Какими свойствами обладают линии магнитной индукции

Подобно тому, как в пространстве, окружающем электрические заряды, возникает электрическое поле, так и в пространстве окружающем токи, возникает особого вида поле, называемое магнитным полем.
Магнитное поле проявляется по силам, действующим на проводники с током, на движущиеся заряды или постоянные магниты.
Неподвижные электрические заряды не создают магнитное поле и постоянное магнитное поле не действует на неподвижные электрические заряды.
Опыт показывает, что неподвижный заряд и магнитная стрелка не влияют друг на друга.
При прохождении электрического тока по проводнику вокруг него возникает магнитное поле, действующее на магнитную стрелку, которая стремится занять положение поперек проводника при взгляде сверху.
Опыт Эрстеда (1820 г.), показывающий действие магнитного поля проводника с током на магнитную стрелку.
Характеристики магнитного поля
I. Вектор магнитной индукции (В) – совпадает по направлению с силой, действующей на северный полюс магнитной стрелки.
II. Линии магнитной индукции – кривые, в каждой точке которых, вектор магнитной индукции В направлен по касательной.
Свойства линий магнитной индукции
1. Линии магнитной индукции всегда замкнуты и охватывают проводники стоком.
2. Вблизи проводника линии магнитной индукции лежат в плоскости перпендикулярной проводнику с током.
3. Направление линий магнитной индукции определяется по правилу буравчика: если ввинчивать буравчик по направлению тока, то направление вращения его рукоятки укажет направление линий магнитной индукции.
Магнитное поле прямолинейного проводника с током.
Правило буравчика обратимо и для круговых токов его удобно применять в следующей формулировке: если вращать рукоятку буравчика по направлению кругового тока, то поступательное движение острия буравчика укажет направление линий магнитной индукции.
Линии магнитной индукции полей постоянного магнита, прямого тока, кругового тока и катушки с током.
Обратите внимание на аналогию магнитных полей постоянного магнита и катушки с током. Линии магнитной индукции всегда замкнуты, они нигде не обрываются. Это означает, что магнитное поле не имеет источников – магнитных зарядов. Силовые поля, обладающие этим свойством, называются вихревыми. Картину магнитной индукции можно наблюдать с помощью мелких железных опилок, которые в магнитном поле намагничиваются и, подобно маленьким магнитным стрелкам, ориентируются вдоль линий индукции.
III. Вектор напряженности магнитного поля H.
Согласно предположению французского физика А. Ампера, в любом теле существуют микроскопические (молекулярные) токи, обусловленные движением электронов в атомах и молекулах. Эти токи создают свое магнитное поле и могут поворачиваться в магнитных полях макроскопических токов (токов, текущих в проводниках). Так, если вблизи какого-то тела (среды) поместить проводник с током, то под действием его магнитного поля микротоки в атомах тела определенным образом ориентируются, создавая тем самым дополнительное магнитное поле. Поэтому вектор магнитной индукции B характеризует результирующее магнитное поле, создаваемое всеми макро- и микротоками, т.е. при одном и том же токе I и прочих равных условиях вектор B в различных средах будет иметь разные значения.
Магнитное поле, создаваемое макротоками, характеризуется вектором напряженности H. Для однородной изотропной среды связь между векторами индукции B и напряженности H магнитного поля определяется выражением
В =μ₀μН, где
магнитная постоянная, μ – магнитная проницаемость среды (безразмерная величина), показывающая, во сколько раз магнитное поле макротоков усиливается за счет поля микротоков данной среды.
Единица напряженности магнитного поля: 1 А/м – напряженность такого поля, магнитная индукция которого в вакууме равна 4π·10-7 Тл.
Источник
Сегодняшняя тема посвящена очень важному явлению в физике и теории цепей – это явление электромагнитной индукции. Без открытия которой, много чего бы сейчас не было, в том числе трансформаторов и других электрических машин. Именно по принципу электромагнитной индукции работают эти устройства.
Для более лучшего понимания этого явления, мы сегодня немного вспомним историю открытия: что это за явление, где и как применяют, а также проверим все это на опытах. Простыми словами и практически без формул попытаемся в этом разобраться.
Сразу разделим понятия вектора магнитной индукции и явления электромагнитной индукции. Поговорим именно о явлении, а затем, если понадобится, поговорим о векторе магнитной индукции.
В видеоуроках по теории трехфазных цепей и истории изобретения трансформаторов, я уже подробно рассказывал о том, какой вклад внес, в том числе и в трансформаторы, и в генераторы Майкл Фарадей. Вкратце повторю основные моменты.
В 1821 году Фарадей познакомился с публикациями, в которых были описаны опыты Эрстеда.
Рисунок 1 – Один из опытов Эрстеда
Магнитная стрелка отклонялась около проводника с током. Это явление преобразования электричества в магнетизм. Тогда Фарадей поставил перед собой задачу: сделать обратное преобразование – преобразование магнетизма в электричество. Через 10 лет исследований он сформулировал закон электромагнитной индукции:
Внутри любого замкнутого контура наводится ЭДС. Ее величина определяется скоростью изменения магнитного потока, пронизывающая рассматриваемый контур, но взятую со знаком “минус”
Рисунок 2 – Закон электромагнитной индукции
Проще говоря, если какой-нибудь замкнутый проводник находится в магнитном поле, то в этом проводнике будет протекать ток, называемый индукционным. Это такой же ток как, например, от батарейки. Электроны движутся упорядоченно.
Индукция – это есть процесс возбуждения, наведения, создания чего-либо. А электромагнитная индукция – это явление возникновения индукционного тока в контуре. Хотя это определение не достаточное для более полного понимания явления электромагнитной индукции. Поэтому мы сегодня подробнее все это рассмотрим.
Проведем опыт по преобразованию электричества в магнетизм, но на более простом примере. А у Эрстеда был неподвижный проводник и параллельно к нему размещалась магнитная стрелка.
При пропускании электрического тока через проводник, магнитная стрелка поворачивалась перпендикулярно проводнику. А когда цепь размыкалась, стрелка возвращалась в первоначальное положение. Это говорит о том, что в пространстве, окружающим проводник с током, действуют силы, вызывающие движение магнитной стрелки. Такие же которые действуют вблизи магнитов.
Таким образом, опыт Эрстеда доказывает, что в пространстве, окружающем проводник с током, возникаем магнитное поле.
Давайте это проверим.
Рисунок 3 – Простой опыт по преобразованию электричества в магнетизм
На металлический болт намотано, примерно, 2 метра медной проволоки в изоляции. На два вывода провода подадим напряжение 1,5 (В) от аккумулятора. И, согласно опыту, болт за счет возникшего магнитного поля вокруг провода станет обладать свойствами магнита.
Рисунок 4 – Опыт по преобразованию электричества в магнетизм (болт намагничен и притягивает к себе металлические предметы)
Как видим, это действительно так. И если отключить питание, то все магнитные свойства теряются.
Это подтверждает тот факт, что если через проводник пропустить электрический ток, то вокруг него возникает магнитное поле.
Если, как в данном случае, металлический предмет находится в зоне действия этого магнитного поля, то на это время он начинает обладать свойствами магнита. А у Фарадея наоборот. Если создать магнитное поле, например, два магнита или на какой-нибудь замкнутый проводник подать питание, этим также можно получить магнитное поле, и в это магнитное поле поместить, например, замкнутый проводник, то по этому проводнику потечёт ток. И чтобы его зафиксировать, нужно в разрыв проводника включить измерительный прибор.
В зависимости от направления тока протекающего по замкнутому проводнику, стрелка измерительного прибора будет отклоняться то в одну, то в другую сторону. И если рамку, не отсоединяя от прибора вдвинуть между полюсами магнита сверху вниз так, чтобы она пересекла силовые линии магнитного поля, то стрелка прибора отклонится.
Рисунок 5 – Опыт Фарадея по преобразованию магнетизма в электричество
Это означает, что в цепи рамки начал протекать электрический ток. Если перемещать её снизу-вверх, то стрелка отклоняется в другую сторону, то есть в рамке снова возникает электрический ток, но течёт он теперь в противоположном направлении.
Давайте проделаем похожий опыт. Возьмём контур из медного провода, намотанного в несколько витков, и к его концам подключим мультиметр, чтобы мы могли наблюдать будет ли напряжение на концах провода.
Рисунок 6 – Простой опыт по преобразованию магнетизма в электричество
А для создания магнитного потока используемым постоянный магнит. Будем его отдалять и приближать к контуру с измерительным прибором.
Рисунок 7 – Если сверху подводить магнит к контуру, то прибор показывает отрицательное значение напряжения, а при отводе магнита от контура, прибор показывает положительное значение напряжения (если перевернуть магнит, то все будет наоборот)
Рассмотрим формулу магнитного потока.
Рисунок 8 – Формула магнитного потока
Магнитный поток прямо пропорционален произведению B, S и Cos(α).
Когда мы приближаем или отдаляем магнит от контура, как в последнем опыте, то меняется индукция магнитного поля, в контуре возникает ток.
Если менять площадь контура в магнитном поле, ток в контуре также будет возникать. И если мы будем менять угол контура в магнитном поле относительно нормали, магнитный поток будет меняться – это приведет к возникновению тока в контуре. То есть контур будем вращать в этом магнитном поле, менять угол относительно нормали, то будет меняться косинус, соответственно, будет меняться магнитный поток.
Таким образом, когда мы меняем магнитную индукцию приближая или отдаляется магнит от контура, меняем площадь контура или угол с нормалью, то меняется магнитный поток. Следовательно, в контуре возникает индукционный ток. Когда все эти величины постоянные, то есть не меняются, то магнитного потока нет. Значит и нет индукционного тока.
Проделаем другой опыт. Сначала в теории и сразу же на практике.
Есть ли взять два замкнутых контура и поместить их рядом друг с другом
Рисунок 9 – Два индуктивно связанных контура
В один контур включим измерительный прибор, а в другой контур через выключатель, подсоединим батарейку. Тогда в момент замыкания ключа в первом контуре, во втором контуре потечет ток. Здесь, как и в предыдущих случаях, возникновение тока во втором контуре основано на явлении электромагнитной индукции, то есть второй контур индуктивно связан с первым. Во втором контуре электрический ток возникает только в тот момент, когда в первом контуре ключ замыкается или размыкается (это в случае, если в первом контуре постоянный источник напряжения).
Давайте проделаем опыт. Для этого возьмем две катушки, намотанные на один каркас. В одну из катушек включим вместо измерительного прибора светодиод. А на вторую катушку будем подавать постоянное напряжение от аккумулятора.
Рисунок 10 – Опыт с двумя катушками на одном сердечнике
В момент включения и отключения питания в первом контуре, во втором контуре возникает ток. Если первый контур питается от источника переменного напряжения, то во втором контуре также будет протекать ток. И если во второй контур включить прибор для измерения переменного тока, то он будет показывать наличие тока. При частоте 50 Гц эти частые изменения направления протекания тока, как бы, заменяют руку замыкающую и размыкающую цепь в первом контуре при постоянном источнике напряжения.
По этому принципу работает трансформатор на переменном токе.
Если взять две катушки и расположить их близко друг к другу, то по второй катушке потечет ток (в случае если на первую катушку подать питание, а вторую катушку замкнуть накоротко).
Рисунок 11 – Опыт с двумя катушками на общем сердечнике с возможностью менять количество витков и расстояние между ними
В результате индукции возбуждается ток во второй катушке, имеющий ту же форму и частоту. Степень индуктивной связи между катушками может быть различной. Катушки, находящиеся на очень малом расстоянии друг от друга – сильно связаны между собой (если количество витков в первой и второй катушках, примерно, одинаковы) и, соответственно, чем дальше катушки друг от друга, тем слабее их связь.
Изменять степень связи можно перемещая одну катушку относительно другой. Чем сильнее связаны катушки между собой, тем больше напряжение покажет вольтметр переменного тока, присоединенный ко второй катушке.
Если отдалять одну катушку относительно другой, то их связь слабеет.
Рассмотрим пример.
Рисунок 12 – Акустическая связь между двумя людьми
Если два человека находятся близко друг к другу, то акустическая связь между ними сильная, т. е. второй человек слышит хорошо все что говорит первый. А если расстояние между ними большое, то второй человек уже хуже различает и слышит слова, которые произносит первый (с учетом того, что он говорит не громче и не тише, а точно так же, как и говорил тогда, когда оба находились рядом друг с другом). В этом случае акустическая связь между ними слабая.
Если первая катушка имеет малое количество витков, а у второй катушки их значительно больше, даже если они располагаются близко друг к другу – взаимодействие между ними слабое. И если расстояние между катушками постоянное, то степень взаимодействия между ними можно регулировать, включая большее или меньшее количество витков в первую катушку, т. е. нужно намотать больше витков.
Рассмотри еще один пример.
Рисунок 13 – Акустическая связь между двумя людьми на большом расстоянии путем усиления голоса
Если второй человек находится на некотором расстоянии (постоянном) от первого человека, в этом случае степень акустического воздействия меняется путем усиления или ослабления голоса.
В качестве примера преобразования магнетизма в электричество, рассмотрим принцип работы мини генератора.
Рисунок 14 – Простой опыт преобразования магнетизма в электричество.
Когда мы вращаем ротор мини генератора, то на выводах обмоток статора получаем напряжение. Это мы можем наблюдать, например, подключив светодиод.
Подобные устройства могут работать как двигатель, так и генератор. Если подать напряжение на выводы обмоток статора, то ротор будет вращаться. Или если вращать ротор, то на выводах обмоток статора будет напряжение.
Рисунок 15 – Преобразования магнетизма в электричество в колесе самоката
В таких самокатах стоит мини генератор. При вращении колеса, включаются светодиоды, подключенные к выводам обмоток статора.
Что ж на этом можно закончить знакомство с явлением электромагнитной индукции.
Если понравилась статья, подписывайтесь на канал и не пропускайте новые публикации.
Читайте также:
1. Как электроэнергия передается от электростанций до наших домов;
2. Что такое электрический ток – простыми словами;
Источник
Подробности
Просмотров: 774
«Физика – 11 класс»
Электрическое поле характеризуется напряженностью электрического поля.
Напряженность электрического поля – это величина векторная.
Магнитное поле характеризуется магнитной индукцией.
Магнитная индукция – это векторная величина, она обозначается буквой .
Направление вектора магнитной индукции
За направление вектора магнитной индукци принимается направление, которое показывает северный полюс N магнитной стрелки, свободно устанавливающейся в магнитном поле.
Это направление совпадает с направлением положительной нормали к замкнутому контуру с током.
Используя рамку с током или магнитную стрелку, можно определить направление вектора магнитной индукции в любой точке поля.
В магнитном поле прямолинейного проводника с током магнитная стрелка в каждой точке устанавливается по касательной к окружности, плоскость которой перпендикулярна проводу, а центр ее лежит на оси провода.
Правило буравчика
Направление вектора магнитной индукции устанавливают с помощью правила буравчика.
Если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика указывает направление вектора магнитной индукции.
Линии магнитной индукции
Магнитное поле можно показать с помощью линий магнитной индукции.
Линиями магнитной индукции называют линии, касательные к которым в любой их точке совпадают с вектором в данной точке поля. Линии вектора магнитной индукции аналогичны линиям вектора напряженности электростатического поля.
Линии магнитной индукции можно сделать видимыми, воспользовавшись железными опилками.
Магнитное поле прямолинейного проводника с током
Для пряого проводника с током линии магнитной индукции являются концентрическими окружностями, лежащими в плоскости, перпендикулярной этому проводнику с током. Центр окружностей находится на оси проводника. Стрелки на линиях указывают, в какую сторону направлен вектор магнитной индукции, касательный к данной линии.
Магнитное поле катушки с током (соленоида)
Если длина соленоида много больше его диаметра, то магнитное поле внутри соленоида можно считать однородным.
Линии магнитной индукции такого поля параллельны и находятся на равных расстояниях друг от друга.
Магнитное поле Земли
Линии магнитной индукции поля Земли подобны линиям магнитной индукции поля соленоида.
Магнитная ось Земли составляет с осью вращения Земли угол 11,5°.
Периодически магнитные полюсы меняют свою полярность.
Вихревое поле
Силовые линии электростатического поля всегда имеют источники: они начинаются на положительных зарядах и оканчиваются на отрицательных.
А линии магнитной индукции не имеют ни начала, ни конца, они всегда замкнуты.
Поля с замкнутыми векторными линиями называют вихревыми.
Магнитное поле — вихревое поле.
Магнитное поле не имеет источников.
Магнитных зарядов, подобных электрическим, в природе не существует.
Итак, магнитное поле — это вихревое поле, в каждой его точке вектор магнитной индукции указывает магнитная стрелка, направление вектора магнитной индукции можно определить по правилу буравчика.
Источник: «Физика – 11 класс», учебник Мякишев, Буховцев, Чаругин
Магнитное поле. Физика, учебник для 11 класса – Класс!ная физика
Магнитное поле и взаимодействие токов —
Магнитная индукция. Линии магнитной индукции —
Модуль вектора магнитной индукции. Сила Ампера —
Электроизмерительные приборы. Громкоговоритель —
Действие магнитного поля на движущийся заряд. Сила Лоренца —
Магнитные свойства вещества —
Примеры решения задач —
Краткие итоги главы
Источник