Какими свойствами обладают две прямые перпендикулярные к третьей прямой

Какими свойствами обладают две прямые перпендикулярные к третьей прямой thumbnail

Опубликовано 9 месяцев назад по предмету
Геометрия
от Asiimov2

  1. Ответ

    Ответ дан
    ZaharBer

    Две прямые называются перпендикулярными, если они пересекаются под прямым углом.Две прямые перпендикулярные к третьей не пересекаются(параллельны) – это свойство перпендикулярных прямых.

Не тот ответ, который вам нужен?

Найди нужный

Самые новые вопросы

Математика – 9 месяцев назад

Сколько здесь прямоугольников

История – 1 год назад

Какое управление было в древнейшем риме? как звали первого и последнего из царей рима?

Литература – 1 год назад

Уроки французского ответе на вопрос : расскажите о герое по следующему примерному плану: 1.почему мальчик оказался в райцентре ? 2.как он чувствовал себя на новом месте? 3.почему он не убежал в деревню? 4.какие отношения сложились у него с товарищами? 5.почему он ввязался в игру за деньги? 6.как характеризуют его отношения с учительницей ? ответе на эти вопросы пожалуйста ! сочините сочинение пожалуйста

Русский язык – 1 год назад

Помогите решить тест по русскому языку тест по русскому языку «местоимение. разряды местоимений» для 6 класса
1. укажите личное местоимение:
1) некто
2) вас
3) ни с кем
4) собой
2. укажите относительное местоимение:
1) кто-либо
2) некоторый
3) кто
4) нам
3. укажите вопросительное местоимение:
1) кем-нибудь
2) кем
3) себе
4) никакой
4. укажите определительное местоимение:
1) наш
2) который
3) некий
4) каждый
5. укажите возвратное местоимение:
1) свой
2) чей
3) сам
4) себя
6. найдите указательное местоимение:
1) твой
2) какой
3) тот
4) их
7. найдите притяжательное местоимение:
1) самый
2) моего
3) иной
4) ничей
8. укажите неопределённое местоимение:
1) весь
2) какой-нибудь
3) любой
4) этот
9. укажите вопросительное местоимение:
1) сколько
2) кое-что
3) она
4) нами
10. в каком варианте ответа выделенное слово является притяжательным местоимением?
1) увидел их
2) её нет дома
3) её тетрадь
4) их не спросили

Русский язык – 1 год назад

Переделай союзное предложение в предложение с бессоюзной связью.
1. океан с гулом ходил за стеной чёрными горами, и вьюга крепко свистала в отяжелевших снастях, а пароход весь дрожал.
2. множество темноватых тучек, с неясно обрисованными краями, расползались по бледно-голубому небу, а довольно крепкий ветер мчался сухой непрерывной струёй, не разгоняя зноя
3. поезд ушёл быстро, и его огни скоро исчезли, а через минуту уже не было слышно шума

Русский язык – 1 год назад

помогите прошу!перепиши предложения, расставляя недостающие знаки препинания. объясни, что соединяет союз и. если в предложении один союз и, то во втором выпадающем списке отметь «прочерк».пример:«я шёл пешком и,/поражённый прелестью природы/, часто останавливался».союз и соединяет однородные члены.ночь уже ложилась на горы (1) и туман сырой (2) и холодный начал бродить по ущельям.союз и соединяет:1) части сложного предложенияоднородные члены,2) однородные членычасти сложного предложения—.поэт — трубач зовущий войско в битву (1) и прежде всех идущий в битву сам (ю. янонис).союз и соединяет:1) части сложного предложенияоднородные члены,2) ​

Физика – 1 год назад

Вокруг прямого проводника с током (смотри рисунок) существует магнитное поле. определи направление линий этого магнитного поля в точках a и b.обрати внимание, что точки a и b находятся с разных сторон от проводника (точка a — снизу, а точка b — сверху). рисунок ниже выбери и отметь правильный ответ среди предложенных.1. в точке a — «от нас», в точке b — «к нам» 2. в точке a — «к нам», в точке b — «от нас» 3. в обеих точках «от нас»4. в обеих точках «к нам»контрольная работа по физике.прошу,не наугад важно

Информация

Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.

Источник

Какие прямые называются перпендикулярными

Определение

Если пара пересекающихся прямых составляют угол в 90 градусов, то такие линии имеют название перпендикулярные.

Схематично перпендикулярные линии АС и ВD будут выглядеть таким образом:

Перпендикуляр

 

Обозначение перпендикулярных прямых в геометрии имеет такой вид:

(ACperp BD)

Признак перпендикулярности, какие условия необходимы, чему равен угол

Угол между парой пересекающихся линий в пространстве может быть прямым. В таком случае рассматриваемые прямые будут перпендикулярными.

Если угол, который образовали две скрещивающиеся прямые, будет прямым, то такие линии также будут перпендикулярными. Исходя из данного утверждения, можно заключить, что перпендикуляры на плоскости являются пересекающимися, а перпендикулярные линии в пространстве могут быть пересекающимися и скрещивающимися. Таким образом, выражения «прямые а и b перпендикулярны» и «прямые b и а перпендикулярны» можно считать равноправными. Согласно этому определению, сформулировано понятие взаимно перпендикулярных прямых.

При определении перпендикулярности линий необходимо учитывать их характеристики, которые имеют большое значение в решении задач. Основные признаки:

  1. Через какую-то точку А возможно начертить единственную перпендикулярную линию основному отрезку, остальные линии будут являться наклонными и могут скрещиваться.
  2. Несколько перпендикуляров ни при каких условиях не будут между собой пересекаться.

К примеру, можно изобразить на рисунке прямую PQ и пару линий, которые перпендикулярны ей: АА и ВВ. Необходимо доказать, что заданные прямые не имеют точек пересечения.

График

 

Подтверждение целесообразно строить с помощью метода «от обратного». Предположив, что прямые будут пересекаться в точке М1, получим какую-то точку М в другой полуплоскости, относительно прямой PQ. Таким образом, две точки пересекают две прямые, что не соответствует аксиоме. Поэтому предположение является неверным, а линии АА и ВВ не имеют точек пересечения:

 

Можно сделать вывод о том, что пара прямых, перпендикулярных третьей, не обладают общими точками пересечения.                          

Теорема о перпендикулярных прямых, как доказать

Задачи на перпендикулярные прямые, как правило, решают с учетом свойств этих линий. Доказательством перпендикулярности прямых является прямой угол, который они составляют. В том случае, когда требуется определить их перпендикулярность при известных уравнениях прямоугольной системы координат, следует применить необходимое и достаточное условие перпендикулярности линий.

Теорема 1

Теорема 1

Для того чтобы прямые a и b являлись перпендикулярными, необходимо и достаточно, чтобы направляющий вектор прямой обладал перпендикулярностью относительно направляющего вектора заданной прямой b.

Подтверждением  данной теоремы является определение направляющего вектора прямой и перпендикулярности линий.

Допустим, что имеется прямоугольная декартовая система координат Оху, на которой заданы уравнения для прямой на плоскости, определяющие линии а и b. Направляющие векторы, характерные для данных прямых а и b, можно обозначить, как:

(vec{a}) и (vec{b})

Согласно формуле прямых а и b, необходимым и достаточным условием является перпендикулярность векторов (vec{a}) и (vec{b}.)

Данное утверждение справедливо в том случае, когда скалярное произведение векторов:

(vec{a}=(a_{x};a_{y})) и (vec{b}=(b_{x};b_{y})) не равно нулю, а запись обладает таким видом:

((vec{a};vec{b})=a_{x}*b_{x}+a_{y}*b_{y}=0)

Таким образом, необходимое и достаточное условие перпендикулярности линий а и b, которые расположены в прямоугольной системе координат Оху на плоскости, представляет собой следующее выражение:

((vec{a};vec{b})=a_{x}*b_{x}+a_{y}*b_{y}=0)

где (vec{a}=(a_{x};a_{y})) и (vec{b}=(b_{x};b_{y})) являются направляющими векторами линий а и b.

Данную теорему целесообразно использовать в том случае, когда требуется определить координаты направляющих векторов, либо, когда известны канонические или параметрические уравнения прямых на плоскости заданных линий а и b.

Примечание

Необходимое и достаточное условие перпендикулярности прямых а и b можно применять в случае трехмерного пространства.

В данном отношении запись будет иметь такой вид:

((vec{a};vec{b})=a_{x}*b_{x}+a_{y}*b_{y}+ a_{z}*b_{z}=0)

где (vec{a}=(a_{x};a_{y}))

(vec{b}=(b_{x};b_{y}))

(vec{z}=(z_{x};z_{y}))

являются направляющими векторами прямых а и b.

Теорема 2

Теорема 2

Линии а и b на плоскости будут перпендикулярны, если нормальный вектор прямой а и вектор прямой b взаимно перпендикулярны. Данное условие считается необходимым и достаточным.

Доказательство этой теоремы заключается в применении рассматриваемого условия в том случае, когда уравнения прямых дают быстрое нахождение координат нормальных векторов заданных прямых. Таким образом, имея общее уравнение прямой вида:(
A_{x}+B_{y}+C=0)

а также уравнение прямой в отрезках вида:

(frac{x}{a}+frac{y}{b}=1)

и уравнение прямой с угловым коэффициентом вида y = kx + b, координаты векторов можно определить.

В том случае, когда линия а на плоскости определена с помощью уравнения с угловым коэффициентом:

(y=k_{1}x+b_{1})

и прямая b имеет вид:

(y=k_{2}x+b_{2})

тогда координаты нормальных векторов будут следующие:

((k_{1};-1)) и ((k_{2};-1))

Условие перпендикулярности соответствует выражению:

(k_{1}*k_{2}+(-1)*(-1)=0Leftrightarrow k_{1}*k_{2}=-1)

Теорема 3

Теорема 3

Прямые а и b перпендикулярны на плоскости при необходимом и достаточном условии, при котором один из направляющих векторов этих линий будет коллинеарным нормальному вектору второй прямой.

Данное условие действует при наличии возможности определения направляющего вектора одной прямой и координат нормального вектора другой. Одна прямая должна быть задана каноническим или параметрическим уравнением, а другая представлена в виде общего уравнения прямой, уравнением в отрезках или уравнением с угловым коэффициентом.

Источник

В статье рассматривается вопрос о перпендикулярных прямых на плоскости и трехмерном пространстве.  Определение перпендикулярных прямых и их обозначения с приведенными примерами подробно разберем. Рассмотрим условия применения необходимого и достаточного условия перпендикулярности двух прямых и подробно рассмотрим на примере.

Перпендикулярные прямые – основные сведения

Угол между пересекающимися прямыми в пространстве может быть прямым. Тогда говорят, что данные прямые перпендикулярные. Когда угол между скрещивающимися прямыми прямой, тогда прямые также являются перпендикулярными. Отсюда следует, что перпендикулярные прямые на плоскости пересекающиеся, а перпендикулярные прямые пространства могут быть пересекающимися и скрещивающимися.

То есть понятия «прямые a и b перпендикулярны» и «прямые b и a перпендикулярны» считаются равноправными.  Отсюда и взялось понятие взаимно перпендикулярные прямые. Обобщив вышесказанное, рассмотрим определение.

Определение 1

Две прямые называют перпендикулярными, если угол при их пересечении дает 90 градусов.

Перпендикулярность обозначается «⊥», а запись принимает вид a⊥b, что значит, прямая a перпендикулярна прямой b. 

Например, перпендикулярными прямыми на плоскости могут быть стороны квадрата с общей вершиной.  В трехмерном пространстве прямые Ox, Oz, Oy перпендикулярны попарно: Ox и Oz, Ox и Oy, Oy и Oz.

Перпендикулярность прямых – условия перпендикулярности

Свойства перпендикулярности необходимо знать, так как большинство задач сводится к его проверке для последующего решения. Бывают случаи, когда о перпендикулярности идет речь еще в условии задания или когда необходимо пользоваться доказательством. Для того, чтобы доказать перпендикулярность достаточно, чтобы угол между прямыми был прямым.

Для того, чтобы определить их перпендикулярность при известных уравнениях прямоугольной системы координат, необходимо применить необходимое и достаточное условие перпендикулярности прямых. Рассмотрим формулировку.

Теорема 1

Для того, чтобы прямые a и b были перпендикулярными, необходимо и достаточно, чтобы направляющий вектор прямой обладал перпендикулярностью относительно направляющего вектора заданной прямой b.

Само доказательство основывается на определении направляющего вектора прямой и на определении перпендикулярности прямых.

Доказательство 1

Пусть введена прямоугольная декартова система координат Оху с заданными уравнениями прямой на плоскости, которые определяют прямые a и b. Направляющие векторы прямых a и b обозначим a→ и b→.  Из уравнения прямых a и b необходимым и достаточным условием является перпендикулярность векторов a→ и b→. Это возможно только при скалярном произведении векторов a→=(ax, ay) и b→=(bx, by) равном нулю, а запись имеет вид a→, b→=ax·bx+ay·by=0. Получим, что необходимым и достаточным условием перпендикулярности прямых a и b, находящихся в прямоугольной системе координат Оху на плоскости, является a→, b→=ax·bx+ay·by=0, где a→=(ax, ay) и b→=bx, by – это направляющие векторы прямых a и b.

Условие применимо, когда необходимо найти координаты направляющих векторов или при наличии канонических или параметрических уравнений прямых на плоскости заданных прямых a и b. 

Пример 1

Заданы три точки A (8, 6), B(6, 3), C(2, 10) в прямоугольной системе координат Оху. Определить, прямые АВ и АС перпендикулярны или нет.

Решение

Прямые АВ и АС имеют направляющие векторы AB→ и AC→ соответственно. Для начала вычислим AB→=(-2, -3),  AC→=(-6, 4). Получим, что векторы AB→ и AC→ перпендикулярны из свойства о скалярном произведении векторов, равном нулю.

AB→, AC→=(-2)·(-6)+(-3)·4=0

Очевидно, что необходимое и достаточное условие выполнимо, значит, АВ и АС перпендикулярны.

Ответ: прямые перпендикулярны.

Пример 2

Определить, заданные прямые x-12=y-73 и x=1+λy=2-2·λ перпендикулярны или нет.

Решение

a→=(2, 3) является направляющим вектором заданной прямой x-12=y-73,

b→=(1, -2) является направляющим вектором прямой x=1+λy=2-2·λ.

Перейдем к вычислению скалярного произведения векторов a→ и b→.  Выражение будет записано:

a→,b→=2·1+3·-2=2-6≠0

Результат произведения не равен нулю, можно сделать вывод, что векторы не перпендикулярны, значит и прямые также не перпендикулярны.

Ответ: прямые не перпендикулярны.

Необходимое и достаточное условие перпендикулярности прямых a и b применяется для трехмерного пространства, записывается  в виде a→, b→=ax·bx+ay·by+az·bz=0, где a→=(ax, ay, az) и b→=(bx, by, bz) являются направляющими векторами прямых a и b.

Пример 3

Проверить перпендикулярность прямых в прямоугольной системе координат трехмерного пространства, заданные уравнениями x2=y-1=z+10 и x=λy=1+2·λz=4·λ

Решение

Знаменатели из канонических уравнений прямых считаются координатами направляющего вектора прямой. Координаты направляющего вектора из параметрического уравнения – коэффициенты. Отсюда следует, что a→=(2, -1, 0) и b→=(1, 2, 4) являются направляющими векторами заданных прямых. Для выявления их перпендикулярности найдем скалярное произведение векторов.

Выражение примет вид a→,b→=2·1+(-1)·2+0·4=0. 

Векторы перпендикулярны, так как произведение равно нулю. Необходимое и достаточное условие выполнено, значит прямые также перпендикулярны.

Ответ: прямые перпендикулярны.

Проверка перпендикулярности может проводится, исходя из других необходимых и достаточных условий перпендикулярности.

Теорема 2

Прямые a и b на плоскости считаются перпендикулярными при перпендикулярности нормального вектора прямой a  с вектором b, это и есть необходимое и достаточное условие.

Доказательство 2

Данное условие применимо, когда уравнения прямых дают быстрое нахождение координат нормальных векторов заданных прямых.  То есть при наличии общего уравнения прямой вида  Ax+By+C=0, уравнения прямой в отрезках  вида xa+yb=1, уравнения прямой с угловым коэффициентом вида y=kx+b координаты векторов возможно найти.

Пример 4

Выяснить, перпендикулярны ли прямые 3x-y+2=0 и x32+y12=1.

Решение

Исходя их уравнений, необходимо найти координаты нормальных векторов прямых. Получим, что nα→=(3, -1) – это нормальный вектор для прямой 3x-y+2=0.

Упростим уравнение x32+y12=1 до вида 23x+2y-1=0. Теперь четко видны координаты нормального вектора, которые запишем  в такой форме nb→=23, 2.

Векторы na→=(3, -1) и nb→=23, 2 будут перпендикулярными, так как их скалярное произведение даст в итоге значение равное 0. Получим na→, nb→=3·23+(-1)·2=0.

Необходимое и достаточное условие было выполнено. 

Ответ: прямые перпендикулярны.

Когда прямая a на плоскости определена при помощи уравнения с угловым коэффициентом y=k1x+b1, а прямая b – y=k2x+b2, отсюда следует, что нормальные векторы будут иметь координаты (k1, -1) и (k2, -1). Само условие перпендикулярности сводится к k1·k2+(-1)·(-1)=0⇔k1·k2=-1. 

Пример 5

Выяснить, перпендикулярны ли прямые y=-37x и y=73x-12.

Решение

Прямая y=-37x имеет угловой коэффициент, равный -37, а прямая y=73x-12-  73.

Произведение угловых коэффициентов дает значение -1, -37·73=-1, то есть прямые являются перпендикулярными.

Ответ: заданные прямые перпендикулярны.

Имеется еще одно условие, используемое для определения перпендикулярности прямых на плоскости.

Теорема 3

Для перпендикулярности прямых a и b на плоскости необходимым и достаточным условием является коллинеарность  направляющего вектора одной из прямых с нормальным вектором второй прямой.

Доказательство 3

Условие применимо, когда есть возможность нахождения направляющего вектора одной прямой и координат нормального вектора другой. Иначе говоря, одна прямая задается каноническим или параметрическим уравнением, а другая общим уравнением прямой, уравнением в отрезках или уравнением прямой с угловым коэффициентом.

Пример 6

Определить, являются ли заданные прямые x-y-1=0 и x0=y-42 перпендикулярными.

Решение

Получаем, что нормальный вектор прямой x-y-1=0 имеет координаты na→=(1, -1), а b→=(0, 2) – направляющий вектор прямой x0=y-42.

Отсюда видно, что векторы na→=(1, -1) и b→=(0, 2) не коллинеарны, потому что условие коллинеарности не выполняется. Не существует такого числа t, чтобы выполнялось равенство na→=t·b→. Отсюда вывод, что прямые не являются перпендикулярными.

Ответ: прямые не перпендикулярны.

Источник

    Главная
    алгебра

2 вапрос:Начертите прямую А и отметьте точку М,не лежщую на ней.С помощью чертежного угольника проведите через точку М прямую,пенпежикулярную к прямой А.

Mamy
09 янв. 2014 г., 11:56:21 (7 лет назад)

Ludmilakobzeva2

09 янв. 2014 г., 14:50:43 (7 лет назад)

прямые, при пересечении которых образуется прямой угол называют ся перпендикулярными

Malika2003amaai

09 янв. 2014 г., 16:35:02 (7 лет назад)

1. Две прямые пересекающиеся под прямым углом,называются 
перпендикулярные.Две перпендикулярные прямые к третьей не пересекаются – это свойство перпендикулярных прямых.
2 —-
 

Ответить

Другие вопросы из категории

Читайте также

Artchris17 / 12 сент. 2014 г., 22:09:07

Какая фигура называется треугольником?Какие треугольники называются равными?Какой отрезок называют медианой треугольника?Какой отрезок называют

биссектрисой треугольника?Какой отрезок называют высотой треугольника?Какой треугольник называется равнобедренным?Какой треугольник называется равносторонним?Что такое окружность? Определение радиуса, диаметра, хорды.Дайте определение параллельных прямых.Какой угол называется внешним углом треугольника?Какой треугольник называется остроугольным, какой треугольник называется тупоугольным, какой прямоугольным. Как называются стороны прямоугольного треугольника?Свойство двух прямых, параллельных третьей.Теорема о прямой, пересекающей одну из параллельных прямых.Свойство двух прямых перпендикулярных к третьей

Arxangel1998 / 04 сент. 2013 г., 18:36:10

1. какая прямая называется секущей по отношению к окружности? 2. какая прямая называется касательной к окружности? какая точка называется точкой

касания прямой и окружности? 3. сформулируйте и докажите теорему о свойстве касательной. 4. сформулируйте и докажите теорему обратную теореме о свойстве касательной 5. какой угол называется центральным углом окружности? 6.как определяется градусная мера дуги? как она обозначается? 7. какой угол называется вписанным? сформулируйте и докажите теорему о вписанном угле. 8.сформулируйте и докажите теорему об отрезках пересекающих хорд. 9.сформулируйте и докажите теорему о биссектрисе угла. 10. какая прямая называется серединным перпендикуляром к отрезку? 11.сформулируйте и докажите теорему о серединном перпендикуляре к отрезку 12.сформулируйте и докажите теорему о пересечении высот треугольника. 13. какая окружность называется вписанной в многоугольник? какой многоугольник называется описанным около окружности?

Roma12345799 / 24 мая 2014 г., 17:24:54

1)Сколько прямых можно провести через 2 точки?

2)Сколько общих точек могут иметь 2 прямые?
3)Объясните что такое отрезок?
4)Объясните что такое луч.Как обозначаются лучи?
5)Какая фигура называется углом?Объясните что такое вершина и стороны угла?
6)Какой угол называется развернутым?
7)Какие фигуры называют равными?
8)Объясните как сравнить 2 отрезка
9)Какая точка называется серединой отрезка?
10)Объясните как сравнить 2 угла.
11)Какой луч называется биссектрисой угла?
12)Точка С делит отрезок АВ на 2 отрезка.Как найти длину отрезка АВ если известны длины отрезков АС и СВ?
13)Какими инструментами пользуются для измерения расстояний?
14)Что такое градусная мера угла?
15)Луч ОС делит угол АОВ на 2 угла . Как найти градусную меру угла АОВ если известны градусные меры углов АОС и СОВ?
16)Какой угол называется острым?прямым?тупым?
17)Какие углы называют смежными?Чему равна сумма смежных углов?
18)Какие углы называются вертикальными?Каким свойством обладают вертикальные углы?
19)Какие прямы называются перпендикулярными?
20)Объясните почему 2 прямые перпендикулярные к 3-ей не пересекаются?
21)Какие приборы применяют для построения прямых углов на местности?

DanaGota / 10 мая 2014 г., 17:51:35

Всем привет,буду краток,мне нужны ответы на эти вопросы дам 45 баллов

1.как обозначаются точки
2.как обозначаются прямые
3.сколько прямых можно провести через одну точку
4.сколько прямых можно провести через две точки
5.сколько общих точек имеют 2 прямые
6.взаимное расположение точки и прямой
7.что такое отрезок?.как обозначается?
8.что такое луч?.как обозначается?
9.что такое угол?как обозначается
10.провешивание прямой на местности
11.что такое равные фигуры
12.как сравнить 2 отрезка
13.как сравнить 2 угла
14. что такое середина отрезка
15. что такое биссектриса угла
16.единицы измерения длин отрезков
17.длины равных и не равных отрезков
18.инструменты для измерения длин отрезков
19.чему равна длина отрезка, если точка делит на два отрезка
20.единицы измерения углов
21.величины равных и неравных углов
22.инструменты для измерения углов
23.Чему равна величина угла,если луч делит на два угла
24.какие углы называют смежными
25.свойство смежных углов
26.какие углы называются вертикальными
27.свойства вертикальных углов
28.какие прямые называют перпендикулярными
29.что можно сказать о 2-х прямых перпендикулярных третьей
Заранее СПАСИБО!!!!

Вы находитесь на странице вопроса “1 вопрос:Какие прямые называются перпендикулярными?Каким свойством обладают две прямые,пенпедикулярные к третьей?“, категории “геометрия“. Данный вопрос относится к разделу “5-9” классов. Здесь вы сможете получить ответ, а также обсудить вопрос с посетителями сайта. Автоматический умный поиск поможет найти похожие вопросы в категории “геометрия“. Если ваш вопрос отличается или ответы не подходят, вы можете задать новый вопрос, воспользовавшись кнопкой в верхней части сайта.

Источник