Какими свойствами обладают логарифмы

Какими свойствами обладают логарифмы thumbnail

2 февраля 2017

  • Скачать все формулы

Логарифмы, как и любые числа, можно складывать, вычитать и всячески преобразовывать. Но поскольку логарифмы — это не совсем обычные числа, здесь есть свои правила, которые называются основными свойствами.

Эти правила обязательно надо знать — без них не решается ни одна серьезная логарифмическая задача. К тому же, их совсем немного — все можно выучить за один день. Итак, приступим.

Сложение и вычитание логарифмов

Рассмотрим два логарифма с одинаковыми основаниями: logax и logay. Тогда их можно складывать и вычитать, причем:

  1. logax + logay = loga (x · y);
  2. logax − logay = loga (x : y).

Итак, сумма логарифмов равна логарифму произведения, а разность — логарифму частного. Обратите внимание: ключевой момент здесь — одинаковые основания. Если основания разные, эти правила не работают!

Эти формулы помогут вычислить логарифмическое выражение даже тогда, когда отдельные его части не считаются (см. урок «Что такое логарифм»). Взгляните на примеры — и убедитесь:

Задача. Найдите значение выражения: log6 4 + log6 9.

Поскольку основания у логарифмов одинаковые, используем формулу суммы:
log6 4 + log6 9 = log6 (4 · 9) = log6 36 = 2.

Задача. Найдите значение выражения: log2 48 − log2 3.

Основания одинаковые, используем формулу разности:
log2 48 − log2 3 = log2 (48 : 3) = log2 16 = 4.

Задача. Найдите значение выражения: log3 135 − log3 5.

Снова основания одинаковые, поэтому имеем:
log3 135 − log3 5 = log3 (135 : 5) = log3 27 = 3.

Как видите, исходные выражения составлены из «плохих» логарифмов, которые отдельно не считаются. Но после преобразований получаются вполне нормальные числа. На этом факте построены многие контрольные работы. Да что контрольные — подобные выражения на полном серьезе (иногда — практически без изменений) предлагаются на ЕГЭ.

Вынесение показателя степени из логарифма

Теперь немного усложним задачу. Что, если в основании или аргументе логарифма стоит степень? Тогда показатель этой степени можно вынести за знак логарифма по следующим правилам:

  1. logaxn = n · logax;
  2. Вынесение показателя из основания логарифма
  3. Вынесение показателя одновременно из основания и из аргумента логарифма

Несложно заметить, что последнее правило следует их первых двух. Но лучше его все-таки помнить — в некоторых случаях это значительно сократит объем вычислений.

Разумеется, все эти правила имеют смысл при соблюдении ОДЗ логарифма: a > 0, a ≠ 1, x > 0. И еще: учитесь применять все формулы не только слева направо, но и наоборот, т.е. можно вносить числа, стоящие перед знаком логарифма, в сам логарифм. Именно это чаще всего и требуется.

Задача. Найдите значение выражения: log7 496.

Избавимся от степени в аргументе по первой формуле:
log7 496 = 6 · log7 49 = 6 · 2 = 12

Задача. Найдите значение выражения:

Частное двух логарифмов[Подпись к рисунку]

Заметим, что в знаменателе стоит логарифм, основание и аргумент которого являются точными степенями: 16 = 24; 49 = 72. Имеем:

Преобразование частного двух логарифмов[Подпись к рисунку]

Думаю, к последнему примеру требуются пояснения. Куда исчезли логарифмы? До самого последнего момента мы работаем только со знаменателем. Представили основание и аргумент стоящего там логарифма в виде степеней и вынесли показатели — получили «трехэтажную» дробь.

Теперь посмотрим на основную дробь. В числителе и знаменателе стоит одно и то же число: log2 7. Поскольку log2 7 ≠ 0, можем сократить дробь — в знаменателе останется 2/4. По правилам арифметики, четверку можно перенести в числитель, что и было сделано. В результате получился ответ: 2.

Переход к новому основанию

Говоря о правилах сложения и вычитания логарифмов, я специально подчеркивал, что они работают только при одинаковых основаниях. А что, если основания разные? Что, если они не являются точными степенями одного и того же числа?

На помощь приходят формулы перехода к новому основанию. Сформулируем их в виде теоремы:

Пусть дан логарифм logax. Тогда для любого числа c такого, что c > 0 и c ≠ 1, верно равенство:

Переход к новому основанию в логарифме[Подпись к рисунку]

В частности, если положить c = x, получим:

Когда основание и аргумент логарифма меняются местами[Подпись к рисунку]

Из второй формулы следует, что можно менять местами основание и аргумент логарифма, но при этом все выражение «переворачивается», т.е. логарифм оказывается в знаменателе.

Эти формулы редко встречается в обычных числовых выражениях. Оценить, насколько они удобны, можно только при решении логарифмических уравнений и неравенств.

Впрочем, существуют задачи, которые вообще не решаются иначе как переходом к новому основанию. Рассмотрим парочку таких:

Задача. Найдите значение выражения: log5 16 · log2 25.

Заметим, что в аргументах обоих логарифмов стоят точные степени. Вынесем показатели: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

А теперь «перевернем» второй логарифм:

Пример перехода к новому основанию[Подпись к рисунку]

Поскольку от перестановки множителей произведение не меняется, мы спокойно перемножили четверку и двойку, а затем разобрались с логарифмами.

Задача. Найдите значение выражения: log9 100 · lg 3.

Основание и аргумент первого логарифма — точные степени. Запишем это и избавимся от показателей:

Читайте также:  Модальность это свойство какого ощущения

Избавление от точных степеней[Подпись к рисунку]

Теперь избавимся от десятичного логарифма, перейдя к новому основанию:

Еще один пример перехода к новому основанию[Подпись к рисунку]

Основное логарифмическое тождество

Часто в процессе решения требуется представить число как логарифм по заданному основанию. В этом случае нам помогут формулы:

  1. n = logaan
  2. Логарифмический переход между числами

В первом случае число n становится показателем степени, стоящей в аргументе. Число n может быть абсолютно любым, ведь это просто значение логарифма.

Вторая формула — это фактически перефразированное определение. Она так и называется: основное логарифмическое тождество.

В самом деле, что будет, если число b возвести в такую степень, что число b в этой степени дает число a? Правильно: получится это самое число a. Внимательно прочитайте этот абзац еще раз — многие на нем «зависают».

Подобно формулам перехода к новому основанию, основное логарифмическое тождество иногда бывает единственно возможным решением.

Задача. Найдите значение выражения:

Задание из ЕГЭ с логарифмами[Подпись к рисунку]

Заметим, что log25 64 = log5 8 — просто вынесли квадрат из основания и аргумента логарифма. Учитывая правила умножения степеней с одинаковым основанием, получаем:

Вычисление логарифмического выражения[Подпись к рисунку]

Если кто-то не в курсе, это была настоящая задача из ЕГЭ 🙂

Логарифмическая единица и логарифмический ноль

В заключение приведу два тождества, которые сложно назвать свойствами — скорее, это следствия из определения логарифма. Они постоянно встречаются в задачах и, что удивительно, создают проблемы даже для «продвинутых» учеников.

  1. logaa = 1 — это логарифмическая единица. Запомните раз и навсегда: логарифм по любому основанию a от самого этого основания равен единице.
  2. loga 1 = 0 — это логарифмический ноль. Основание a может быть каким угодно, но если в аргументе стоит единица — логарифм равен нулю! Потому что a0 = 1 — это прямое следствие из определения.

Вот и все свойства. Обязательно потренируйтесь применять их на практике! Скачайте шпаргалку в начале урока, распечатайте ее — и решайте задачи.

Смотрите также:

  1. Тест к уроку «Что такое логарифм» (тяжелый) Какими свойствами обладают логарифмы
  2. Как решать простейшие логарифмические уравнения Какими свойствами обладают логарифмы
  3. Пробный ЕГЭ 2012. Вариант 10 (без логарифмов) Какими свойствами обладают логарифмы
  4. Пробный ЕГЭ-2011 по математике, вариант №6 Какими свойствами обладают логарифмы
  5. Показательные функции в задаче B15 Какими свойствами обладают логарифмы
  6. Процент: налоги и зарплата. Считаем с помощью коэффициентов Какими свойствами обладают логарифмы

Источник

Многие школьники считают логарифмы сложной темой в курсе математики. Но если разобрать, что такое логарифм подробно, от простого к сложному, то на ЕГЭ вы не станете их опасаться.

Часто у учеников возникает путаница, где аргумент, а где основание логарифма. И что же нужно возвести в степень, чтобы этот логарифм, наконец, посчитать.

В этой статье мы откроем секрет, как легче запомнить принцип решения логарифма.

Итак, давайте разбираться, что такое логарифм.

  1. Что такое логарифм и как его посчитать
  2. Зачем логарифмам специальные обозначения
  3. Основные свойства логарифмов — все формулы в одном месте
  4. 10 примеров логарифмов с решением

Что такое логарифм и как его посчитать

Логарифм имеет следующий вид:

Chto takoe logarifm3где a – это основание логарифма,

b – это аргумент логарифма

Чтобы узнать значение логарифма приравняем его к X.Chto takoe logarifm4и преобразовываем вChto takoe logarifm5Запомните, что именно основание (оно выделено красным) возводится в степень.

Чтобы было легче, можно запоминать так – основание всегда остается внизу (и в первом, и во втором выражении a внизу)!

Приведем пример:

Chto takoe logarifm6

Чтобы вычислить данный логарифм, необходимо приравнять его к X и воспользоваться правилом, описанным выше:Chto takoe logarifm7А в какую степень нужно возвести 2, чтобы получилось 8? Конечно же в третью степень, таким образом:

Chto takoe logarifm8Еще раз обращаю ваше внимание, что основание (в нашем случае это – 2) всегда находится внизу и именно оно возводится в степень.

Еще примеры:

Chto takoe logarifm9

Логарифмы со специальным обозначением

Для некоторых логарифмов в математике введены специальные обозначения. Это связано с тем, что такие логарифмы встречаются особенно часто. К таким логарифмам относятся десятичный логарифм и натуральный логарифм. Для этих логарифмов справедливы все правила, что и для обычных логарифмов.

Десятичный логарифм

Десятичный логарифм обозначается lg и имеет основание 10, т.е.

Chto takoe logarifm10Чтобы вычислить десятичный логарифм, нужно 10 возвести в степень X.

Например, вычислим lg100Chto takoe logarifm11

Натуральный логарифм

Натуральный логарифм обозначается ln и имеет основание e, то есть

Chto takoe logarifm12

Чтобы вычислить данный логарифм нужно число е возвести в степень x. Некоторые из вас спросят, что это за число такое е? Число е – это иррациональное число, т.е. точное его значение вычислить невозможно. е = 2,718281…

Сейчас не будем подробно разбирать, зачем это число нужно, просто запомним, что

Chto takoe logarifm12

И вычислить его можно таким образом:Chto takoe logarifm13

Основные свойства логарифмов

Логарифмы можно преобразовывать, но для этого необходимо знать правила, которые называются основными свойствами логарифмов. Данные свойства обязательно нужно знать каждому ученику! Без знания этих свойств невозможно решить ни одну серьезную логарифмическую задачу. Вот эти свойства:

Читайте также:  Какие свойства диагоналей квадрата

Chto takoe logarifm2

Совет – тренируйтесь применять эти свойства в обе стороны, то есть как слева направо, так и справа налево!

Рассмотрим свойства логарифмов на примерах.

Логарифмический ноль и логарифмическая единица

Chto takoe logarifm14

Это следствия из определения логарифма. И их нужно обязательно запомнить. Эти  простейшие свойства нередко вводят учеников в ступор.

Запомните, что логарифм от a по основанию а всегда равен единице:

loga a = 1 – это логарифмическая единица.

Если же в аргументе стоит единица, то такой логарифм всегда равен нулю независимо от основания, так как a0 = 1:

loga 1 = 0 – логарифмический ноль.

Основное логарифмическое тождество

Chto takoe logarifm16

Chto takoe logarifm17

В первой формуле число m становится степенью, которая стоит в аргументе. Данное число может быть любым. Некоторые выражения могут быть решены только с помощью этого тождества.

Вторая формула по сути является просто переформулированным определением логарифма

Разберем применение тождества на примере:

Необходимо найти значение выраженияChto takoe logarifm18Сначала преобразуем логарифм

Chto takoe logarifm19Вернемся к исходному выражению и применим правило умножения степеней с одинаковым основанием:Chto takoe logarifm20Теперь применим основное логарифмическое  тождество и получим:Chto takoe logarifm21

Сумма логарифмов. Разница логарифмов

Логарифмы с одинаковыми основаниями можно складывать:Chto takoe logarifm22Chto takoe logarifm23Логарифмы с одинаковыми основаниями можно вычитать:Chto takoe logarifm24Chto takoe logarifm25Мы видим, что исходные выражения состояли из логарифмов, которые по отдельности не вычисляются, а при применении свойств логарифмов у нас получились нормальные числа. Поэтому повторим, что основные свойства логарифмов нужно знать обязательно!

Обратите внимание, что формулы суммы и разности логарифмов верны только для логарифмов с одинаковыми основаниями! Если основания разные, то данные свойства применять нельзя!

Вынесение показателя степени из логарифма

Вынесение показателя степени из логарифма:

Chto takoe logarifm26Chto takoe logarifm27Chto takoe logarifm28Chto takoe logarifm29

Переход к новому основанию

Chto takoe logarifm30Когда мы разбирали формулы суммы и разности логарифмов, то обращали внимание на то, что основания логарифмов должны быть при этом одинаковыми. А что же делать, если основания логарифмов разные? Воспользоваться свойством перехода к новому основанию.

Такие формулы чаще всего нужны при решении логарифмических уравнений и неравенств.

Разберем на примере.

Необходимо найти значение такого выраженияChto takoe logarifm31Для начала преобразуем каждый логарифм с помощью свойства вынесения показателя степени из логарифма:

Chto takoe logarifm32

Теперь применим переход к новому основанию для второго логарифма:Chto takoe logarifm33Подставим полученные результаты в исходное выражение:Chto takoe logarifm34

10 примеров логарифмов с решением

1. Найти значение выраженияChto takoe logarifm352. Найти значение выраженияChto takoe logarifm363. Найти значение выраженияChto takoe logarifm374. Найти значение выраженияChto takoe logarifm385. Найти значение выраженияChto takoe logarifm396. Найти значение выраженияChto takoe logarifm40Сначала найдем значениеChto takoe logarifm41Для этого приравняем его к Х:Chto takoe logarifm42Тогда изначальное выражение принимает вид:

Chto takoe logarifm437. Найти значение выраженияChto takoe logarifm44Преобразуем наше выражение:Chto takoe logarifm45Теперь воспользуемся свойством вынесения показателя степени из логарифма и получим: Chto takoe logarifm468. Найти значение выраженияChto takoe logarifm47Так как основания логарифмов одинаковые, воспользуемся свойством разности логарифмов:Chto takoe logarifm489. Найти значение выраженияChto takoe logarifm49Так как основания логарифмов разные, применять свойство суммы логарифмов нельзя. Поэтому решаем каждый логарифм по отдельности:Chto takoe logarifm50Подставляем полученные значения в исходное выражение:

4 + 3 = 7

10. Найти значение выраженияChto takoe logarifm51Обращаем внимание, что данное выражение – это не произведение логарифмов. У логарифма по основанию 4 подлогарифным выражением является log216. Поэтому сначала найдем значение log216, а затем подставим полученный результат в log4:Chto takoe logarifm53

Надеюсь, теперь вы разобрались, что такое логарифм.

Источник

  • Основное логарифмическое тождество
  • Свойства логарифмов

Логарифм данного числа — это показатель степени, в которую нужно возвести основание, чтобы получить данное число.

алгебра логарифмы

О равенстве  ax = N  можно сказать, что  x  — это логарифм числа  N  по основанию  a  (где  a > 0   и   a ≠ 1).

Слово логарифм сокращённо обозначается  log,  основание же, при котором указывается логарифм данного числа, обозначается в виде нижнего индекса с правой стороны  log.

основание логарифма

Если мы знаем, что логарифм числа  N  при основании  a  равен числу  x,  то есть:

logaN = x,

то это равенство можно написать без знака логарифма

ax = N,

где  a  — основание степени,  x  — показатель степени,  N  — степень.

Оба равенства:

logaN = x   и   ax = N

выражают одну и ту же зависимость между числами ax  и  N:  если дано одно из равенств, значит можно написать и второе. Эту же зависимость между числами  ax  и  N  можно выразить ещё одним равенством:

x√ N  = a   или   a =x√ N .

Отрицательные числа и нуль ни при каком основании  a  (a > 0   и   a ≠ 1)  логарифмов не имеют.

Основное логарифмическое тождество

Степень, показателем которой является логарифм числа  N  при таком же основании, как и основание степени, равна числу  N.

alogaN = N.

Возьмём логарифм числа  N  при основании  a  равный числу  q

logaN = q,  значит  aq = N.

Подставив в последнее равенство вместо числа  q  равное ему выражение  logaN,  получим

Читайте также:  Какими свойствами обладает голубой топаз

alogaN = N.

Выражение  alogaN = N  называется основным логарифмическим тождеством.

Свойства логарифмов

Рассмотрены свойства логарифмов для оснований, которые больше нуля и не равны единице:

a > 0    и    a ≠ 1.

Логарифм единицы равен нулю.

loga1 = 0,

так как нулевая степень любого числа (за исключением нуля) равна  1:

a0 = 1.

Логарифм числа равного основанию равен единице.

logaa = 1,

так как первая степень любого числа равна этому же числу без степени:

a1 = a.

Логарифм произведения равен сумме логарифмов сомножителей.

logaMN = logaM + logaN ,

где  M > 0,  N > 0.

Логарифм частного равен разности логарифмов делимого и делителя (или логарифм дроби равен логарифму числителя минус логарифм знаменателя).

где  M > 0,  N > 0.

Логарифм степени равен произведению показателя степени на логарифм основания этой степени.

loga(Nα) = α logaN ,

где  N > 0.

Логарифм, у которого в основании стоит степень, равен частному от деления логарифма при этом же основании без степени на показатель степени основания.

logaxNlogaN = 1 logaN ,
xx

где  N > 0,  x ≠ 0.

Логарифм корня равен частному от деления логарифма подкоренного числа на показатель корня.

logax√ N logaN = 1 logaN .
xx

Из формулы логарифма корня и формулы логарифма, у которого в основании стоит степень, можно сделать вывод, что логарифм корня равен логарифму данного числа с основанием в степени, равной показателю корня.

logax√ N = logaxN1 logaN .
x

Свойства логарифмов степени и корня можно объединить ещё в одно:

где  N > 0,  β ≠ 0.

Любой логарифм можно представить в виде отношения двух логарифмов, взятых по одному и тому же произвольному основанию.

где  N > 0.  Данная формула называется формулой перехода к новому основанию.

Произведение взаимно обратных логарифмов равно единице.

logba · logab = 1.

Взаимно обратные логарифмы — это пара логарифмов, у которых основание и выражение под знаком логарифма поменялись местами.

Величина логарифма не изменится, если возвести число, стоящее под знаком логарифма, и одновременно основание логарифма в какую-либо степень.

logaN = logaxNx,

где  N > 0,  x ≠ 0.

Источник

Алгебра и начала математического анализа, 10 класс

Урок № 24. Логарифм. Свойства логарифмов.

Перечень вопросов, рассматриваемых в теме

1. Определение логарифма.

2. Основное логарифмическое тождество.

3. Свойства логарифмов.

Глоссарий по теме

Логарифмом положительного числа Какими свойствами обладают логарифмы по основанию Какими свойствами обладают логарифмы, Какими свойствами обладают логарифмыназывается показатель степени, в которую надо возвести Какими свойствами обладают логарифмычтобы получить Какими свойствами обладают логарифмы.

Какими свойствами обладают логарифмы

Логарифмирование – это действие нахождения логарифма числа.

Основное логарифмическое тождество: Какими свойствами обладают логарифмыКакими свойствами обладают логарифмы

Свойства логарифмов. При Какими свойствами обладают логарифмы, Какими свойствами обладают логарифмы справедливы равенства:

– логарифм произведения: Какими свойствами обладают логарифмы;

– логарифм частного: Какими свойствами обладают логарифмы;

– логарифм степени: Какими свойствами обладают логарифмы.

Основная литература:

Колягин Ю. М., Ткачева М. В., Фёдорова Н.Е. и др. Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа. 10 класс. Базовый и углублённый уровни. – М.: Просвещение, 2014. – 384 с.

Открытые электронные ресурсы:

https://fipi.ru/

Теоретический материал для самостоятельного изучения

При решении простейших показательных уравнений не всегда можно найти точный ответ. Например, уравнение Какими свойствами обладают логарифмы имеет корень 5, т. к. Какими свойствами обладают логарифмызначит Какими свойствами обладают логарифмы, Какими свойствами обладают логарифмыВ уравнении Какими свойствами обладают логарифмы число 5 не является степенью 2, значит предыдущий способ решения не подходит. Нам известно, что уравнение имеет единственный корень. Посмотрим это на графике.

Какими свойствами обладают логарифмы

Абсцисса точки пересечения – единственное решение данного уравнения. Это число и называют логарифмом 5 по основанию 2.

Дадим определение логарифма.

Логарифмом положительного числа Какими свойствами обладают логарифмы по основанию Какими свойствами обладают логарифмы, Какими свойствами обладают логарифмыназывается показатель степени, в которую надо возвести Какими свойствами обладают логарифмычтобы получить Какими свойствами обладают логарифмы.

Какими свойствами обладают логарифмы

Т. е. логарифм числа Какими свойствами обладают логарифмы по основанию Какими свойствами обладают логарифмы, Какими свойствами обладают логарифмыКакими свойствами обладают логарифмыесть некоторое число Какими свойствами обладают логарифмытакое, что Какими свойствами обладают логарифмы.

Пример 1.

Какими свойствами обладают логарифмы, т. к. выполнены все условия определения:

1) 216 > 0; 2) 6 > 0, 6 ≠ 1; 3) Какими свойствами обладают логарифмы.

Пример 2.

Какими свойствами обладают логарифмы, т. к. выполнены все условия определения:

1) Какими свойствами обладают логарифмы; 2) 2 > 0, 2 ≠ 1; 3) Какими свойствами обладают логарифмы .

Это действие называется логарифмированием.

Логарифмирование – это действие нахождения логарифма числа.

Существует краткая запись определения логарифма: Какими свойствами обладают логарифмыКакими свойствами обладают логарифмы

так называемое основное логарифмическое тождество. Его используют при вычислениях.

Пример 3.

Какими свойствами обладают логарифмы (Читают: 4 в степени логарифм 5 по основанию 4 равен 5)

Пример 4.

Какими свойствами обладают логарифмы (Читают: одна треть в степени логарифм 6 по основанию одна треть равен 6)

Решим несколько задач с использованием определения логарифма.

Задача 1. Вычислить Какими свойствами обладают логарифмы.

Решение. Пусть Какими свойствами обладают логарифмы тогда по определению логарифма Какими свойствами обладают логарифмы Приведем левую и правую части к одному основанию. 27 = 33, 81 = 34, значит Какими свойствами обладают логарифмы . Отсюда следует, что Какими свойствами обладают логарифмыКакими свойствами обладают логарифмы

Задача 2. Вычислить Какими свойствами обладают логарифмы.

Решение. Для вычисления воспользуемся свойствами степеней: 1) Какими свойствами обладают логарифмы, 2) Какими свойствами обладают логарифмы и основным логарифмическим тождеством: Какими свойствами обладают логарифмы.

Какими свойствами обладают логарифмы.

Для решения более сложных задач потребуется знание свойств логарифмов. Рассмотрим их.

1. Логарифм произведения.

Какими свойствами обладают логарифмы

Логарифм произведения чисел Какими свойствами обладают логарифмы по основанию Какими свойствами обладают логарифмы равен сумме логарифма Какими свойствами обладают логарифмыпо основанию Какими свойствами обладают логарифмы и логарифмаКакими свойствами обладают логарифмы по основанию Какими свойствами обладают логарифмы.

Пример 5.

Какими свойствами обладают логарифмы

2. Логарифм частного.

Какими свойствами обладают логарифмы

Логарифм частного чисел Какими свойствами обладают логарифмы по основанию Какими свойствами обладают логарифмы равен разности логарифма Какими свойствами обладают логарифмыпо основанию Какими свойствами обладают логарифмы и логарифмаКакими свойствами обладают логарифмы по основанию Какими свойствами обладают логарифмы.

Пример 6.

Какими свойствами обладают логарифмы

3. Логарифм степени.

Какими свойствами обладают логарифмы

Логарифм числа Какими свойствами обладают логарифмы по основанию Какими свойствами обладают логарифмы равен произведению показателя Какими свойствами обладают логарифмы и логарифма Какими свойствами обладают логарифмыпо основанию Какими свойствами обладают логарифмы.

Пример 7.

Какими свойствами обладают логарифмы

Важно! Свойства выполняются при Какими свойствами обладают логарифмы, Какими свойствами обладают логарифмы