом необходима очень высокая
температура. Выделение углекислого газа и воды обыкновенно при горении органических веществ.
4C2H5NH2 + 15O2 → 8CO2 + 14H2O + 2N2
© Беллевич Юрий Сергеевич 2018-2020
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.
Источник
Амины – это органические производные аммиака NH3, в молекуле которого один, два или три атома водорода замещены на углеводородные радикалы.
R-NH2, R1-NH-R2, R1-N(R2)-R3
Атом азота находится в состоянии sp3-гибридизации, поэтому молекула имеет форму тетраэдра.
Также атом азота в аминах имеет неподелённую электронную пару, поэтому амины проявляют свойства органических оснований.
По количеству углеводородных радикалов, связанных с атомом азота, различают первичные, вторичные и третичные амины.
По типу радикалов амины делят на алифатические, ароматические и смешанные.
Амины | Первичные | Вторичные | Третичные |
Алифатические | Метиламин CH3-NH2 | Диметиламин CH3-NH-CH3 | Триметиламин (CH3)3N |
Ароматические | Фениламин C6H5-NH2 | Дифениламин (C6H5)2NH | Трифениламин (C6H5)3N |
Смешанные | Метилфениламин CH3-NH-C6H5 | Диметилфениламин (CH3)2N-C6H5 |
- Названия аминов образуют из названий углеводородных радикалов и суффикса амин. Различные радикалы перечисляются в алфавитном порядке.
При наличии одинаковых радикалов используют приставки ди и три.
CH3-NH2 Метиламин
СH3CH2-NH2 Этиламин
CH3-CH2-NH-CH3 Метилэтиламин
(CH3)2NH Диметиламин
- Первичные амины могут быть названы как производные углеводородов, в молекулах которых один или несколько атомов водорода замещены на аминогруппы -NH2.
В этом случае аминогруппа указывается в названии приставкой амино-:
1-Аминопропан | 1,3-Диаминобутан |
CH3-CH2-CH2-NH2 | NH2-CH2-CH2-CH(NH2) -CH3 |
- Для смешанных аминов, содержащих алкильные и ароматические радикалы, за основу названия обычно берется название первого представителя ароматических аминов – анилин.
Например, N-метиланилин:
Символ N- ставится перед названием алкильного радикала, чтобы показать, что этот радикал связан с атомом азота, а не является заместителем в бензольном кольце.
Для аминов характерна изомерия углеродного скелета, изомерия положения аминогруппы и изомерия различных типов аминов.
Изомерия углеродного скелета
Для аминов характерна изомерия углеродного скелета (начиная с С4H9NH2).
Например. Формуле С4Н9NH2 соответствуют два амина-изомера углеродного скелета.
Изомерия положения аминогруппы
Для аминов характерна изомерия положения аминогруппы (начиная с С3H9N).
Например.Формуле С4Н11N соответствуют амины положения аминогруппы.
1-Аминобутан (н-бутиламин) | 2-Аминобутан (втор-бутиламин) |
Изомерия между типами аминов
Например. Формуле С3Н9N соответствуют первичный, вторичный и третичный амины.
Пропиламин (первичный амин) | Метилэтиламин (вторичный амин) | Триметиламин (третичный амин) |
При обычной температуре низшие алифатические амины CH3NH2, (CH3)2NH и (CH3)3N – газы (с запахом аммиака), средние гомологи – жидкости (с резким рыбным запахом), высшие – твердые вещества без запаха.
Ароматические амины – бесцветные жидкости с высокой температурой кипения или твердые вещества.
Первичные и вторичные амины образуют слабые межмолекулярные водородные связи:
Это объясняет относительно более высокую температуру кипения аминов по сравнению с алканами с близкой молекулярной массой.
Амины также способны к образованию водородных связей с водой:
Поэтому низшие амины хорошо растворимы в воде.
С увеличением числа и размеров углеводородных радикалов растворимость аминов в воде уменьшается. Ароматические амины в воде не растворяются.
Как в аммиаке, так и в аминах атом азота имеет неподеленную пару электронов:
Аммиак :NH3 | Первичный амин R–:NH2 |
Поэтому амины и аммиак обладают свойствами оснований.
1. Основные свойства аминов
Алифатические амины являются более сильными основаниями, чем аммиак, а ароматические — более слабыми.
Это объясняется тем, что радикалы СН3–, С2Н5– увеличивают электронную плотность на атоме азота:
Это приводит к усилению основных свойств.
Основные свойства аминов возрастают в ряду:
1.1. Взаимодействие с водой
В водном растворе амины обратимо реагируют с водой. Среда водного раствора аминов — слабощелочная:
1.2. Взаимодействие с кислотами
Амины реагируют с кислотами, как минеральными, так и карбоновыми, и аминокислотами, образуя соли (или амиды в случае карбоновых кислот):
При взаимодействии аминов с многоосновными кислотами возможно образование кислых солей:
1.3. Взаимодействие с солями
Амины способны осаждать гидроксиды тяжелых металлов из водных растворов.
Например, при взаимодействии с хлоридом железа (II) образуется осадок гидроксида железа (II):
2. Окисление аминов
Амины сгорают в кислороде, образуя азот, углекислый газ и воду. Например, уравнение сгорания этиламина:
3. Взаимодействие с азотистой кислотой
Первичные алифатические амины при действии азотистой кислоты превращаются в спирты:
Это качественная реакция на первичные амины – выделение азота.
Вторичные амины (алифатические и ароматические) образуют нитрозосоединения — вещества желтого цвета:
4. Алкилирование аминов
Первичные амины способны взаимодействовать с галогеналканами с образованием соли вторичного амина:
Из полученной соли щелочью выделяют вторичный амин, который можно далее алкилировать до третичного амина.
Особенности анилина
Анилин С6H5-NH2 – это ароматический амин.
Анилин – бесцветная маслянистая жидкость с характерным запахом. На воздухе окисляется и приобретает красно-бурую окраску. Ядовит. В воде практически не растворяется.
При 18 оС в 100 мл воды растворяется 3,6г анилина. Раствор анилина не изменяет окраску индикаторов.
Видеоопыт изучения среды раствора анилина можно посмотреть здесь.
Для анилина характерны реакции как по аминогруппе, так и по бензольному кольцу.
- Бензольное кольцо уменьшает основные свойства аминогруппы по сравнению алифатическими аминами и даже с аммиаком:
Анилин не реагирует с водой, но реагирует с сильными кислотами, образуя соли:
- Бензольное кольцо в анилине становится более активным в реакциях замещения, чем у бензола.
Реакция с галогенами идёт без катализатора во все три орто- и пара- положения.
Качественная реакция на анилин: реагирует с бромной водой с образованием 2,4,6-триброманилина (белый осадок ↓).
Видеоопыт бромирования анилина можно посмотреть здесь.
Восстановление нитросоединений
Первичные амины можно получить восстановлением нитросоединений.
- Гидрирование водородом:
- Восстановление сульфидом аммония (реакция Зинина):
- Алюминий или цинк в щелочной среде.
Алюминий и цинк реагируют с щелочами с образованием гидроксокомплексов.
В щелочной и нейтральной среде получаются амины.
Восстановлением нитробензола получают анилин.
- Металлами в кислой среде – железом, оловом или цинком в соляной кислоте.
При этом образуются не сами амины, а соли аминов:
Амины из раствора соли выделяют с помощью щелочи:
Алкилирование аммиака и аминов
При взаимодействии аммиака с галогеналканами происходит образование соли первичного амина, из которой действием щелочи можно выделить сам первичный амин.
Если проводить реакцию с избытком аммиака, то сразу получится амин, а галогеноводород образует соль с аммиаком:
Гидрирование нитрилов
Таким образом получают первичные амины. Возможно восстановление нитрилов водородом на катализаторе:
.
Соли аминов
- Соли аминов — это твердые вещества без запаха, хорошо растворимые в воде, но не растворимые в органических растворителях (в отличие от аминов).
- При действии щелочей на соли аминов выделяются свободные амины:
Видеоопыт взаимодействия хлорида диметиламмония с щелочью с образованием диметиламина можно посмотреть здесь.
- Соли аминов вступают в обменные реакции в растворе:
- Взаимодействие с аминами.
Соль амина с более слабыми основными свойствами может реагировать с другим амином, образуя новую соль (более сильные амины вытесняют менее сильные из солей):
Источник
Сложность статьи
Типичные химические свойства аминов
1. Горение аминов. Как и все органические соединения, амины горят. При полном сгорании аминов, как и при горении аммиака, выделяется углекислый газ, вода и азот:
$4CH_3-NH_2 + 9O_2 longrightarrow 2N_2 + 4CO_2 + 10H_2O$
2. Амины являются органическими основаниями. Это значит, что они вступают в реакцию с кислотами с образованием четвертичных солей. Для них характерно образование донорно-акцепторной связи. Азот предоставляет неподеленную электронную пару, исполняя роль донора (основание Льюиса). В качестве акцептора электронов может выступать, например, протон $H^+$, образуя ион $[R_3NH]^+$.
Образующаяся ковалентная связь N-H полностью эквивалентна остальным связям N-H в амине.
$CH_3CH_2NH_2 + HCl rightarrow [CH_3CH_2NH_3]^+Cl^-$
Четвертичные соли аминов хорошо растворимы в воде, но плохо в неполярных растворителях.
Запомнить! Основные свойства у алифатических аминов выражены сильнее, чем у аммиака.
Так, растворы гидроксидов четвертичных аммонийных катионов по силе сравнимы с растворами щелочей, в то время, как раствор аммиака проявляет слабые щелочные свойства. Это связано с положительным индуктивным эффектом +I алкильных заместителей.
По мере удлинения цепи радикалов, основные свойства ослабевают, так как индуктивный эффект быстро затухает по цепи одинарных связей:
$RNH_2 + HOH leftrightarrow RNH_3^+ + OH^-$
$ K_b = dfrac{[RNH_3^+] cdot [OH^-]}{[RNH_2]} hspace{1cm} pK_b = -lgK_b$
$NH_3 hspace{1cm} CH_3NH_2 hspace{1cm} CH_3CH_2NH_2 hspace{1cm} CH_3CH_2 CH_2NH_2$
$pK_b hspace{2cm}4.74 hspace{1.6cm} 3.36 hspace{2cm} 3.25 hspace{3.2cm} 3.23$
Запомнить! Анилин, наоборот, обладает менее выраженными основными свойствами, чем аммиак.
Это связано с тем, что, несмотря на достаточно высокую электроотрицательность атома азота, его электронная пара вступает в сопряжение с $pi$-электронной системой бензольного ядра, поэтому суммирующий эффект проявляется в виде “стягивания” к бензольному ядру. За счет этого, частичный отрицательный заряд на амино-группе уменьшается.
$ xrightarrow[]{hspace{2cm} textrm{основные свойства ослабевают} hspace{2cm} }$
$textrm{алифатические амины (с удлинением цепи) — аммиак — ароматические амины}$
3. Реакции нуклеофильного замещения – алкилирование аминов. В качестве алкилирующих агентов используют алкил- и арилгалогениды, непредельные соединения, спирты, эфиры и др. соединения. Чаще всего реакции N-алкилирования можно рассматривать как нуклеофильное замещение $S_N2$.
Запомнить! Легче всего в реакцию нуклеофильного замещения с аминами вступают аллильные, бензильные, метильные и первичные галогениды.
Поскольку побочным продуктом реакции является галогеноводород (который образует аммониевые соли и затрудняет реакцию), то реакцию проводят в присутствии веществ, связывающих кислоту. Ими могут быть карбонаты натрия, калия, кальция или щелочи, например:
$RNH_2 + R’Hal xrightarrow{NaHCO_3} RR’NH + NaHal +H_2O + CO_2$
4. Образование амидов кислот.
Амиды – продукты замещения гидроксила карбоксильной группы на остаток амина
При действием на первичные и вторичные амины производных карбоновых кислот -хлорангидридов, ангидридов, сложных эфиров получаются N-замешенные и N,N-дизамещенные амиды, например:
$mathrm{RNH_2 + R’–COCl longrightarrow R’–CO–NHR}$
$mathrm{R_2NH + R’–COCl longrightarrow R’–CO–NR_2}$
Аналогично реакция протекает со сложными эфирами:
$CH_3-C(O)-O-CH_3 + CH_3-CH_2-NH_2 longrightarrow CH_3-C(O)-NH-CH_2-CH_3 + CH_3OH$
Источник
Àìèíû – ýòî îðãàíè÷åñêèå ñîåäèíåíèÿ, â êîòîðûõ àòîì âîäîðîäà (ìîæåò è íå îäèí) çàìåùåí íà óãëåâîäîðîäíûé ðàäèêàë. Âñå àìèíû äåëÿò íà:
- ïåðâè÷íûå àìèíû;
- âòîðè÷íûå àìèíû;
- òðåòè÷íûå àìèíû.
Åñòü åùå àíàëîãè ñîëåé àììîíèÿ – ÷åòâåðòè÷íûå ñîëè òèïà [R4N]+Cl-.
 çàâèñèìîñòè îò òèïà ðàäèêàëà àìèíû ìîãóò áûòü:
- àëèôàòè÷åñêèå àìèíû;
- àðîìàòè÷åñêèå (ñìåøàííûå) àìèíû.
Àëèôàòè÷åñêèå ïðåäåëüíûå àìèíû.
Îáùàÿ ôîðìóëà CnH2n+3N.
Ñòðîåíèå àìèíîâ.
Àòîì àçîòà íàõîäèòñÿ â sp3-ãèáðèäèçàöèè. Íà 4-îé íåãèáðèäíîé îðáèòàëè íàõîäèòñÿ íåïîäåëåííàÿ ïàðà ýëåêòðîíîâ, êîòîðàÿ îáóñëàâëèâàåò îñíîâíûå ñâîéñòâà àìèíîâ:
Ýëåêðîíîäîíîðíûå çàìåñòèòåëè ïîâûøàþò ýëåêòðîííóþ ïëîòíîñòü íà àòîìå àçîòà è óñèëèâàþò îñíîâíûå ñâîéñòâà àìèíîâ, ïî ýòîé ïðè÷èí âòîðè÷íûå àìèíû ÿâëÿþòñÿ áîëåå ñèëüíûìè îñíîâàíèÿìè, ÷åì ïåðâè÷íûå, ò.ê. 2 ðàäèêàëà ó àòîìà àçîòà ñîçäàþò áîëüøóþ ýëåêòðîííóþ ïëîòíîñòü, ÷åì 1.
 òðåòè÷íûõ àòîìàõ èãðàåò âàæíóþ ðîëü ïðîñòðàíñòâåííûé ôàêòîð: ò.ê. 3 ðàäèêàëà çàñëîíÿþò íåïîäåëåííóþ ïàðó àçîòà, ê êîòîðîé ñëîæíî «ïîäñòóïèòüñÿ» äðóãèì ðåàãåíòàì, îñíîâíîñòü òàêèõ àìèíîâ ìåíüøå, ÷åì ïåðâè÷íûõ èëè âòîðè÷íûõ.
Èçîìåðèÿ àìèíîâ.
Äëÿ àìèíîâ ñâîéñòâåííà èçîìåðèÿ óãëåðîäíîãî ñêåëåòà, èçîìåðèÿ ïîëîæåíèÿ àìèíîãðóïïû:
Êàê íàçûâàòü àìèíû?
 íàçâàíèè îáû÷íî ïåðå÷èñëÿþò óãëåâîäîðîäíûå ðàäèêàëû (â àëôàâèòíîì ïîðÿäêå) è äîáàâëÿþò îêîí÷àíèå –àìèí:
Ôèçè÷åñêèå ñâîéñòâà àìèíîâ.
Ïåðâûå 3 àìèíà – ãàçû, ñðåäíèå ÷ëåíû àëèôàòè÷åñêîãî ðÿäà – æèäêîñòè, à âûñøèå – òâåðäûå âåùåñòâà. Òåìïåðàòóðà êèïåíèÿ ó àìèíîâ âûøå, ÷åì ó ñîîòâåòñòâóþùèõ óãëåâîäîðîäîâ, ò.ê. â æèäêîé ôàçå â ìîëåêóëå îáðàçóþòñÿ âîäîðîäíûå ñâÿçè.
Àìèíû õîðîøî ðàñòâîðèìû â âîäå, ïî ìåðå ðîñòà óãëåâîäîðîäíîãî ðàäèêàëà ðàñòâîðèìîñòü ïàäàåò.
Ïîëó÷åíèå àìèíîâ.
1. Àëêèëèðîâàíèå àììèàêà (îñíîâíîé ñïîñîá), êîòîðûé ïðîèñõîäèò ïðè íàãðåâàíèè àëêèëãàëîãåíèäà ñ àììèàêîì:
Åñëè àëêèëãàëîãåíèä â èçáûòêå, òî ïåðâè÷íûé àìèí ìîæåò âñòóïàòü â ðåàêöèþ àëêèëèðîâàíèÿ, ïðåâðàùàÿñü âî âòîðè÷íûé èëè òðåòè÷íûé àìèí:
2. Âîññòàíîâëåíèå íèòðîñîåäèíåíèé:
Èñïîëüçóþò ñóëüôèä àììîíèÿ (ðåàêöèÿ Çèíèíà), öèíê èëè æåëåçî â êèñëîé ñðåäå, àëþìèíèé â ùåëî÷íîé ñðåäå èëè âîäîðîä â ãàçîâîé ôàçå.
3. Âîññòàíîâëåíèå íèòðèëîâ. Èñïîëüçóþò LiAlH4:
4. Ôåðìåíòàòè÷íîå äåêàðáîêñèëèðîâàíèå àìèíîêèñëîò:
Õèìè÷åñêèå ñâîéñòâà àìèíîâ.
Âñå àìèíû – ñèëüíûå îñíîâàíèÿ, ïðè÷åì àëèôàòè÷åñêèå áîëåå ñèëüíûå, ÷åì àììèàê.
Âîäíûå ðàñòâîðû èìåþò ùåëî÷íîé õàðàêòåð:
Àìèíû ðåàãèðóþò ñ êèñëîòàìè, îáðàçóÿ ñîëè:
Ñîëè – òâåðäûå âåùåñòâà, õîðîøî ðàñòâîðèìû â âîäå è ïëîõî ðàñòâîðèìû â íåïîëÿðíûõ æèäêîñòÿõ. Ïðè ðåàêöèè ñ ùåëî÷àìè âûäåëÿþòñÿ ñâîáîäíûå àìèíû:
2. Îáðàçîâàíèå êîìïëåêñíûõ ñîåäèíåíèé ñ ïåðåõîäíûìè ìåòàëëàìè:
3. Ðåàêöèÿ ñ àçîòèñòîé êèñëîòîé, êîòîðàÿ îáðàçóåòñÿ ïî ñëåäóþùåé ñõåìå:
4. Ñãîðàíèå àìèíîâ. Â ðåçóëüòàòå îáðàçóåòñÿ óãëåêèñëûé ãàç, àçîò è âîäà:
Ïðèìåíåíèå àìèíîâ.
Íèçøèå àëèôàòè÷åñêèå àìèíû èñïîëüçóþò äëÿ ñèíòåçà ëåêàðñòâåííûõ ñðåäñòâ, ïëàñòìàññ è ïåñòèöèäîâ.
Источник