Какими свойствами обладают катушки индуктивности

Какими свойствами обладают катушки индуктивности thumbnail

Катушки индуктивности нашли широкое применение в электротехнике в качестве накопителей энергии, колебательных контуров, ограничения тока. Поэтому их можно встретить везде, начиная от портативной электроники, заканчивая подстанциями в виде гигантских реакторов. В этой статье мы расскажем, что это такое катушка индуктивности, а также какой у нее принцип работы и многое другое.

Определение и принцип действия

Катушка индуктивности — это катушка смотанного в спираль или другую форму изолированного проводника. Основные особенности и свойства: высокая индуктивность при низкой ёмкости и активном сопротивлении.

Она накапливает энергию в магнитном поле. На рисунке ниже вы видите её условное графическое обозначение на схеме (УГО) в разных видах и функциональных назначениях.

Она может быть с сердечником и без него. При этом с сердечником индуктивность будет в разы больше, чем если его нет. От материала, из которого изготовлен сердечник, также зависит величина индуктивности. Сердечник может быть сплошным или разомкнутым (с зазором).

Напомним один из законов коммутации:

Ток в индуктивности не может измениться мгновенно.

Это значит, что катушка индуктивности — это своего рода инерционный элемент в электрической цепи (реактивное сопротивление).

Давайте поговорим, как работает это устройство? Чем больше индуктивность, тем больше изменение тока будет отставать от изменения напряжения, а в цепях переменного тока — фаза тока отставать от фазы напряжения.

В этом и заключается принцип работы катушек индуктивности – накопление энергии и задерживание фронта нарастания тока в цепи.

Из этого же вытекает и следующий факт: при разрыве в цепи с высокой индуктивностью напряжение на ключе повышается и образуется дуга, если ключ полупроводниковый — происходит его пробой. Для борьбы с этим используются снабберные цепи, чаще всего из резистора и конденсатора, установленного параллельно ключу.

Виды и типы катушек

В зависимости от сферы применения и частоты цепи может отличаться конструкция катушки.

По частоте можно условно разделить на:

Низкочастотные. Пример — дроссель люминесцентной лампы, трансформатор (каждая обмотка представляет собой катушку индуктивности), реактор, фильтры электромагнитных помех. Сердечники чаще всего выполняются из электротехнической стали, для цепей переменного тока из листов (шихтованный сердечник).

Высокочастотные. Например, контурные катушки радиоприемников, катушки связи усилителей сигнала, накопительные и сглаживающие дроссели импульсных блоков питания. Их сердечник изготавливают обычно из феррита.

Конструкция отличается в зависимости от характеристик катушки, например, намотка может быть однослойной и многослойной, намотанной виток к витку или с шагом. Шаг между витками может быть постоянным или прогрессивным (изменяющимся по длине катушки). Способ намотки и конструкция влияют на конечные размеры изделия.

Отдельно стоит рассказать о том, как устроена катушка с переменной индуктивностью, их еще называют вариометры. На практике можно встретить разные решения:

  • Сердечник может двигаться относительно обмотки.
  • Две обмотки расположены на одном сердечнике и соединены последовательно, при их перемещении изменяется взаимоиндукция и индуктивная связь.
  • Сами витки для настройки контура могут раздвигаться или сужаться приближаясь друг к другу (чем плотнее намотка — тем больше индуктивность).

И так далее. При этом подвижная часть называется ротором, а неподвижная — статором.

По способу намотки бывают также различными, например, фильтры со встречной намоткой подавляют помехи из сети, а намотанные в одну сторону (согласованная намотка) подавляют дифференциальные помехи.

Для чего нужны и какие бывают

В зависимости от того, где применяется катушка индуктивности и её функциональных особенностей, она может называться по-разному: дроссели, соленоиды и прочее. Давайте рассмотрим, какие бывают катушки индуктивности и их сферу применения.

Дроссели. Обычно так называются устройства для ограничения тока, область применения:

В пускорегулирующей аппаратуре для розжига и питания газоразрядных ламп.

Для фильтрации помех. В блоках питания — фильтр электромагнитных помех со сдвоенным дросселем на входе компьютерного БП, изображен на фото ниже. Также используется в акустической аппаратуре и прочем.

  • Для фильтрации определенных частот или полосы частот, например, в акустических системах (для разделения частот по соответствующим динамикам).
  • Основа в импульсных преобразователях — накопитель энергии.

Токоограничивающие реакторы — используются для ограничения токов короткого замыкания на ЛЭП.

Примечание: у дросселей и реакторов должно быть низкое активное сопротивление для уменьшения их нагрева и потерь.

Контурные катушки индуктивности. Используются в паре с конденсатором в колебательном контуре. Резонансная частота подбирается под частоту приема или передачи в радиосвязи. У них должна быть высокая добротность.

Вариометры. Как было сказано — это настраиваемые или переменные катушки индуктивности. Чаще всего используются в тех же колебательных контурах для точной настройки частоты резонанса.

Соленоид — так называется катушка, длина которой значительно больше диаметра. Таким образом внутри соленоида образуется равномерное магнитное поле. Чаще всего соленоиды используются для совершения механической работы — поступательного движения. Такие изделия называют еще электромагнитами.

Рассмотрим, где используются соленоиды.

Это может быть активатор замка в автомобиле, шток которого втягивается после подачи на соленоид напряжения, и звонок, и различные исполнительные электромеханические устройства типа клапанов, грузоподъёмные магниты на металлургических производствах.

В реле, контакторах и пускателях соленоид также выполняет функцию электромагнита для привода силовых контактов. Но в этом случае его чаще называют просто катушка или обмотка реле (пускателя, контактора соответственно), как выглядит, на примере малогабаритного реле вы видите ниже.

Рамочные и кольцевые антенны. Их назначение — передача радиосигнала. Используются в иммобилайзерах автомобилей, металлодетекторах и для беспроводной связи.

Индукционные нагреватели, тогда она называется индуктором, вместо сердечника помещают нагреваемое тело (обычно металл).

Основные параметры

К основным характеристикам катушки индуктивности можно отнести:

  • Индуктивность.
  • Силу тока (для подбора подходящего элемента при ремонте и проектировании это нужно учитывать).
  • Сопротивление потерь (в проводах, в сердечнике, в диэлектрике).
  • Добротность — отношение реактивного сопротивления к активному.
  • Паразитная емкость (емкость между витками, говоря простым языком).
  • Температурный коэффициент индуктивности — изменение индуктивности при нагреве или охлаждении элемента.
  • Температурный коэффициент добротности.

Маркировка

Для обозначения номинала катушки индуктивности используют буквенную или цветовую маркировку. Есть два вида буквенной маркировки.

Обозначение в микрогенри.

Обозначение набором букв и цифр. Буква r – используется вместо десятичной запятой, буква в конце обозначения обозначает допуск: D = ±0.3 нГн; J = ±5%; К = ±10%; М = ±20%.

Цветовую маркировку можно распознать аналогично таковой на резисторах. Воспользуйтесь таблицей, чтобы расшифровать цветные полосы или кольца на элементе. Первое кольце иногда делают шире остальных.

На это мы и заканчиваем рассматривать, что собой представляет катушка индуктивности, из чего она состоит и зачем нужна.

Источник

Катушка индуктивности в электрической цепи хорошо проводит постоянный ток и в то же время оказывает сопротивление переменному току, поскольку при изменении тока в катушке возникает ЭДС самоиндукции, препятствующая этому изменению.

Катушка индуктивности обладает реактивным сопротивлением величина которого равна: , где — индуктивность катушки, — угловая частота протекающего тока. Соответственно, чем больше частота тока, протекающего через катушку, тем больше её сопротивление.

При протекании тока катушка запасает энергию, равную работе, которую необходимо совершить для установления текущего тока . Величина этой энергии равна

При изменении тока в катушке возникает ЭДС самоиндукции, значение которой

Характеристики катушки индуктивности

Индуктивность

Основным параметром катушки индуктивности является её индуктивность, которая определяет, какой поток магнитного поля создаст катушка при протекании через неё тока силой 1 ампер. Типичные значения индуктивностей катушек от десятых долей мкГн до десятков Гн.

Значение индуктивности катушки индуктивности пропорционально линейным размерам катушки, квадрату числа витков намотки и магнитной проницаемости сердечника и изменяется от десятых долей мкгн до десятков гн. К основным параметрам катушки индуктивности относятся сопротивление потерь, добротность, температурный коэффициент индуктивности, собственная ёмкость. Катушки индуктивности широко применяют в качестве элементов фильтров и колебательных контуров, в трансформаторах, в качестве дросселей, в реле, магнитных усилителях, электромагнитах и др.

Разновидностью Катушки индуктивности являются плоские печатные катушки индуктивности, применяемые в микромодулях, а также обмотки электрических машин, рамочные и ферритовые антенны.

Условное графическое изображение катушки индуктивности приведено на рис. 2,а. Катушка – это пассивный элемент, характеризующийся индуктивностью. Для расчета индуктивности катушки необходимо рассчитать созданное ею магнитное поле.

Какими свойствами обладают катушки индуктивности

Индуктивность определяется отношением потокосцепления к току, протекающему по виткам катушки,

.

В свою очередь потокосцепление равно сумме произведений потока, пронизывающего витки, на число этих витков , где .

Основной характеристикой катушки индуктивности является зависимость , называемая вебер-амперной характеристикой. Для линейных катушек индуктивности зависимость представляет собой прямую линию, проходящую через начало координат (см. рис. 2,б); при этом

.

Нелинейные свойства катушки индуктивности (см. кривую на рис. 2,б) определяет наличие у нее сердечника из ферромагнитного материала, для которого зависимость магнитной индукции от напряженности поля нелинейна. Без учета явления магнитного гистерезиса нелинейная катушка характеризуется статической и дифференциальной индуктивностями.

Индуктивность катушки пропорциональна линейным размерам катушки, квадрату числа витков намотки и магнитной проницаемости сердечника. При последовательном соединении катушек общая индуктивность равна сумме индуктивностей всех соединённых катушек.

Индуктивность является основным параметром катушки индуктивности. Ее величина (мкТн) определяется соотношением

где W – число витков, D – диаметр катушки в см, L0 коэффициент, зависящий от отношения длины катушки / к ее диаметру О.

Для однослойных катушек величина L0 определяется соотношением

 

Оптимальными в этом случае являются отношение а диаметр катушки в пределах от 1 до 2 см. При расчете диаметр катушки D принимается равным диаметру каркаса D0

Для многослойных катушек величина L0зависит не только от величины 1/D , но и от отношения толщины намотки t к диаметру катушки D. Она определяется по графикам (рис.2.24). В этом случае внешний диаметр катушки D=D0 + 2t

Какими свойствами обладают катушки индуктивности

При расчете катушки индуктивности предварительно задаются геометрическими размерами катушки и определяют коэффициент L0, а затем по заданной величине индуктивности L находят число витков:

 

где I, – в мкГн , D в см.

Для намотки катушки обычно применяют провод оптимального диаметра, который рассчитывается с помощью эмпирических формул и графиков. Для этого по графику S=f(t/D;l/D) (рис.2.25) находят вспомогательный коэффициент S. Затем рассчитывают коэффициент

 

где f -в мкГц , D – в см. Затем рассчитывают коэффициентa1

где f – частота в Гц. После чего по графику b1=f(a1) (рис. 2.26) находят вспомогательный коэффициент b1S и расчитывают оптимальный диаметр провода (мм)

 

Какими свойствами обладают катушки индуктивностиКакими свойствами обладают катушки индуктивности

Полученное значение округляется до ближайшего стандартного значения (табл.2.6) и выбирается марка провода с диаметром dиз

Основные параметры обмоточных проводов

Таблица 2.6

d, мм Sn, мм~ Максимальный диаметр в изоляции , мм
    ПЭВТЛК ПЭМ-1 ПЭВ-1 ПЭВ-2,ПЭТВ ПЭМ-2
0,063 0,0028 0.11 0,09 0,085 0,09
0,071 0,0038 0,12 0,09 0,095 0,1
0,08 0,005 0,13 0,1 0,105 0,11
0,09 0,0064 0,14 0,11 0,115 0,12
0,1 0,0079 0,15 0,12 0,125 0,13
0,112 0,0095 0,16 0,14 0,135 0,14
0,125 0,0113 0,17 0,15 0,15 0,155
0,14 0,0154 0,185 0,16 0,165 0,17
0,16 0,02 0,2 0,19 0,19 0,2
0,18 0,0254 0,23 0,21 0,21 0,22
0,2 0,0314 0,25 0,23 0,23 0,24
0,224 0,0415 0,27 0,25 0,26 0,27
0,25 0,0491 0,3 0,29 0,29 0,3
0,28 0,0615 0,34 0,32 0,32 0,33
0,315 0,0755 0,37 0,35 0,355 0,365
0,355 0,0962 0,405 0,39 0,395 0,415
0,4 0,126 0,47 0,44 0,44 0,46
0,45 0,158 0,49 0,49 0,51
0,5 0,193 0,55 0,55 0,57
0,56 0,246 0,61 0,61 0,63
0,63 0,311 0,68 0,68 0,7
0,71 0,39 0,76 0,76 0,79
0,75 0.435 0,81 0,81 0,84
0,8 0,503 0,86 0,86 0,89
0,85 0,567 0,91 0,91 0,94
0,9 0,636 0,96 0,96 0,99
0,95 0,71 1,01 1,01 1,04
0,785 1,08 1,07 1, 11

После выбора оптимального диаметра провода проверяют возможность размещения обмотки в заданных размерах l и t. Для однослойных катушек рассчитывают шаг намотки

 

Если t>dиз то обмотка размещается. В противном случае задаются большей величиной l и повторяют расчет.

Для многослойных катушек рассчитывают толщину обмотки

 

где а – коэффициент неплотности обмотки ( a = 1,05…1,3), и находят фактическое значение наружного диаметра катушки D=D0+2t. Если эта величина отличается от выбранной в начале расчета более чем на 10%, то задаю тся новыми значениями l и t и расчет повторяют. При помещении катушки в экран индуктивность катушки уменьшается

 

где h коэффициент, зависящий от отношения l/D (рис.2.27),

D диаметр катушки, Dэк-диаметр экрана.

Какими свойствами обладают катушки индуктивности

Индуктивность уменьшается тем больше, чем меньше диаметр экрана. В большинстве случаев Dэк/D >1,6¸1,8.При этом индуктивность уменьшается не более чем на 20%.

Многослойные катушки обычно выполняют с сердечниками броневого типа, при использовании которых большая часть силовых линий магнитного поля катушки замыкается через сердечник, а меньшая-через воздух, вследствие чего влияние экрана на индуктивность катушки значительно ослабляется.

Применение сердечников из магнитных материалов позволяет уменьшить число витков катушки индуктивности и соответственно ее габариты. Основным параметром сердечника является магнитная проницаемость mс При его наличии индуктивность катушки становится равной

Поскольку в расчетные формулы входят эмпирические коэффициенты, то индуктивность изготовленной катушки отличается от расчетной. Применение подстроечных магнитных сердечников позволяет получить требуемое значение индуктивности.

Собственная емкость является паразитным параметром катушки индуктивности, ограничивающим возможности ее применения. Ее возникновение обусловлено конструкцией катушки индуктивности: емкость существует между отдельными витками катушки, между витками и сердечником, витками и экраном, витками и другими элементами конструкции. Все эти распределенные емкости можно объединить в одну, называемую собственной емкостью катушки CL.

Наименьшей собственной емкостью обладают однослойные катушки индуктивности Приближенно она рассчитывается по формуле (пФ)

где D – диаметр катушки в см. Обычно она не превышает 1-2пФ.

Собственная емкость многослойных катушек значительно больше. При многослойной рядовой намотке она достигает ЗОпФ; при намотке “внавал” она несколько меньше. Существенное уменьшение емкости многослойных катушек достигается при использовании универсальной обмотки, при выполнении которой провод укладывается под некоторым углом к образующей цилиндрического каркаса. Схема такой намотки показана на рис.2.28. Как только провод доходит до края катушки, направление укладки меняется. Цикл универсальной обмотки выбирается таким, что, совершив один оборот вокруг каркаса, провод возвращается к положение, отличающееся от исходного на угол b. Этот угол выбирается таким, чтобы каждый последующий виток находился рядом с предыдущим.

Какими свойствами обладают катушки индуктивности

Очевидно, что

 

Угол j , под которым осуществляется укладка провода, находится из соотношения

 

где l-осевая длина катушки,D – диаметр витка.

Наименьшее значение угла j получается для витков, имеющих наименьший диаметр, равный диаметру каркаса D0.

Обычно при использовании универсальной обмотки длину катушки принимают в пределах от 2 до 10мм. Количество циклов намотки связано с рачетнным числом витков W соотношением

 

Величина собственной емкости катушек с универсальной обмоткой составляет от 3 до 8пФ. Дополнительное снижение емкости достигается серкцонированием обмотки.

Совместное действие индуктивности и емкости можно учесть введением понятия об эквивалентной индуктивности катушки, определяемой из уравнения

откуда

 

где -собственная резонансная частота катушки индуктивности.

Если рабочая частота много ниже собственной резонансной частоты wL, то приближенно можно считать Lэ=L.

В процессе работы на катушку действуют различные внешние факторы: температура, влага и другие, влияющие на ее индуктивность. Наиболее существенным является влияние температуры, которое оценивают температурным коэффициентом .

Температурная нестабильность индуктивности обусловлена целым рядом факторов: при нагреве увеличивается длина и диаметр провода обмотки, увеличивается длина и диаметр каркаса, в результате чего изменяются шаг и диаметр витков; кроме того при изменении температуры изменяются диэлектрическая проницаемость материала каркаса, что ведет к

изменению собственной емкости катушки.

Для повышения температурной стабильности применяют каркасы из материала с малым значением коэффициента линейного расширения. Этим требованиям в наибольшей степени удовлетворяет керамика. Повышению температурной стабильности катушек способствует прочное сцепление обмотки с каркасом. С этой целью обмотку выполняют методом вжигания серебра в керамический каркас. В этом случае изменение размеров токопроводящего слоя определяется только линейным расширением каркаса. Такие катушки индуктивности имеют TKL >(5-100).10-6 Стабильность многослойных катушек существенно хуже, так как в них невозможно избежать изменения линейных размеров провода обмотки. Многослойные катушки имеют TKL>(50-100).10-6

Источник