Какими свойствами обладают материалы

Какими свойствами обладают материалы thumbnail
Студопедия

КАТЕГОРИИ:

Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

МАТЕРИАЛОВЕДЕНИЕ, МЕТАЛЛИЧЕСКИЕ МАТЕРИАЛЫ. КОРРОЗИЯ И ЗАЩИТА ОТ НЕЕ

Функциональные (эксплуатационные) свойства медицинских изделий, т. е. их способность выполнять надлежащим образом свои функции в лечебно-диагностическом процессе и служить до­статочно долго, в значительной степени определяются свойства­ми тех материалов, из которых они изготовлены. Используемые для переработки в изделия материалы не только приобретают необходимую форму, но часто и новые свойства, необходимые для нормального функционирования изделия. Поэтому весьма важно знать свойства материалов, возможности изменения этих свойств в нужном направлении и методы, при помощи которых материалы перерабатывают в изделия с заданными свойствами.

Наряду с этим материалы для медицинских изделий должны от­вечать некоторым требованиям, обусловленным спецификой их медицинского назначения и применения: 1) быть биологически инерт­ными и нетоксичными по отношению к тканям и средам организ­ма, с которыми они соприкасаются, и не выделять вредных для организма веществ; 2) допускать необходимую обработку в инте­ресах соблюдения правил асептики без изменения своих свойств. и форм; 3) быть коррозионно-стойкими. Эти требования создают дополнительные ограничения в выборе материалов. Так, многие-пластмассы нельзя применять для изготовления шприцев, потому что они деформируются (теряют форму) при высокотемператур­ной стерилизации.

Каждый материал обладает определенными механическими, хи­мическими и технологическими свойствами. Эти свойства опреде­ляются ГОСТами на материалы в состоянии поставки.

Основные показатели, характеризующие свойства материала и определяющие его выбор для данного изделия, записывают в стандарты и ТУ на эти изделия. Это относится прежде всего к механическим и химическим (антикоррозионным) свойствам, опре­деляющим надежность работы и долговечность изделия.

К механическим свойствам материала относятся прочность, твердость, упругость, вязкость, пластичность и хрупкость.

Прочность—способность материала сопротивляться воздей­ствию внешних сил не разрушаясь. Для большинства материалов прочность оценивают величиной предела прочности при растяжении:

σВ=P/F кгс/мм2,

где Рсила, в килограммах (обозначается кгс), при которой об­разец разрушается, кгс; Fплощадь поперечного сечения испы­туемого стандартного образца материала, мм2.

Показатель прочности и относительного удлинения при растя­жении (см. ниже) широко используют при оценке механических свойств металлов, пластмасс, резины, тканей, нитей и других ма­териалов. Для некоторых материалов (чугун, стекло), имеющих сравнительно низкую прочность на растяжение, применяют пока­затель прочности на сжатие, измеряемый аналогичными показа­телями. Так, прочность пластмасс и стекла на сжатие в 15—20 раз больше, чем на растяжение, и сопоставима с прочностью на рас­тяжение стали (до 100 кгс/см2).

Твердость — способность материала сопротивляться вдав­ливанию в них какого-либо тела. Этот показатель имеет особое значение для металлов. Для металлов существуют также наибо­лее обоснованные методы определения твердости: метод Бриннеля (вдавливание стального шарика) и метод Роквелла (вдавливание конусообразной алмазной пирамиды). Число твердости определяют по специальным таблицам и обозначают соответственно НВ иHRC. По Бриннелю определяют твердость сырых (термически не обработанных) металлов, по Роквеллу — твердость закаленных изделий (режущих инструментов).

Мерой твердости по Бриннелю служит величина:

НВ= P/F,

где Р — сила вдавливания стального шарика, кгс; F — площадь поверхности сферического отпечатка, мм2.

Между пределом прочности и твердостью по Бриннелю существу­ет устойчивая связь, поэтому по измерению твердости стали в со­стоянии поставки можно судить и об ее прочности.

Для определения единиц твердости по размерам отпечатка ис­пользуют специальные таблицы.

Существует также метод Виккерса, отличающийся от метода Роквелла тем, что испытание производят при малых усилиях и ме­рой твердости служит размер диагонали отпечатка. Так как отпе­чаток сравнительно мал, метод используют для определения твер­дости тонких изделий.

Упругость—способность материала изменять свою форму под действием внешних сил и восстанавливать ее после прекра­щения действия этих сил. Высокой упругостью должна обладать сталь для различных пружинящих инструментов (пинцеты, крово­останавливающие зажимы и др.).

Отношение нагрузки, при которой у образца появляется оста­точное удлинение, к площади его первоначального поперечного се­чения в квадратных миллиметрах, называют пределом упру­гости. Таким образом, предел упругости σу измеряют так же, как и предел прочности. Сталь имеет предел упругости около 30 кгс/мм2, а свинец, почти не обладающий упругостью,—всего 0,25 кгс/мм2.

Вязкость—способность материалов не разрушаться при действии на них ударных нагрузок. Высокой вязкостью наряду с достаточной твердостью обладают медицинские долота и молотки, так как они не должны разрушаться и выкрашиваться при ударе. Характеристикой вязкости служит величина ударной вязко­сти. На образец материала, подвергающегося испытанию на ударную вязкость, с определенной высоты падает груз. Работа из­лома, отнесенная к площади поперечного сечения образца в ме­сте излома, дает значение ударной вязкости. Пластичные мате­риалы обладают высокой ударной вязкостью, хрупкие — низкой.

Пластичность—способность материалов, не разрушаясь, изменять под действием внешних сил свою форму и сохранять из­мененную форму после прекращения действия сил. Одним из наи­более пластичных металлов является свинец. Те материалы, кото­рые под действием внешних сил совсем или почти не изменяют своей формы, но быстро разрушаются, называют хрупкими. Хрупкими являются стекло, чугун, некоторые пластмассы (поли­стирол).

Мерой пластичности может служить относительное удли­нение (δ). Эта величина измеряется в процентах от первона­чальной длины образца при испытании на растяжение.

При нагревании пластичность стекла, металлов и ряда пласт­масс возрастает, а прочность уменьшается. Эти свойства материа­лов используют для придания им нужной формы методами ков­ки прессования, штамповки, прокатки.

Следует отметить, что для ряда материалов существуют понятия

усталости и старения.

Усталость—способность материалов разрушаться от дейст­вия многократно повторяющихся нагрузок, величина которых не достигает предела прочности материала. Чем больше циклов на­грузки выдерживает образец металла, тем он выносливее. Для каждого металла существует предел усталости, определяе­мый числом циклов нагрузки, которое может выдержать образец металла. Ряд неметаллических материалов, таких, как резина, пластмассы, имеет склонность к старению, т. е. к изменению (снижению) прочности с течением времени под влиянием различ­ных факторов внешней среды (солнечная радиация, озон, измене­ние температуры). Способствует старению и стерилизация при высоких температурах. Так, пластмассовые шприцы многоразового пользования по мере увеличения количества циклов стерилизации постепенно теряют прозрачность, а затем материал растрескива­ется и расслаивается.

Читайте также:  Какие бывают виды информации и свойства информации

Химические свойства определяют поведение материала по отно­шению к действию факторов внешней среды: его окисляемость, стойкость к действию различных химических агентов и раствори­телей, в том числе коррозионную стойкость.

Химические свойства определяются химическим составом мате­риала. Показатели содержания основных веществ и примесей для большинства материалов широко используют при оценке их свойств. Знание химического состава дает возможность судить о ряде свойств материала и его отношении к различным воздей­ствиям. Так, определенный процесс содержания хрома в стали де­лает ее нержавеющей, повышенное содержание серы и фосфора превращает сталь в хрупкий, непригодный к применению мате­риал. Химическая устойчивость стекла полностью определяется его составом. Химический состав определяет марку матери­ала.

Технологические свойства материалов обусловливают различные технологические приемы их переработки в изделия. Так, многие металлические материалы хорошо штампуются, а другим форма может быть придана лишь путем литья. Материалы, применяемые для получения медицинских изделий, должны допускать обработку одним или несколькими известными экономически оправданными технологическими методами. При этом свойства материала часто претерпевают значительные изменения, особенно если для прида­ния ему нужной формы материал подвергается нагреву, вследст­вие чего размягчается или расплавляется. Часто в результате об­работки литьем и методами пластической деформации (ковка,. штамповка, прессование, прокатка, волочение) изменяется внут­ренняя структура материала и ухудшаются его механические свойства. Для повышения механических качеств изделие подвергают термической обработке, которая, не меняя его формы, придает изделию необходимые механические свойства.

Механические, химические и технологические свойства материалов тесно взаимосвязаны.

Дата добавления: 2015-04-30; Просмотров: 7215; Нарушение авторских прав?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Рекомендуемые страницы:

Читайте также:

Источник

Лекции.Орг

Все материалы обладают рядом свойств, которые различаются как физические, механические, химические и технологические. К физическим свойствам металлов относят удельный вес, температуру плавления, цвет, электропроводность, теплопроводность, теплоемкость, расширяемость при нагревании, магнитные свойства и некоторые другие. В зависимости от условий работы или эксплуатации деталей некоторые из этих свойств приобретают решающее значение и служат основанием для выбора материала при изготовлении и использовании детали. Например, удельный вес и прочность — важные качества для материала в самолетостроении, где нужны легкие и прочные детали. Температура плавления имеет большое значение для деталей, работающих при высоких температурах, например нити накаливания в электрических лампах, футеровка плавильных печей и т. п. Поэтому детали самолета изготовляют из сплавов алюминия и магния, а для изготовления нитей накаливания употребляется вольфрам и т. д. Из химических свойств металлов главным образом важна коррозионная стойкость, а также окисляемость и растворимость. Очень важную роль в определении пригодности металла как материала для деталей машин и механизмов играют его механические свойства. К механическим свойствам относятся прочность, твердость, упругость, пластичность, вязкость и хрупкость. Прочность — способность материала сопротивляться воздействию сил, не разрушаясь и не изменяя допустимой формы.
Примером прочного материала служит сталь. Стальные изделия с трудом разрушаются и изменяют форму. В противоположность стали ртуть не обладает прочностью. При обычной температуре она находится в жидком состоянии и не сохраняет формы. Твердость — способность материала противостоять проникновению в него другого, более твердого тела. Самым твердым из известных нам веществ является алмаз. Высокой твердостью обладают различные сорта стали и так называемые твердые сплавы. Твердость — главнейшее свойство материалов, из которых изготовляют режущие инструменты. . Упругость — способность тела восстанавливать свою первоначальную форму после прекращения действия сил, вызвавших это изменение. Примером упругого тела может служить стальная пружина, которая после прекращения сил воздействия восстанавливает свою прежнюю форму. Пластичность — способность материала изменять свою форму под воздействием сил не разрушаясь и не восстанавливать прежней формы после прекращения действия сил. Примером пластичного металла может служить свинец. Это качество по . своей сущности противоположно упругости. Вязкость — способность материала выдерживать механические воздействия (удары) не разрушаясь. Очень вязка, например, малоуглеродистая сталь, употребляемая для неответственных деталей. Хрупкость — качество, противоположное вязкости, способность тела легко разрушаться при механических воздействиях (ударах). Примером хрупкого металла является чугун. Технологические свойства металлов и сплавов представляют собой сочетание различных механических и физических свойств, проявляющихся в процессах изготовления деталей машин. К технологическим свойствам металла относятся возможность обработки резанием, литьем, прокаткой, ковкой, волочением, способность свариваться и подвергаться термообработке. Для определения свойств металлов и сплавов пользуются: механическими испытаниями, которыми устанавливают их прочность, твердость, упругость, пластичность, вязкость и хрупкость; физическими измерениями удельного веса, температуры плавления, тепла и электропроводности; химическим анализом, который определяет качественный и количественный состав сплава; металлографическим анализом, позволяющим получить данные о структуре и свойствах металла с помощью микроскопа и рентгеновского аппарата; технологическими пробами, дающими возможность определить пригодность металла для данного вида обработки.

21.Сплавы на основе цветных металлов Сплавы цветных металлов применяют для изготовления деталей, работающих в условиях агрессивной среды, подвергающихся трению, требующих большой теплопроводности, электропроводности и уменьшенной массы. Медь— металл красноватого цвета, отличающийся высокой теплопроводностью и стойкостью против атмосферной коррозии. Прочность невысокая: ав = 180… …240 МПа при высокой пластичности б>50%. Латунь — сплав меди с цинком (10…40 %), хорошо поддается холодной прокатке, штамповке, вытягиванию <7ь = 25О…4ОО МПа, 6=35..15%. При маркировке лату-ней (Л96, Л90, …, Л62) цифры указывают на содержание меди в процентах. Кроме того, выпускают латуни многокомпонентные, т. е. с другими элементами (Мп, Sn, Pb, Al).

Бронза — сплав меди с оловом (до 10%), алюминием, марганцем, свинцом и другими элементами. Обладает хорошими литейными свойствами (вентили, краны, люстры). При маркировке бронзы Бр.ОЦСЗ-12-5 отдельные индексы обозначают: Бр — бронза, О — олово, Ц — цинк, С —свинец, цифры 3, 12, 5-—содержание в процентах олова цинка, свинца. Свойства бронзы зависят от состава: бв=15О…21О МПа, б=4…8%, НВ60 (в среднем). Алюминий — легкий серебристый металл, обладающий низкой прочностью при растяжении — аа = 80… …100 МПа, твердостью — НВ20, малой плотностью — 2700 кг/м3, стоек к атмосферной коррозии. В чистом виде в строительстве применяют редко (краски, газооб-разователи, фольга). Для повышения прочности в него вводят легирующие добавки (Мп, Си, Mg, Si, Fe) и используют некоторые технологические приемы. Алюминиевые сплавы делят на литейные, применяемые для отливки изделий (силумины), и деформируемые (дюралюмины), идущие для прокатки профилей, листов и т.п. Силумины — сплавы алюминия с кремнием (до 14%), они обладают высокими литейными качествами, малой усадкой, прочностью ои = 200 МПа, твердостью НВ50…70 при достаточно высокой пластичности 6== =5…10 %. Механические свойства силуминов можно существенно улучшить путем модифицирования. При этом увеличивается степень дисперсности кристаллов, что повышает прочность и пластичность силуминов. Дюралюмины — сложные сплавы алюминия с медью (до 5,5 %), кремнием (менее 0,8%). марганцем (до 0,8 %), магнием (до 0,8 %) и др. Их свойства улучшают термической обработкой (закалкой при температуре 500…520°С с последующим старением). Старение осуществляют на воздухе в течение 4…5 сут при нагреве на 170°С в течение 4…5 ч. Термообработка алюминиевых сплавов основана на дисперсном твердении с выделением твердых дисперсных частиц сложного химического состава. Чем мельче частицы новообразований, тем выше эффект упрочнения сплавов. Предел прочности дюралюминов после закалки и старения составляет 400…480 МПа и может быть повышен до 550…600 МПа в результате наклепа при обработке давлением. В последнее время алюминий и его сплавы все шире применяют в строительстве для несущих и ограждающих конструкций. Особенно эффективно применение дюралюминов для конструкций в большепролетных сооружениях, в сборно-разборных конструкциях, при сейсмическом строительстве, в конструкциях, предназначенных для работы в агрессивной среде. Начато изготовление трехслойных навесных панелей из листов алюминиевых сплавов с заполнением пенопластовыми материалами. Путем введения газообразователей можно создать высокоэффективный материал пеноалюминий со средней плотностью 100…300 кг/м3 Все алюминиевые сплавы поддаются сварке, но она осуществляется более трудно, чем сварка стали, из-за образования тугоплавких оксидов АЬОз. Особенностями дюралюмина как конструкционного сплава являются: низкое значение модуля упругости, примерно в 3 раза меньше, чем у стали, влияние температуры (уменьшение прочности при повышении температуры более 400°С и увеличение прочности и пластичности при отрицательных температурах); повышенный примерно в 2 раза по сравнению со сталью коэффициент линейного расширения; пониженная свариваемость. Титан за последнее время начал применяться в разных отраслях техники благодаря ценным свойствам: высокой коррозионной стойкости, меньшей плотности (4500 кг/м3) по сравнению со сталью, высоким прочностным свойствам, повышенной теплостойкости. На основе титана создаются легкие и прочные конструкции с уменьшенными габаритами, способные работать при повышенных температурах.

Читайте также:  Глина какие полезные свойства

22. Неорганические материалыНЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ. Твердые, реже жидкие или пастообразные, в-ва с функцион. св-вами, зависящими от способа получения. Различают неорганические материалы металлические, неметаллические и ком-позиционные, к-рые могут содержать как металлич., так и неметаллич. фазы (см. Композиционные материалы). По структуре неорганические материалы подразделяют на монокристаллические, поликристаллические (литье, керамика, порошки), аморфные, в т.ч. стеклообразные (см. Стекло неорганическое), а также стеклокристаллические (напр., ситаллы). По св-вам и областям применения различают неорганические материалы: с особыми электрич. св-вами – полупроводниковые материалы, электропроводящие, сверхпроводники, изоляционные (диэлектрики), электролиты твердые, пьезоэлектрики, конденсаторные и катодные; с особыми магн. характеристиками (см. Магнитные материалы); оптические материалы (для линз и фильтров, отражающих и просветляющих покрытий, для волоконной оптики), фотоэлектродные, люминофоры, электрохромные, фотопроводящие, материалы для голографии, лазерные материалы, с особыми теплофиз. св-вами (для термисторов и нагревателей, жаростойкая и жаропрочная конструкционная керамика), огнеупорные материалы, теплоизоляционные материалы, аккумуляторы тепла; коррозион-ностойкие материалы. Кроме того, выделяют материалы для энергетики-ядерное топливо, аккумуляторы водорода, для термоядерных установок; конструкц. материалы; акустические материалы; для мед. целей – биокерамич. костные и зубные протезы, для кровеносных сосудов и клапанов; сорбенты и носители в катализе и хроматографии; вяжущие материалы; фрикционные материалы и антифрикционные материалы; абразивные материалы, твердые сплавы для изготовления режущего инструмента и др. В отдельную группу иногда выделяют неорганические материалы с сенсорными св-вами, применяемые в датчиках т-ры, давления, расхода, концентрации, влажности, рН среды и др. (см. Сенсоры химические). Ко многим неорганическим материалам предъявляются очень высокие требования по чистоте (напр., к полупроводниковым, к материалам для волоконной оптики и ядерной техники). Неорганические материалы находят применение в разл. областях народного хозяйства и часто определяют уровень развития многих из них. Без неорганических материалов невозможен, напр., прогресс областей, связанных с информатикой и электронной вычислит. техникой. Многие неорганические материалы известны с древних времен и широко применяются в быту, напр. фарфор, фаянс, бронза, строит. материалы.

23.Неметаллические материалыНаряду с металлами во всех отраслях промышленности большое распространение получили неметаллические материалы. К ним относятся: пластические массы, резина, химикаты, формовочные, текстильные, древесные, лакокрасочные и другие материалы.

Пластические массы (пластмассы) — это органические вещества, пластичные в начальной стадии производства, но утрачивающие это качество после нагрева и прессования. Поэтому изделиям из пластмасс можно легко придать прессованием или литьем любую, даже очень сложную форму. При производстве пластмасс к исходным продуктам — смолам — добавляют пластификаторы, наполнители, отвердители и красители. Красителями пластмассам придают любую окраску, что делает их красивым облицовочным материалом.
Фенолальдегидные пластмассы приготовляют смешиванием с последующим нагревом фенола, формалина и катализатора — нашатырного спирта или уксусной кислоты. При использовании нашатырного спирта получают бакелиту а при добавлении уксусной кислоты — карболит. Из карболита изготовляют крышки прерывателей-распределителей и другие детали сложной формы. Из бакелита можно приготовить бакелитовый лак, если прибавить к нему равный объем денатурированного спирта. Бакелитовый лак используют как связующее вещество при изготовлении слоистых пластмасс и как клей.

Слоистые пластмассы — это пропитанные бакелитовым лаком листовые волокнистые материалы. При пропитывании и прессовании многослойной хлопчатобумажной ткани получают текстолит. Малый коэффициент трения и значительная прочность позволяют применять текстолит для таких деталей, как шестерни привода распределительного вала двигателя и др. Пластические массы широко используют для изготовления корпусов различных приборов, штурвалов, рукояток, рычагов и кнопок, деталей кузова и электрооборудования автомобилей. Прокладочные материалыПаронит — это листовой вулканизированный материал из смеси каучука, наполнителей и асбестового волокна. Из него изготовляют прокладки в соединениях, работающих в бензине и масле. Клингерит — листовой материал, состоящий из смеси асбеста с каучуком, графитом, суриком и окисью железа. Употребляют для герметизации емкостей для любых жидкостей и газов. Металлоасбестоеые прокладки, изготовленные из асбестового картона, облицованного с двух сторон мягкой листовой сталью или армированного металлической сеткой, широко применяют в автомобильных двигателях. Асбест используют также в качестве основы ряда материалов, применяемых для изготовления деталей разнообразных фрикционных устройств — накладок тормозных колодок, ведущих дисков сцепления и т. д. Кроме материалов на асбестовой основе, для прокладок и уплотнений широко используют пробку, войлок и картон. Из пробки изготовляют прокладки и сальники картера двигателя, системы питания и др. Войлоком уплотняют открытые сочленения; он идет на изготовление сальников (например, в рулевом управлении, подшипниках колес и т. д.) и прокладок. Из картона делают прокладки для уплотнения таких соединений, как ступица колеса — полуось (приводной вал), коробка передач — крышка коробки передач и т. д. Резина— эластичный материал, из которого изготовляют автомобильные шины и много других деталей (например, для уплотнения тормозной системы, кабины). Исходные продукты для получения резины — каучук и сера. Резину получают обработкой смеси каучука с 3 — 5% серы. При температуре 140 — 145 °С сера вступает в химическую реакцию с каучуком, и в результате получают резину. Этот процесс называют вулканизацией. Чтобы улучшить качество, удешевить и облегчить производство, к резиновой смеси добавляют ускорители вулканизации (цинковые белила, окись свинца), усилители (сажа, каолин), мягчители (парафин, смола), наполнители (мел, тальк), противостарители и красители.
Эбонит — материал, сходный по составу с резиной, но твердый и неэластичный. Серы в нем содержится до 30%. Эбонит обладает высокими электроизоляционными свойствами, кислотостоек. Из него делают баки аккумуляторных батарей.

Читайте также:  Какое свойство придает информации электронный способ хранения полезность

24.Полимерные материалы ПОЛИМЕРНЫЕ МАТЕРИАЛЫ, материалы на основе вы-сокомол. соед.; обычно многокомпонентные и многофазные.Полимерные материалы- важнейший класс совр. материалов, широко используемых во всех отраслях техники и технологии, в с. х-ве и в быту. Отличаются широкими возможностями регулирования состава, структуры и св-в. Осн. достоинства полимерных материалов: низкая стоимость, сравнит. простота, высокая производительность, малая энергоемкость и малоотходность методов получения и переработки, невысокая плотность, высокая стойкость к агрессивным средам, атм. и радиац. воздействиям и ударным нагрузкам, низкая теплопроводность, высокие оптич., радио- и электротехн. св-ва, хорошие адгезионные св-ва. Недостатки полимерных материалов: низкая тепло- и термостойкость, большое тепловое расширение, склонность к ползучести и релаксации напряжений; для многих полимерных материалов-горючесть. Осн. типы полимерных материалов-пластические массы и композиционные материалы (композиты), резины, лакокрасочные материалы и лакокрасочные покрытия, клеи, компаунды полимерные, герметики, полимербетон, волокнистые пленочные и листовые материалы (волокниты, ткани, нетканые материалы, пленки полимерные, кожа искусственная, бумага и т.п.). По назначению полимерные материалы подразделяются на конструкционные общего назначения и функциональные-напр. фрикционные и антифрикционные, тепло- и электроизоляционные, электропроводящие, термоиндикаторные, пьезоэлектрические, оптически активные, магнитные, фоторезисторные, антикоррозионные, абляционные. По природе основной (полимерной) фазы (полимера связующего или пленкообразующего) полимерные материалы могут быть природными (натуральными) и химическими (искусственными, или синтетическими). По характеру физ. и хим. превращений, протекающих в полимерной фазе на стадиях получения и переработки, полимерные материалы, как и пластич. массы, подразделяются на термопластичные и термореактивные. В произ-ве термореактивных полимерных материалов из прир. полимеров наиб. широко используются производные целлюлозы, из синтетических – широкий класс карбо- и гетероцепных гомополимеров, статистических, чередующихся, блок- и привитых сополимеров, их смесей и сплавов. В произ-ве термореактивных полимерных материалов наиб. широко используют мономеры, олигомеры, форполимеры, масла и смолы, содержащие ненасыщ. и циклич. группы, реагирующие без выделения низкомол. в-в и со сравнительно небольшими объемными усадками,-ненасыщ. поли- и олиго-эфиры, эпоксидные олигомеры и смолы, олигоизоцианаты, бисмалеинимиды, спироциклич. мономеры и олигомеры и т.п. Их состав и структура, тип и кол-во отвердителя, сшивающего агента, инициатора и катализатора, ускорителя или ингибитора определяются типом полимерного материала (пластич. масса, армир. пластик, лакокрасочный материал, клей и т.п.) и требованиями, предъявляемыми к его технол. и эксплуатац. св-вам. В качестве полимерной фазы или самостоятельного полимерного материала широко используют макро- или микрогетерог. полимер-полимерные композиции (смеси и сплавы полимеров; блок-и привитые сополимеры, в т.ч. сетчатые, взаимопроникающие сетки; вспененные или пористые полимеры, напр. пенопласты. Среди них наиб. распространены дисперсно-эластифицир. системы, состоящие из непрерывной стеклообразной и дисперсной эластичной фаз, напр. полистирол ударопрочный, АБС-пластик, модифицированные каучуками отверждающиеся композиции, а также термоэластопласты, эластичные взаимопроникающие сетки и иономеры. Для регулирования технол. и(или) эксплуатац. св-в полимерной фазы полимерных материалов в нее вводят на стадии синтеза полимера или создания материала химически инертные или активные модификаторы-р-рители, пластификаторы, или мягчители, разбавители, загустители или смазки, структурообразова-тели, красители, антипирены, антиоксиданты, антиозонан-ты, противостарители, термо- и светостабилизаторы, антирады, наполнители и ПАВ; для получения пористых полимерных материалов вводят, кроме того, и порообразователи. Структуру и св-ва полимерных материалов регулируют не только изменением их состава и характера распределения компонентов и фаз, но и условиями термич. и мех. воздействия при формировании (см., напр., Ориентированное состояние полимеров). Способы и условия переработки полимерных материалов определяются типом материала (термопластичный или термореактивный) и его исходным состоянием, т.е. типом полуфабриката (плавкий порошок, гранулы, р-ры или расплавы, дисперсии), а также видом наполнителей-нитей, жгутов, лент, тканей, бумаги, пленок и их сочетаний с полимерной фазой (см. Полимерных материалов переработка).

Дата добавления: 2016-11-02; просмотров: 911 | Нарушение авторских прав | Изречения для студентов

Читайте также:

Рекомендуемый контект:

Поиск на сайте:

© 2015-2020 lektsii.org – Контакты – Последнее добавление

Источник